assume c moles of a diatomic gas has an internal kinetic energy of e joules. determine the temperature of the gas after it has reached equilibrium.

Answers

Answer 1

If 3 moles of a diatomic gas has an internal kinetic energy of 10 Kilojoules then the temperature of the gas when it reaches equilibrium is 364.67 Kelvin.

To determine the temperature of a gas, we can use the equation for the average kinetic energy of a molecule:

KE_avg = (3/2) * k * T

Where:

KE_avg is the average kinetic energy of a molecule,

k is the Boltzmann constant (approximately 1.38 x 10^-23 J/K),

T is the temperature in Kelvin.

Given that the gas has 3.0 moles and an internal kinetic energy of 10 kJ, we need to convert the energy to joules and divide by the number of moles to find the average kinetic energy per molecule.

Internal kinetic energy = 10 kJ = 10,000 J

Number of moles (n) = 3.0 mol

Average kinetic energy per molecule (KE_avg) = Internal kinetic energy / Number of molecules

KE_avg = 10,000 J / (3.0 mol * 6.022 x 10^23 molecules/mol)

Now we can rearrange the equation to solve for temperature (T):

T = (KE_avg * 2) / (3 * k)

Plugging in the values:

T = (10,000 J / (3.0 mol * 6.022 x 10^23 molecules/mol)) * 2 / (3 * 1.38 x 10^-23 J/K)

Simplifying:

T ≈ 364.67 K

Therefore, the gas's temperature after reaching equilibrium is approximately 364.67 Kelvin.

The complete question should be:

Assume 3.0 moles of a diatomic gas has an internal kinetic energy of 10 kJ. Determine the temperature of the gas after it has reached equilibrium.

Learn more about Boltzmann constant:

https://brainly.com/question/30639301

#SPJ11


Related Questions

Select the single best answer. Identify the chemical equation that shows the release of one hydrogen ion from a molecule of the following acid. H2​SO3​(aq), sulfurous acid Multiple Choice H2​SO3​(aq)→H+(aqh)+HSO3​−(aq) H2​SO3​(aq)→H+(aq)+SO32​(aq) H2​SO3​(aq)→2H+(aq)+SO32−​(aq)

Answers

The chemical equation that shows the release of one hydrogen ion from a molecule of H2 SO3 (aq), sulfurous acid is: H2 SO3 (aq)→H+(aq)+HSO3 −(aq).

The chemical equation that shows the release of one hydrogen ion from a molecule of the acid H2​SO3​(aq) is H2​SO3​(aq)→H+(aq)+HSO3​−(aq).Explanation: The equation given represents the release of a single hydrogen ion from H2SO3(aq) that converts into H+(aq) and HSO3−(aq) ions.

The acid sulfurous acid is represented by the chemical formula H2SO3 which is also an aqueous solution. It dissociates in water to release hydrogen ion and bisulfite ion. The hydrogen ion is H+ and is represented in the equation given.The three chemical equations for the release of hydrogen ions from sulfurous acid can be written as:H2SO3(aq)→H+(aq) + HSO3-(aq)H2SO3(aq)→H+(aq) + SO32-(aq)H2SO3(aq)→2H+(aq) + SO32-(aq)However, out of these three equations, the chemical equation that shows the release of one hydrogen ion from a molecule of the acid H2SO3(aq) is H2​SO3​(aq)→H+(aq)+HSO3​−(aq).

To know more about sulfurous acid visit :

brainly.com/question/12125396

#SPJ11

a gas cylinder contains 2.0 mol of gas x and 6.0 mol of gas y at a total pressure of 2.1 atm. what is the partial pressure of gas y? use . 0.50 atm 1.6 atm 2.1 atm 2.8 atm

Answers

The partial pressure of gas y is approximately 1.575 atm.

To find the partial pressure of gas y, we need to calculate the mole fraction of gas y and then multiply it by the total pressure. The mole fraction of gas y (Xy) is the ratio of the moles of gas y to the total moles of gas (n):
Xy = (moles of gas y) / (moles of gas x + moles of gas y)In this case, gas x has 2.0 moles and gas y has 6.0 moles, so:
Xy = 6.0 / (2.0 + 6.0) = 6.0 / 8.0 = 0.75
The partial pressure of gas y (Py) is the mole fraction of gas y multiplied by the total pressure (Ptotal):
Py = Xy * Ptotal = 0.75 * 2.1 atm = 1.575 atm
Therefore, the partial pressure of gas y is approximately 1.575 atm.

To know more about partial pressure , click here https://brainly.com/question/16749630

#SPJ11

5. how much of an 800-gram sample of potassium-40 will remain after 3.9 × 109 years of radioactive decay?
1) 50 grams
2)100 grams
3)200 grams
4)400 grams

Answers

The answer to how much of an 800-gram sample of potassium-40 will remain after 3.9 × 109 years of radioactive decay is option (3) "200 grams."

The amount of an 800-gram sample of potassium-40 that will remain after 3.9 × 109 years of radioactive decay can be calculated by using the radioactive decay law. The radioactive decay law states that the number of radioactive nuclei N of a sample decreases as a function of time t. This can be given by the equation N = N₀ e^(-λt)

Where N₀ is the initial number of radioactive nuclei, λ is the decay constant, and t is the time.

The decay constant is related to the half-life T½ of the radioactive isotope by the equation

T½ = ln2 / λ Given that the half-life of potassium-40 is 1.28 × 10^9 years,

we can find the decay constant as follows

λ = ln2 / T½

= ln2 / (1.28 × 10^9)

= 5.43 × 10^-10 year^-1

Substituting the given values into the radioactive decay law, we get

N = 800 e^(-5.43 × 10^-10 × 3.9 × 10^9)N ≈ 200 grams

Therefore, the answer is option (3) 200 grams.

To know more about radioactive decay visit:

https://brainly.com/question/1770619

#SPJ11

A vessel of 0.25 m^3 capacity is filled with saturated steam at 1500 kPa. If the vessel is cooled until 29% of the steam has condensed, how much heat is transferred? (For data, use the steam tables.) The heat transferred is-kJ

Answers

Therefore, the heat transferred is -2956.8 kJ, which is approximately equal to -2957 kJ.  the heat transferred is -2957 kJ.

Given Data: Volume of vessel, V = 0.25 m³Pressure of saturated steam, P1 = 1500 kPa Final quality of steam, x2 = 0.29Formula Used:

The formula used for calculating the heat transferred in the process of steam generation or steam condensation can be given as follows, $Q = m (h2 - h1)$Here, Q = Heat transferredm = Mass of the systemh2 = Enthalpy of the final stateh1 = Enthalpy of the initial state At point 1, the given steam is completely saturated.

Therefore, from the given data, we can find out the enthalpy of the saturated steam at point 1. Enthalpy of the saturated steam at point 1,h1 = hg = 2881.6 kJ/kg (from the steam table)

Now, we need to find out the enthalpy of the final state, i.e. h2. For this, first, we need to find out the temperature of the final state.

To find out the temperature of the final state, we can use the equation,$ x2 = \frac{h2 - h_f}{h_g - h_f} $$\ Rightarrow h2 = x2(hg - hf) + hf$

We know that the final quality of the steam is 0.29. Therefore, from the steam tables, we can find out that the temperature of the final state, T2 = 122.2°C.

Enthalpy of the saturated water at T2,hf = 504.7 kJ/kg (from the steam table)Enthalpy of the saturated steam at T2,hg = 2754.9 kJ/kg (from the steam table)

Now, we can find out the enthalpy of the final state as follows,h2 = x2(hg - hf) + hf= 0.29(2754.9 - 504.7) + 504.7= 1174.04 kJ/kg

Now, we can calculate the mass of the system as follows, Mass of the system, $m = \frac{V}{v_f + x2 (v_g - v_f)}$We know that, $v_f = 0.001007 m^3/kg$$v_g = 0.1279 m^3/kg$ Substituting the given data, $m = \frac{0.25}{0.001007 + 0.29(0.1279 - 0.001007)}$$\ Rightarrow m = 1.439 kg$

Now, substituting all the values in the formula, $Q = m(h2 - h1)= 1.439(1174.04 - 2881.6)=-2956.8kJ

To know more about heat visit:

https://brainly.com/question/13860901

#SPJ11

draw the octahedral crystal field splitting diagram for each metal ion. a. zn2 b. fe3 (high- and low-spin) c. v3 d. co2 (high-spin)

Answers

In an octahedral crystal field, the d-orbitals of the central metal ion split into two levels: a lower energy set of orbitals referred to as eg and a higher energy set of orbitals referred to as t2g. The eg orbitals are oriented along the axes of the octahedron, whereas the t2g orbitals are oriented between the axes of the octahedron.

The energy difference between the d orbitals in an octahedral complex is known as the octahedral crystal field splitting (Δo).

Octahedral Crystal Field Splitting Diagram for Zn²⁺

Zn²⁺ is a d¹⁰ system with no unpaired electrons.

The three electrons in the t2g set will fill the dxy, dyz, and dxz orbitals, and the eg set will remain vacant.

Δo = 0.

Octahedral Crystal Field Splitting Diagram for Fe³⁺

Fe³⁺ is a d⁵ system that may either be high-spin or low-spin.

For Fe³⁺ in an octahedral field, the low-spin complex will have an electron configuration of t2g³eg², whereas the high-spin complex will have an electron configuration of t2g⁴eg¹.

In the low-spin Fe³⁺, all the electrons are paired up in the t2g orbitals, and there are no unpaired electrons in the eg orbitals. Δo will be high in this case.

Whereas in high-spin Fe³⁺, the t2g orbitals are half-filled, with one electron in each of the three orbitals, and two electrons in one of the eg orbitals. Δo will be lower in this case.

Octahedral Crystal Field Splitting Diagram for V³⁺

V³⁺ is a d³ system.

In V³⁺, the three electrons in the t2g set fill the dxy, dyz, and dxz orbitals, and the eg set remains vacant. Because there are unpaired electrons, this system is paramagnetic. Δo will be high in this case.

Octahedral Crystal Field Splitting Diagram for Co²⁺

Co²⁺ is a d⁷ system that may be either high-spin or low-spin.

For Co²⁺ in an octahedral field, the low-spin complex will have an electron configuration of t2g⁶eg¹, whereas the high-spin complex will have an electron configuration of t2g⁵eg².

In the low-spin Co²⁺, the t2g orbitals are filled with electrons, and there are no unpaired electrons in the eg orbitals.

Δo will be high in this case.

In high-spin Co²⁺, the t2g orbitals contain four electrons and the eg orbitals contain three electrons.

Δo will be lower in this case.

To know more about octahedral field visit:

https://brainly.com/question/11856948

#SPJ11

A particular gas exerts a pressure of 3.38 bar. What is this pressure in units of atmospheres? (1 atm = 760 mm Hg = 101.3 kPa = 1.013 bar) Select one: a. 3.42 atm b. 2.54 × 103 atm c. 3.38 atm d. 2.6 × 103 atm e. 3.33 atm

Answers

To convert the pressure of a particular gas, expressed in bar units, to units of atmosphere, it is necessary to divide the given pressure by the value of one atmosphere in bar units. Thus, to convert 3.38 bar to atmospheres, it is necessary to divide 3.38 by 1.01325 bar/1 atm.

Pressure can be expressed in various units. One of the most commonly used units of pressure is the atmosphere, abbreviated atm. Other commonly used units of pressure include the torr, millimeters of mercury (mm Hg), kilopascals (kPa), and pounds per square inch (psi). To convert pressure from one unit to another, it is necessary to use conversion factors that relate the two units.

Here are some of the most commonly used conversion factors:1 atm = 760 mm Hg1 atm = 101.3 kPa1 atm = 1.01325 barTo convert a pressure expressed in one unit to another unit, it is necessary to use the appropriate conversion factor in a way that cancels out the initial unit and leaves the desired unit. For example, to convert 3.38 bar to atmospheres, it is necessary to use the conversion factor that relates bar to atmospheres:1 atm = 1.01325 barThis means that one atmosphere is equivalent to 1.01325 bar.

To know more about particular gas visit:

https://brainly.com/question/29803823

#SPJ11

How much heat energy, in kilojoules, is required to convert 69.0 g of ice at −18.0 ∘C to water at 25.0 ∘C ? Part B How long would it take for 1.50 mol of water at 100.0 ∘C to be converted completely into steam if heat were added at a constant rate of 22.0 J/s ?

Specific heat of ice: sice=2.09 J/(g⋅∘C)

Specific heat of liquid water: swater=4.18 J/(g⋅∘C)

Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g

Enthalpy of vaporization (H2O(l)→H2O(g)): ΔHvap=2250 J/g

Answers

The heat energy required to melt ice at 0 ∘C is calculated using the formula; Q = m × ΔHfus = 69.0 g × 334 J/g = 23046 J.

Part A: 69 g of ice at −18.0 ∘C is converted to water at 25.0 ∘C. To calculate how much heat energy, in kilojoules, is required to convert 69.0 g of ice at −18.0 ∘C to water at 25.0 ∘C, we will use the following steps:

Firstly, we have to convert the ice to 0 ∘C, then convert it from solid to liquid, and finally, from 0 ∘C to 25.0 ∘C. The amount of energy needed to increase the temperature of 69.0 g of ice from −18.0 ∘C to 0 ∘C is calculated using the equation; Q= m × s × ΔT= 69.0 × 2.09 J/(g ∘C) × (0 – (-18)) ∘C= 2677.4 J

The heat energy required to melt ice at 0 ∘C is calculated using the formula; Q = m × ΔHfus = 69.0 g × 334 J/g = 23046 J. The energy required to raise the temperature of 69.0 g of water from 0 ∘C to 25.0 ∘C is calculated using the equation; Q = m × s × ΔT= 69.0 g × 4.18 J/(g ∘C) × 25.0 ∘C = 7273.5 J

The total energy needed is the sum of all three values:23046 J + 7273.5 J + 2677.4 J = 32997.9 J

Therefore, 32.9979 kJ of heat energy is required to convert 69.0 g of ice at −18.0 ∘C to water at 25.0 ∘C.

Part B: In the conversion of 1.50 mol of water at 100.0 ∘C to steam, heat is added at a constant rate of 22.0 J/s. To calculate how long it will take to convert 1.50 mol of water to steam, we will use the following formula;

Q = n × ΔHvapQ = 1.50 mol × 2250 J/mol = 3375 J

The time, t, it takes to convert 3375 J of water to steam at a constant rate of 22.0 J/s is calculated as follows:

t = Q / P= 3375 J / 22.0 J/s= 153.4 s

Therefore, it takes 153.4 seconds to convert 1.50 mol of water at 100.0 ∘C to steam.

To know more about heat energy visit: https://brainly.com/question/31826743

#SPJ11

what is the expected major product for the following reaction? i ii iii iv v excess cl2

Answers

The expected major product for the given reaction i, ii, iii, iv, v in excess Cl2. 2,2,3-trichloropentane The formation of 2,2,3-trichloropentane involves the abstraction of a hydrogen from the secondary carbon atom.

In this reaction, the compound with the molecular formula C5H12 undergoes chlorination in the presence of excess chlorine. The given reaction has five types of hydrogens as shown below: i) Methyl hydrogens (CH3 group)ii) Primary hydrogens iii) Secondary hydrogens iv) Tertiary hydrogen v) Vinyl hydrogens The reactivity of the different hydrogens towards chlorine is different.

This difference in reactivity is due to the difference in the relative stabilities of the products obtained after H-Cl bond dissociation. The stability of the carbocation intermediate formed after H-Cl bond dissociation determines the reactivity of the hydrogens towards chlorine.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

name the amino acid encoded by the original triplet

Answers

To determine the amino acid encoded by a specific triplet or codon, we need to refer to the genetic code. The genetic code is a set of rules that determines the correspondence between nucleotide sequences in DNA or RNA and the amino acids they specify. Here is the direct answer:

The name of the amino acid encoded by the original triplet depends on the specific sequence of nucleotides in the triplet. Without knowing the sequence of the triplet, it is not possible to provide a specific answer.

In the genetic code, each triplet of nucleotides (codon) corresponds to a specific amino acid or a stop signal. For example, the codon "AUG" codes for the amino acid methionine, which serves as the start codon for protein synthesis.

The genetic code consists of 64 possible codons, including codons for all 20 standard amino acids and three stop codons. Each codon specifies a unique amino acid, except for a few cases of redundancy or degeneracy, where multiple codons can code for the same amino acid.

To determine the amino acid encoded by a specific triplet, you need to know the sequence of the triplet. From there, you can consult a codon table or use bioinformatics tools to find the corresponding amino acid.

Without the specific sequence of the triplet, it is not possible to determine the name of the encoded amino acid. The triplet's sequence is essential in order to refer to the genetic code and find the corresponding amino acid.

Learn more about  nucleotide ,visit:

https://brainly.com/question/29793913

#SPJ11

the acid-base indicator bromcresol green is a weak acid. the yellow acid and blue base forms of the indicator are present in equal concentrations in a solution when the ph is 4.68.

Answers

The pH of the solution is 4.68. The acid-base indicator bromcresol green is a weak acid. The yellow acid and blue base forms of the indicator are present in equal concentrations in a solution.

The pH of the solution is 4.68, which is acidic. The acid-base indicator bromcresol green is a weak acid. The yellow acid and blue base forms of the indicator are present in equal concentrations in a solution. The color of the bromcresol green indicator is yellow in acidic conditions and blue in basic conditions.The indicator bromcresol green is a weak acid and can lose one hydrogen ion (H+) to form an anion.

In acidic conditions, the H+ concentration is high, and the acid form of the indicator predominates, resulting in a yellow color. The H+ concentration is low in basic conditions, and the basic form of the indicator predominates, resulting in a blue color. The acid form and basic form of the bromcresol green indicator are present in equal concentrations in a solution of pH 4.68.The pH of the solution is 4.68, which is acidic.

To know more about solution visit:

https://brainly.com/question/15757469

#SPJ11

How many unpaired electrons are in the high-spin state of W2+ in an octahedral field? unpaired electrons Part 2 (1 pt) How many unpaired electrons are in the low-spin state of W2+ in an octahedral field? unpaired electrons

Answers

In the high-spin state of W²⁺ in an octahedral field, there are four unpaired electrons.

In an octahedral field, the d-orbitals split into two energy levels: the lower energy level (t₂g) and the higher energy level (e_g). In the high-spin state, electrons are first placed in the lower energy level before pairing up. Since W²⁺ has five d-electrons, four of them will occupy the t₂g orbitals with parallel spins, resulting in four unpaired electrons.In the low-spin state of W²⁺ in an octahedral field, there are zero unpaired electrons.In the low-spin state, the electrons pair up in the t₂g orbitals before filling the higher energy e_g orbitals. Since W²⁺ has five d-electrons, all of them will pair up in the t₂g orbitals, resulting in zero unpaired electrons.Therefore, the high-spin state of W²⁺ in an octahedral field has four unpaired electrons, while the low-spin state has zero unpaired electrons.

To know more about unpaired electron, click here https://brainly.com/question/29656941

#SPJ11

what is the major organic product obtained from the following reaction? hno3 h2so4 naoh

Answers

The specific reaction and organic product cannot be determined without further information about the reactant, reaction conditions, and reaction mechanism.

What is the major organic product obtained from the reaction involving HNO3, H2SO4, and NaOH?

In organic chemistry, reactions and their products depend on specific reactants, conditions, and reaction mechanisms. The combination of HNO3, H2SO4, and NaOH does not specify a particular reaction or starting material.

To accurately predict the major organic product, we would need more details about the reactant or starting material, the specific reaction conditions (e.g., temperature, solvent), and any other reagents or catalysts involved. Additionally, knowledge of the reaction mechanism would be necessary to determine the product.

If you can provide more specific information about the reaction or the starting material, I would be happy to assist you further in predicting the major organic product.

Learn more about organic product

brainly.com/question/30328741

#SPJ11

what is the percent yield of a reaction in which 200. g of phosphorus trichloride reacts with excess water to form 155 g of hcl and aqueous phosphorous acid (h3po3)?

Answers

The correct percent yield of the reaction is approximately 97.3%.

Given,

Mass of phosphorus trichloride = 200g

Mass of HCl = 155g

The theoretical yield of HCl using stoichiometry:

Moles of PCl3 = Mass of PCl3 / Molar mass of PCl3

= 200 g / 137.5 g/mol

= 1.455 moles

Theoretical yield of HCl = Moles of PCl3 x (3 moles HCl / 1 mole PCl3)

= 1.455 moles x (3 moles HCl / 1 mole PCl3)

= 4.365 moles

The molar mass of HCl:

HCl = 1.0 g/mol (H) + 35.5 g/mol (Cl)

= 36.5 g/mol

The theoretical mass of HCl:

Theoretical mass of HCl = Theoretical yield of HCl x Molar mass of HCl

= 4.365 moles x 36.5 g/mol

≈ 159.3025 g

Percent yield = (Actual yield / Theoretical yield) x 100

= (155 g / 159.3025 g) x 100

= 97.3%

Learn more about percent yield, here:

https://brainly.com/question/31109741

#SPJ4

the gauge pressure in your car tires is 2.75 × 105 pa at a temperature of 35.0°c when you drive it onto a ferry boat to alaska.

Answers

When driving your car onto a ferry boat to Alaska, the gauge pressure in your car tires is [tex]2.75 * 10^5[/tex]Pa at a temperature of [tex]35.0^0C[/tex].

When your car is on land, the gauge pressure in the tires is [tex]2.75 * 10^5[/tex] Pa, indicating the pressure above atmospheric pressure. This pressure is measured when the tires are at a temperature of [tex]35.0^0C[/tex]. However, as you drive your car onto a ferry boat to Alaska, there will be changes in temperature and pressure.

The temperature on the ferry boat might be different from the initial [tex]35.0^0C[/tex], which can affect the pressure inside the tires. Additionally, the pressure may also change due to factors such as altitude and changes in atmospheric conditions during the journey.

To ensure safe and optimal tire performance, it is crucial to monitor and adjust the tire pressure regularly. Extreme temperatures, whether hot or cold, can cause variations in tire pressure, which may impact your car's handling and fuel efficiency.

Therefore, it is advisable to check the tire pressure before embarking on any journey, especially when traveling to regions with significantly different temperatures or when transitioning between different altitudes.

Learn more about gauge pressure here:

https://brainly.com/question/29341536

#SPJ11

Cuticle remover cream contains which of the following ingredients? a) bleach b) salicylic acid c) formaldehyde d) potassium hydroxide.

Answers

Cuticle remover cream contains potassium hydroxide. Potassium hydroxide is a strong alkali that is used in cuticle remover cream. The correct answer is option d.

Potassium hydroxide functions by softening the cuticle to allow for gentle removal. However, it is important to use it correctly and to follow the instructions provided on the packaging to prevent damaging the skin. When it comes to nail polish remover, on the other hand, some formulations include acetone, which is a potent solvent that may cause skin irritation if used excessively. Salicylic acid is an exfoliating agent that is often found in skincare products for acne-prone skin.

It functions by removing dead skin cells from the surface of the skin and unclogging pores. It is not typically found in cuticle remover cream, despite being an excellent exfoliating agent. Formaldehyde is used in nail hardeners to strengthen the nails. It is not commonly found in cuticle remover cream. Bleach is a strong oxidizing agent that is used for bleaching and cleaning purposes. It is not used in cuticle remover cream.

Therefore, the correct answer is option d) potassium hydroxide.

Learn more about potassium hydroxide here:

https://brainly.com/question/32129953

#SPJ11

Final answer:

Cuticle remover creams commonly contain potassium hydroxide, which softens and dissolves cuticle tissue. Other compounds like bleach, formaldehyde, and salicylic acid are used in different cosmetic products for different purposes.

Explanation:

Cuticle remover creams typically contain potassium hydroxide. This alkaline compound serves to soften and dissolve the cuticle tissue, making it easier to remove. It's important to note that while potassium hydroxide is effective in this task, it needs to be used with caution as overuse or incorrect use can lead to skin irritation.

Compounds such as bleach, formaldehyde, and salicylic acid are also used in various cosmetic products, but they serve different purposes. For instance, bleach is a strong disinfectant, salicylic acid is used in acne treatments, and formaldehyde is used in certain nail hardening products.

Learn more about potassium hydroxide here:

https://brainly.com/question/33919526

#SPJ11

what is the kb for a base b, if the equilibrium concentrations are [b]=1.11 m, [hb ]=0.049 m, and [oh−]=0.049 m?

Answers

The Kb value of the base B is 1.48 x 10-5. Hence, the correct option is (d) 1.48 x 10⁻⁵.

The answer for this question is Kb=1.48 x 10-5. Here is a detailed explanation:

Given:[b] = 1.11 M[hb] = 0.049 M[OH⁻] = 0.049 M We know that a base B reacts with water to produce hydroxide ions and its conjugate acid as given in the following equation.

B (aq) + H2O (l) ⇌ HB⁺ (aq) + OH⁻ (aq) We also know that for the above equation,

Kb = [HB⁺] [OH⁻] / [B].At equilibrium, using stoichiometry:[OH⁻] = [HB⁺]

Therefore: Kb = [OH⁻]² / [B]Substitute the given values to find the value of Kb: Kb = [OH⁻]² / [B]Kb = (0.049 M)² / 1.11 M Kb = 0.002401 M² / 1.11 M Kb = 2.16 x 10⁻³ M

Finally, convert it to Kb value. Kw = Ka * KbKb = Kw / KaKw = 1.0 x 10⁻¹⁴Ka = [H⁺]² / [HA]At equilibrium: Ka = [H⁺]² / [HB⁺]Ka = [OH⁻]² / [B]Kb = Kw / Ka Kb = (1.0 x 10⁻¹⁴) / (1.67 x 10⁻⁹)Kb = 5.99 x 10⁻⁶ or Kb=1.48 x 10-5 (approx).

To know more about  Kb visit:

https://brainly.com/question/16816808

#SPJ11

the heat of fusion of ammonia is . calculate the change in entropy when of ammonia melts at .

Answers

The heat of fusion of ammonia is 5.65 kJ/mol. Entropy is a measure of the disorder or randomness of a system. It has the symbol S and is measured in units of joules per kelvin.

The change in entropy of a system can be calculated using the formula ΔS = Qrev/T, where ΔS is the change in entropy, Qrev is the heat absorbed or released in a reversible process, and T is the temperature in kelvins.In this case, we want to calculate the change in entropy when 1 mol of ammonia melts at 195.5 K.

The heat of fusion of ammonia is 5.65 kJ/mol. We can use the following steps to calculate the change in entropy:Calculate the heat absorbed when 1 mol of ammonia melts at 195.5 K using the heat of fusion equation:Q = nΔHfwhere Q is the heat absorbed, n is the number of moles (1 mol), and ΔHf is the heat of fusion.Q = (1 mol)(5.65 kJ/mol) = 5.65 kJ

To know more about Entropy visit:-

https://brainly.com/question/20166134

#SPJ11

at 30 ∘c∘c how many oxygen molecules cross the lens in 1 hh ?

Answers

In 1 hour, approximately 3.2 × 10⁸ oxygen molecules cross the contact lens due to diffusion. The flux of oxygen molecules is calculated using Fick's law of diffusion and then multiplied by the time and the area of the lens.

The diffusion of oxygen across a contact lens can be modeled by Fick's law of diffusion:

[tex]J = D \cdot A \cdot \frac{P_1 - P_2}{L}[/tex]

where:

J is the flux of oxygen molecules (molecules/m²/s)

D is the diffusion coefficient of oxygen in the contact lens (m²/s)

A is the area of the contact lens (m²)

P1 is the partial pressure of oxygen at the front of the lens (kPa)

P2 is the partial pressure of oxygen at the rear of the lens (kPa)

L is the thickness of the contact lens (m)

We know the following values:

D = 1.3 × 10⁻¹³ m²/s

A = (π * (7 mm)²) / 4 = 154 mm²

P1 = 0.2 * 101.3 kPa = 20.26 kPa

P2 = 7.3 kPa

L = 40 μm = 4 × 10⁻⁶ m

We can now solve for the flux of oxygen molecules:

[tex]J = (1.3 \times 10^{-13} , \mathrm{m}^2/\mathrm{s}) \cdot (154 , \mathrm{mm}^2) \cdot \frac{(20.26 , \mathrm{kPa} - 7.3 , \mathrm{kPa})}{(4 \times 10^{-6} , \mathrm{m})}[/tex]

= 5.7 × 10⁻¹⁰ molecules/m²/s

The number of oxygen molecules that cross the lens in 1 h is given by:

N = J * t * A

where:

N is the number of oxygen molecules (molecules)

J is the flux of oxygen molecules (molecules/m²/s)

t is the time (s)

A is the area of the contact lens (m²)

We know the following values:

J = 5.7 × 10⁻¹⁰ molecules/m²/s

t = 3600 s

A = 154 mm² = 154 × 10⁻⁶ m²

N = (5.7 × 10⁻¹⁰ molecules/m²/s) * (3600 s) * (154 × 10⁻⁶ m²)

= 3.2 × 10⁸ molecules

Therefore, the number of oxygen molecules that cross the lens in 1 h is 3.2 × 10⁸ molecules.

To know more about the Fick's law of diffusion refer here :

https://brainly.com/question/31969295#

#SPJ11

Complete question :

Your cornea doesn’t have blood vessels, so the living cells of the cornea must get their oxygen from other sources. Cells in the front of the cornea obtain their oxygen from the air. Wearing a contact lens interferes with this oxygen uptake, so contact lenses are designed to permit the diffusion of oxygen. The diffusion coefficient of one brand of soft contact lenses was measured to be 1.3×10−13 m^2/s We can model the lens as a 14-mm-diameter disk with a thickness of 40 μm. The partial pressure of oxygen at the front of the lens is 20% of atmospheric pressure, and the partial pressure at the rear is 7.3 kPa.

At 30°C how many oxygen molecules cross the lens in 1 h?

N = ? molecules

Amino acids can be synthesized by reductive amination. Draw the structure of the organic compound that you would use to synthesize glutamic acid. •. You do not have to consider stereochemistry. • Draw the molecule with ionizable groups in their uncharged form. • In cases where there is more than one answer, just draw one.

Answers

The organic compound used to synthesize glutamic acid through reductive amination is α-ketoglutarate.

What is the precursor compound for synthesizing glutamic acid through reductive amination?

Reductive amination is a chemical reaction that involves the conversion of a carbonyl compound, such as an aldehyde or a ketone, into an amine. In the case of synthesizing glutamic acid, the precursor compound used is α-ketoglutarate.

α-ketoglutarate is an organic compound that belongs to the family of alpha-keto acids. It has a carboxyl group and a keto group, making it suitable for reductive amination reactions. By reacting α-ketoglutarate with an amine, such as ammonia or an amine derivative, and employing a reducing agent, such as sodium borohydride, glutamic acid can be synthesized.

Glutamic acid is one of the 20 amino acids that serve as the building blocks of proteins. It plays important roles in various biological processes, including protein synthesis and neurotransmitter function. The synthesis of glutamic acid through reductive amination using α-ketoglutarate allows for the production of this essential amino acid.

Learn more about reductive amination

https://brainly.com/question/14207331

#SPJ11

Which gas contributes to both global warming and the deterioration of the ozone layer?
A carbon dioxide
B CFCs
C oxygen
D methane

Answers

The gas that contributes to both global warming and the deterioration of the ozone layer is B. CFCs. CFCs are synthetic gases that have been widely used for refrigeration, air conditioning

They are called chlorofluorocarbons, and they consist of chlorine, fluorine, and carbon. Chlorine atoms in CFCs destroy ozone molecules in the upper atmosphere by breaking them down and converting them into oxygen molecules. The breakdown of ozone molecules is a serious problem because ozone is critical in preventing harmful UV radiation from entering the Earth's surface, protecting humans and wildlife from skin cancer and other illnesses.

CFCs are also potent greenhouse gases. These gases trap heat in the Earth's atmosphere, resulting in global warming. As the Earth's surface temperature rises, it causes a series of environmental and ecological changes, such as melting glaciers, rising sea levels, and increased frequency of natural disasters like hurricanes, floods, and wildfires

To know more about global warming visit:-

https://brainly.com/question/3553382

#SPJ11

When a molecule with acidic protons enters into an environment with a pH value that is greater than the pK, of its functional groups, the molecule will lose the proton(s) in question. Consider the structure of the amino acid histidine in its fully protonated form. How would the amino acid appear in a slightly basic environment of pH 8, given the following structure and the pK, values of the acidic protons? Bear in mind, that when the pH of the solution is greater than the pK, of the proton, that proton will be lost. proton pK Hc H. 1.8 HN H 9.2 N Hc 6.0 H View Available Hintis)

Answers

In a slightly basic environment of pH 8, the amino acid histidine will appear in a deprotonated form.

Histidine contains three acidic protons: Hc with a pK value of 1.8, HN with a pK value of 9.2, and N Hc with a pK value of 6.0. When the pH of the solution exceeds the pK values of these protons, they will be lost, resulting in a deprotonated histidine molecule.

In a slightly basic environment with a pH of 8, the pH value is greater than the pK values of both Hc (1.8) and N Hc (6.0). Therefore, these protons will be lost, and histidine will appear without those protons. However, the pH value of 8 is lower than the pK value of HN (9.2). As a result, the HN proton will remain attached to the histidine molecule.

In summary, in a slightly basic environment of pH 8, histidine will be deprotonated, losing the Hc and N Hc protons. The HN proton will remain attached to the histidine molecule since the pH value of 8 is lower than its pK value.

Learn more about amino acid here:

https://brainly.com/question/30587649

#SPJ11

In a slightly basic environment with a pH of 8, the amino acid histidine will lose the acidic protons whose pK values are lower than 8, resulting in a modified structure i.e. deprotonated form.

When the pH of a solution is higher than the pK value of an acidic proton, that proton will be lost. In the case of histidine, it has three acidic protons with different pK values: Hc (pK 1.8), HN (pK 9.2), and N Hc (pK 6.0). In a slightly basic environment with a pH of 8, the proton Hc (pK 1.8) and N Hc (pK 6.0) will be lost because their pK values are lower than 8.

As a result, the modified structure of histidine in this environment would be without these two protons. The remaining proton, HN (pK 9.2), will not be lost because its pK value is higher than the pH of 8. It is important to note that the loss of protons can affect the overall charge and chemical properties of the molecule.

Learn more about deprotonated here:

https://brainly.com/question/31620628

#SPJ11

at one point in the above scehem both iron and nickel co exist in solution and can be seperated using 15 ammonia

Answers

Upon initial addition of 15M ammonia, iron(III) hydroxide (Fe(OH)₃) and nickel(II) hydroxide (Ni(OH)₂) form. Continued addition of ammonia causes the dissolution of Fe(OH)₃, forming the soluble hexaammineiron(III) complex ion [Fe(NH₃)₆]³⁺.

The equations showing the formation of these hydroxides are:

Fe³⁺(aq) + 3 NH₃(aq) + 3 H₂O(l) → Fe(OH)₃(s) + 3 NH₄⁺(aq)

Ni²⁺(aq) + 2 NH₃(aq) + 2 H₂O(l) → Ni(OH)₂(s) + 2 NH₄⁺(aq)

Continued addition of ammonia causes the dissolution of one of the hydroxides and the formation of a soluble complex ion. In this case, the hydroxide of iron(III) dissolves to form a complex ion called hexaammineiron(III) ion.

The balanced equation showing the dissolution of OH⁻ into the complex ion is:

Fe(OH)₃(s) + 6 NH₃(aq) → [Fe(NH₃)₆]³⁺(aq) + 3 H₂O(l)

Therefore, the complex ion formed is [Fe(NH₃)₆]³⁺.

To know more about the complex ion refer here :

https://brainly.com/question/32268702#

#SPJ11

Complete question :

At one the point in the above scheme both iron(III) and nickel(II) co-exist in solution and can be separated using 15M ammonia. Upon initial addition of this reagent the hydroxide of each cation forms; write the equation showing this formation. Continued addition of ammonia causes one of the hydroxides to dissolve. Identify the complex ion formed and write a balanced equation showing the dissolution of OH − into a soluble complex ion.

A pair of vertical, open-ended glass tubes inserted into a horizontal pipe are often used together to measure flow velocity in the pipe, a configuration called a Venturi meter. Consider such an arrangement with a horizontal pipe carrying fluid of density ?. The fluid rises to heights h1 and h2 in the two open-ended tubes (see figure). The cross-sectional area of the pipe is A1 at the position of tube 1, and A2 at the position of tube 2.



Find p1, the gauge pressure at the bottom of tube 1. (Gauge pressure is the pressure in excess of outside atmospheric pressure.)



Find v1, the speed of the fluid in the left end of the main pipe.

Answers

Gauge pressure at the bottom of tube 1 is given by the expression reaction:(p1 − p0) = (ρv12/2) − (ρv22/2) + ρgh1 − ρgh2.Here, p0 = 1 atm (the pressure outside the tubes).ρ is the density of the fluid.v1 is the fluid speed at the left end of the pipe.2.

In the vertical tubes, the fluid is at rest, hence the pressure at points 1 and 2 in the tubes must equal the pressure at point 3 in the horizontal pipe. The gauge pressure at the bottom of tube 1 is given by the expression:(p1 − p0) = (ρv12/2) − (ρv22/2) + ρgh1 − ρgh2.Here, p0 = 1 atm (the pressure outside the tubes).ρ is the density of the fluid.v1 is the fluid speed at the left end of the pipe.

Fluid speed at the left end of the main pipe, v1, is given by the expression:v1 = (2g(h1 − h2)/[(A1/A2)2 − 1])1/2This can be obtained by manipulating equations (1) and (2), using the fact that the speed of fluid at the right end of the pipe is zero.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

When a piece of iron spontaneously reacts when placed in a solution of copper (II) sulfate, the oxidizing agent is: O a) SOA b) We can't tell without knowing the redox potentials c c) Fe O d) Cu2+

Answers

When a piece of iron spontaneously reacts when placed in a solution of copper (II) sulfate, the oxidizing agent is Cu2+. Oxidizing agents are the ones that are reduced in redox reactions.

option D, Cu2+, is correct.

which was initially in its elemental form, reacts with copper sulfate, CuSO4, which is an oxidizing agent, to form iron sulfate, FeSO4, and copper.  The oxidation process can be written as below: Fe + CuSO4 → FeSO4 + CuIron is oxidized in the above equation as it loses electrons to copper(II) sulfate. Iron went from its neutral state (0) to a positive state (2+), while copper went from a positive state (2+) to a neutral state (0).Since copper(II) sulfate is an oxidizing agent, it can be seen that the oxidizing agent in this reaction is copper(II) sulfate, and therefore, option D, Cu2+, is correct.

To know more about Oxidizing agents visit

https://brainly.com/question/29137128

#SPJ11

after 525 million years how much of a 240 g sample of this radioisotope will remain

Answers

After 525 million years, a fraction of the original 240 g sample of the radioisotope will remain. The amount remaining depends on the half-life of the radioisotope.

The decay of radioisotopes follows an exponential decay law, which can be described using the equation [tex]\(N(t) = N_0 \times e^{-\lambda t}\)[/tex], where N(t) is the amount of the radioisotope remaining at time T, [tex]\(N_0\)[/tex] is the initial amount of the radioisotope, [tex]\(\lambda\)[/tex] is the decay constant, and e is the base of the natural logarithm.

To determine the amount remaining after 525 million years, we need to know the half-life of the radioisotope. The half-life is the time it takes for half of the radioisotope to decay. Let's assume the half-life is T. Then, the decay constant can be calculated using the equation [tex]\(\lambda = \ln(2)/T\)[/tex].

Substituting the given values, we can now calculate the amount remaining after 525 million years. However, without the specific radioisotope and its half-life, it is not possible to provide an exact value. Different radioisotopes have different half-lives, ranging from fractions of a second to billions of years, and each would yield a different result.

To learn more about radioisotope refer:

https://brainly.com/question/18640165

#SPJ11

draw the lewis structure for co32- including any valid resonance structures

Answers

The CO32- ion is an anion formed when a carbon dioxide molecule reacts with water. The molecule has a trigonal planar structure, with a carbon atom in the center bonded to three oxygen atoms and a negative charge.

As a result, the carbon atom in the CO32- ion has a formal charge of +2. We must draw the Lewis structure of CO32- with valid resonance structures. Here's how to do it: Step 1: Determine the total number of valence electrons. We will calculate the total number of valence electrons by adding the valence electrons of each atom involved.CO3-2 ion contains 3 oxygen atoms and 1 carbon atom. Thus, Total number of valence electrons = Valence electrons of carbon + Valence electrons of oxygen x 3 + Charge on the ion Total number of valence electrons = 4 + 6 x 3 + 2 = 24 electrons. Step 2: Place the least electronegative atom in the center. We must place the carbon atom in the center because oxygen has higher electronegativity. Step 3: Connect the atoms with single bonds and fill out the octets of the atoms attached to the central atom. We will then add three single bonds between the carbon and oxygen atoms and fill the remaining valence electrons of the oxygen atoms with lone pairs.

Step 4: Add any leftover electrons to the central atom. Finally, we will put the remaining valence electrons on the carbon atom as lone pairs and try to rearrange the electrons to achieve more stable resonance structures.  Resonance structures of CO32-  The total number of resonance structures of CO32- is three.

To know more about electrons visit:-

https://brainly.com/question/18367541

#SPJ11

You are tasked with finding the enantiomeric excess of a sample of R-carvone. You dissolve 1.429 g of the liquid in ethanol and dilute to exactly 9.0 mL. You put this liquid in a polarimetry cell that measures 10 cm in length. When you read the sample in a polarimeter, you find a rotation of -3.3 degrees. The published specific rotation for pure R-carvone is -62. What is the enantiomeric excess of this sample? Formulas: 20 20 (dm) and c(g/mL) % ee = x 100 1xc 20 (al literature lal sample a [

Answers

The enantiomeric excess of the sample of R-carvone is 0.042%.

Enantiomeric excess is a term used to describe the excess of one enantiomer in a mixture of two enantiomers. Enantiomeric excess (ee) is a measure of the relative amount of an enantiomer in a mixture of two enantiomers. The following formula may be used to determine the enantiomeric excess:

% ee = x 100 1xc 20 (al literature lal sample a % ee = (a-b)/(a+b) x 100%

Where a is the percentage of the major enantiomer and b is the percentage of the minor enantiomer.

Polarimetry: It is a technique for measuring the optical rotation of a substance. The amount of rotation that a substance causes when polarized light passes through it is known as optical rotation. Polarimetry is used to determine the specific rotation of a substance, which is the amount of rotation per unit length of a sample. To calculate the enantiomeric excess of R-carvone, we must first calculate the specific rotation of the sample, which is given by the following formula:

[a]20 = α/10cl

Where α is the observed rotation, c is the concentration in g/mL, and l is the path length in dm.

Substituting the given values, we have:

[a]20 = -3.3/10 x 1.429/9= -0.0261 dm³/g cm

Now, the specific rotation of pure R-carvone is given as -62°.

To find the enantiomeric excess of the sample, we use the following formula

:% ee = [(observed specific rotation / specific rotation of pure R-carvone) - 1] x 100 Substituting the values we get:% ee

= [(-0.0261/-62) - 1] x 100= (0.00042) x 100= 0.042%

Therefore, the enantiomeric excess of the sample of R-carvone is 0.042%.

To know more about enantiomeric excess visit:

https://brainly.com/question/6025721

#SPJ11

How many grams of CO2 are produced per 1.00 x 104 kJ of heat released by the combustion of butane, C4H10?

2 C4H10 + 13 O2 ----> 8 CO2 + 10 H2O ?Horxn = -5314 kJ

a) 23.4 g b) 44.0 g c) 82.3 g d) 187 g e) 662 g

Answers

82.3 g of CO2 are produced per 1.00 x 104 kJ of heat released by the combustion of butane, C4H10. So, the correct option is c

The balanced chemical equation for the combustion of butane, C4H10 is:

2 C4H10(g) + 13 O2(g) ⟶ 8 CO2(g) + 10 H2O(g)

The enthalpy change (ΔH) for the combustion of butane can be expressed as: ΔH = -5314 kJ.

We are given that 1.00 x 104 kJ of heat is released by the combustion of butane. Therefore, we can use stoichiometry to find the mass of CO2 produced. To find the mass of CO2 produced, we need to find the number of moles of CO2 produced first.

Number of moles of CO2 produced = (Heat released/Enthalpy change) * (moles of CO2/ moles of C4H10)

We can determine the number of moles of CO2 produced from the balanced chemical equation. 2 moles of C4H10 produces 8 moles of CO2. Therefore,1 mole of C4H10 produces 4 moles of CO2. Number of moles of CO2 produced = (1.00 x 104 kJ/-5314 kJ) * (4 moles of CO2/ 2 moles of C4H10) = 1.88 moles of CO2 produced. The molar mass of CO2 is 44.01 g/mol. Therefore,

Mass of CO2 produced = Number of moles of CO2 produced * Molar mass of CO2 = 1.88 moles * 44.01 g/mol = 82.7g.

Therefore, the answer is option (c) 82.3 g.

Learn more about combustion at https://brainly.com/question/13251946

#SPJ11

For a chemical reaction to be spontaneous only at high temperatures, which conditions must be met?
ΔS <0,
ΔΗ «Ο AS > 0,
AH® < 0 DAS > 0,
AH > 0 AS < 0,
AH">0

Answers

For a chemical reaction to be spontaneous only at high temperatures, the conditions that must be met are ΔH > 0 and ΔS < 0.

What conditions must be satisfied for a chemical reaction to be spontaneous only at high temperatures?

To determine if a chemical reaction is spontaneous at high temperatures, we need to consider the enthalpy change (ΔH) and entropy change (ΔS).

In this case, the condition for a reaction to be spontaneous only at high temperatures is that the enthalpy change (ΔH) must be positive (ΔH > 0) and the entropy change (ΔS) must be negative (ΔS < 0).

A positive ΔH indicates an endothermic reaction, where heat is absorbed from the surroundings. At high temperatures, the increased thermal energy can provide the necessary activation energy for the reaction to occur.

A negative ΔS indicates a decrease in entropy or disorder in the system. Despite the decrease in entropy, the positive ΔH contributes to the overall spontaneity of the reaction at high temperatures, as the increased energy can overcome the unfavorable decrease in entropy.

Learn more about chemical reaction

brainly.com/question/29762834

#SPJ11

what is the molar concentration of a 15.00y weight sodium chloride solution whose density is 1.081 g/ml

Answers

The molar concentration of a 15.00y weight sodium chloride solution whose density is 1.081 g/ml is 0.257 M. Molar concentration is defined as the amount of solute present in per unit volume of solution.

We are given, Weight of sodium chloride = 15.00 y. Density of sodium chloride solution = 1.081 g/ml. Molar mass of NaCl = 58.44 g / mol Molar concentration can be calculated as follows, Firstly, we need to find the number of moles of sodium chloride.  Number of moles of NaCl = Mass of NaCl / Molar mass of NaCl= 15.00 y / 58.44 g/mol.

The molar concentration of sodium chloride. Concentration = (number of moles of solute)/volume of solution in litres= 0.00636 mol / 0.411 × 10⁻³ L= 0.257 M. Thus, the molar concentration of a 15.00y weight sodium chloride solution whose density is 1.081 g/ml is 0.257 M.

To know more about sodium chloride visit:

https://brainly.com/question/14516846

#SPJ11

Other Questions
You purchased Birdie Streak stock six years ago. This stock has had returns of 6 percent. 14 percent, 9 percent, 10 percent, -5 percent, and 3 percent over the past six years. What is the geometric average return for this time period? Please don't copy it on the internet and please type it for mebecause the handwriting is hard to readHow do we know when whistle-blowing is morally right orwrong? Read the excerpt from Romeo and Juliet by William Shakespeare and answer the question that follows. But, soft! what light through yonder window breaks? It is the east, and Juliet is the sun. Arise, fair sun, and kill the envious moon, Who is already sick and pale with grief How does the use of metaphor to compare Juliet to the sun develop or enhance the speaker's tone? a. The metaphor illustrates the fear Romeo feels about falling in love. b. The metaphor shows how awestruck Romeo is by Juliet's beauty. c. The metaphor reflects the darkness of Romeo's mood. d. The metaphor suggests Romeo's love of the dark. the relative humidity y, when measured at a location, has a probability density function given by: fy(y)=ky3(1-y)2, 0y1 0, elsewhere determine the mean of y, e(y) What factors control temperature variation around the globe? Choose all that apply.Population densityAltitudeRiver currentsVegetation coverOcean currents Problem 1 A certain neutron star has five times the mass of our Sun packed into a sphere about 13 km in radius. Part A Estimate the surface gravity on this monster. Express your answer to two signific Question 5 Logistics refers to movement in the supply chain. Which of the following is involved and where? . All of these flows in every part of the supply chain . Flows of cash and information in the supply chain OC. Materials to and from the enterprise OD Materials within the enterprise OE Services in the entire supply chain Question 6 Supply Chain Management is the strategic coordination of the supply chain activities: . To achieve competitive advantage . To support the production function . To manage vendors and supplies OD To manage production and demand OE To integrate supply and demand management Question 7 Effective supply chain management is the management of: OA. All process inventories OB. Customers and demand logistics OC. Suppliers, customers, and all process inventories OD. Suppliers and supplier logistics OE All upstream and downstream logistics Question 8 To build an effective supply chain the logistics function must consider all aspects of: OA Risk, return, and mode of transport . Daily flow and reliability OC. Risk and agility OD Risk, returns, timing, and flow OE. Modes of transport and return how fast must a plane fly along the earth's equator so that the sun stands still relative to the passengers? the earth's radius is 6400 km. At a given temperature, the equilibrium constant Kc for the reaction 2NO(g)+2H2(g)N2(g)+2H2O(g) is .11.What is the equilibrium constant for the following reaction? NO(g)+H2(g) 1/2N2(g)+H20(g) D Question 5 Calculate the following error formulas for confidence intervals. (.43)(.57) (a) E= 2.03 432 (b) E= 1.28 4.36 42 (a) [Choose ] [Choose ] [Choose ] [Choose ] (b) 4 4 ( Misconceptions: Visit the UC Berkeley Evolution Website (http://evolution.berkeley.edu/evolibrary/misconceptions_faq.php) and browse through their list of common evolution misconceptions. Please make sure you are reading the evolution misconceptions and not the general science misconceptions.Pick two of the misconceptions that you have heard other people mention is discussions with you. List each misconception and summarize how the website addressed the misconception. Discuss the critical success factors (CSFs) that your organisation must get right in order to successfully implement an ERP system or for the existing ERP system to work effectively. Some of these are broad, organization-wide, or strategic, factors. Others are more project-specific, or tactical, factors. Provide examples for your answe Which of the following could be used in an indirect proof of the proposition below? If xy &d are real numbers and z * 0,then y is directly proportional to x Assume that y is inversely proportional to x # , = %,then =V Given that I 9z, 2 # 0,use logic to show that y is proportional to x Assume that y is not directly proportional to x what is the power of the eye when viewing an object 25.0 cm away? assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters. Choose a retail company :I have chosen a retail company which is AEON Co.Ltd in Malaysia.Question:Describe tactics or strategies used by retailers to reduce inventory depletion due to theft by customers and employees Monochromatic light with a wavelength of 177.5 nm, shines on ametal plate and ejects electrons. The electrons are observed toleave the metal with a kinetic energy of 3 eV.(a) Calculate the energy o Why does transportation costs initially decrease as the numberof warehouses in a system increases? Why does transportation costseventually increase as the number of warehouses increase? Q1-What measure of central tendency MOST affected by outliers:mean and medianmedian and modemean and rangemidrange and meanQ2-what measure of central tendency LEAST affected byoutliers:meanm Nominal- objects or people are categorized according to some criterion (gender, job category)Select one:TrueFalse The common ion effect can be most effectively used to _________ precipitation of a _________ ionic solid.Select the correct answer below:encourage, solublediscourage, solubleencourage, slightly solublediscourage, slightly soluble