At a certain location, the Earth's magnetic field has a magnitude of 5.9×10^−5T and points in a direction that is 72^∘below the horizontal. a) Find the magnitude of the magnetic flux through the area of rectangular conductive loop positioned horizontally that measures 130 cm by 82 cm. b) If the angle were increased to 80^∘from the horizontal what would the total flux be? c) If this change of an angle happens over the time interval of 0.5 s, what would the induced emf be in the loop?

Answers

Answer 1

a) To find the magnitude of the magnetic flux through the rectangular conductive loop, we can use the formula:

Flux = Magnetic field magnitude * Area * Cosine of the angle between the magnetic field and the normal to the loop

The given magnetic field magnitude is 5.9×10^−5 T and the angle below the horizontal is 72 degrees.

Converting the dimensions of the loop to meters:

Length = 130 cm = 1.3 m

Width = 82 cm = 0.82 m

Calculating the area of the loop:

Area = Length * Width = 1.3 m * 0.82 m = 1.066 m^2

Calculating the flux:

Flux = (5.9×10^−5 T) * (1.066 m^2) * cos(72 degrees)

b) If the angle is increased to 80 degrees from the horizontal, we can use the same formula to find the new flux. The given magnetic field magnitude and loop area remain the same.

Flux_new = (5.9×10^−5 T) * (1.066 m^2) * cos(80 degrees)

c) To find the induced emf in the loop, we can use Faraday's law of electromagnetic induction:

Emf = -Change in flux / Change in time

The change in flux can be found by subtracting the initial flux from the final flux:

Change in flux = Flux_new - Flux

The change in time is given as 0.5 s.

Substituting the values into the formula, we can calculate the induced emf.

Answer 2

a) The magnitude of the magnetic flux through the area of rectangular conductive loop positioned horizontally that measures 130 cm by 82 cm is 5.0 × 10⁻⁷ Wb

b) The angle were increased to 80^∘from the horizontal what would the total flux be 6.2 × 10⁻⁷ Wb

c) The induced EMF in the loop is 2.4 × 10⁻⁷ V.

a) Magnetic flux through the area of rectangular conductive loop positioned horizontally that measures 130 cm by 82 cm:

Magnetic flux through the area of a rectangular conductive loop is given by the formula:

Φ = BAsin(θ)

Where,

Φ = magnetic flux

B = magnetic field strength

A = area of the loop

θ = angle between the magnetic field and the plane of the loop

.Putting the given values in the above formula, we get;

A = (130 × 82) cm² = (130 × 82) × (10⁻²) m² = 1066.0 × 10⁻⁴ m²

B = 5.9 × 10⁻⁵ Tθ = 72° = 72° × (π/180°) = 1.2566 rad

Φ = (5.9 × 10⁻⁵) × (1066.0 × 10⁻⁴) × sin(1.2566) = 5.0 × 10⁻⁷ Wb (correct to two significant figures)

b) We know that the formula for magnetic flux through the area of a rectangular conductive loop is given by the formula:

Φ = BAsin(θ)

Putting the given values in the above formula, we get

A = (130 × 82) cm² = (130 × 82) × (10⁻²) m² = 1066.0 × 10⁻⁴ m²

B = 5.9 × 10⁻⁵ Tθ = 80° = 80° × (π/180°) = 1.3963 rad

Φ = (5.9 × 10⁻⁵) × (1066.0 × 10⁻⁴) × sin(1.3963) = 6.2 × 10⁻⁷ Wb (correct to two significant figures)

c)  The formula for the induced EMF is given as;E = (ΔΦ) / t

Where,E = induced EMF in the loop

ΔΦ = change in magnetic flux through the loopt = time interval

So,ΔΦ = Φ₂ - Φ₁

Where,

Φ₂ = magnetic flux through the loop when the angle is 80°

Φ₁ = magnetic flux through the loop when the angle is 72°

Put the values in the above formula, we gget

ΔΦ = Φ₂ - Φ₁= (6.2 × 10⁻⁷) - (5.0 × 10⁻⁷) = 1.2 × 10⁻⁷ Wb (correct to two significant figure)

Now putting the values in the formula of induced EMF, we get;

E = (ΔΦ) / t= (1.2 × 10⁻⁷) / (0.5)= 2.4 × 10⁻⁷ V (correct to two significant figures)

Hence, the induced EMF in the loop is 2.4 × 10⁻⁷ V.

Learn more about  magnetic flux at

https://brainly.com/question/13851713

#SPJ11


Related Questions

what is the power used by a 0.50 a, 6.0 v current calculato9r

Answers

A calculator operates on direct current (DC),

which is a type of electrical current that flows in one direction.

Calculating the power used by a 0.50 A, 6.0 V current calculator can be done using the formula:

Power = Current × Voltage P = IV

In this case, the current is 0.50 A and the voltage is 6.0 V.

The power used by the calculator is:

P = 0.50 A × 6.0 V= 3 watts (W)The calculator consumes 3 watts of power.

The power rating of an electrical appliance indicates the amount of electrical energy it consumes in watts when it is in use.

This information can be used to determine the electrical cost of using the calculator over a certain period of time.

The electrical power used by a 0.50 A, 6.0 V current calculator is 3 W.

To know more about direction visit :

https://brainly.com/question/32262214

#SPJ11

sound waves cannot travel in outer space true or false

Answers

It is true that sound cannot travel over space. As a result, even though sound waves can move through a medium like air on Earth, they cannot go across the vacuum of space.

Mechanical waves like sound require a medium to travel through (like air, water, or solid things). To transport energy and produce sound, they rely on the medium's particle vibrations.

There is no medium, such as air or any other substance, required for the propagation of sound waves in the vacuum of space. Sound waves cannot therefore move via space.

In contrast, because they don't need a medium to propagate, electromagnetic waves like light waves can move across empty space. Due to their wave-particle duality and capacity to spread over the electric and magnetic fields, electromagnetic waves can move through the empty space of space.

As a result, even though sound waves can move through a medium like air on Earth, they cannot go across the vacuum of space.

To know more about waves:

https://brainly.com/question/31851162

#SPJ4

Draw the electromagnetic wave spectrum and explain each wave that makes up the electromagnetic spectrum in detail. Question 2: Explain the alternating current in terms of RLC circuits in detail and draw phasor diagrams.

Answers

Electromagnetic Wave Spectrum Electromagnetic waves are composed of changing electric and magnetic fields that travel through space.

The electromagnetic wave spectrum is a range of all possible frequencies of electromagnetic radiation, from low-frequency radio waves to high-frequency gamma radiation.

This spectrum is classified into seven categories, which are explained below:

Radio waves:

Radio waves have the lowest frequency among all electromagnetic waves.

These are used in communication for radio and television broadcasting, cell phones, GPS devices, and radar.

Microwaves:

Microwaves are used in radar, telecommunications, and microwave ovens.

are high-frequency radio waves.

Infrared waves:

Infrared waves are used for heating, thermal imaging, and remote control.

They are commonly used in science and technology, such as in security cameras.

Visible light:

Visible light is the only part of the spectrum that is visible to the human eye.

Different colors have different frequencies: red has the lowest frequency, while violet has the highest.

The phasor diagram is used to represent the current and voltage in the circuit and can be used to determine the power factor.

To know more about Electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

According to the command help, which switch can you use with the killall command to kill a process group instead of just a process?

Answers

The switch that you can use with the kill all command to kill a process group instead of just a process is -g.

The -g switch is used to kill a process group instead of a process only, as indicated in the command help. By default, killall kills processes that match the specified process name. The process group ID (PGID) of the process can be specified instead of the process name by using the -g option when calling kill all.

Example:  kill all -g process name. In the preceding example, the -g option is used to specify that the killall command should kill the entire process group rather than just one process that matches the process_name. Killall sends the kill signal to the entire process group specified by the given process group ID (PGID).

This is useful in situations where you need to terminate multiple processes that are all related to a single application that has gone rogue. With this option, the user is not required to enter the process IDs individually; instead, the user simply specifies the process group ID. This option can be used to free up system resources when a process becomes stuck and is not responding.

Learn more about switch -

brainly.com/question/14402768

#SPJ11

What is the weight of a 63-kg astronaut on Earth? Express your answer using two significant figures.
What is the weight of a 63-k astronaut on the Moon (g = Express your answer using two significant figures. /s²
What is the weight of a 63-kg astronaut on Mars (g = 3.7m/s² )? Express your answer using two significant figures
What is the weight of a 63-kg astronaut in outer space traveling with constant velocity? Express your answer using one significant figure.

Answers

Weight of a 63-kg astronaut on Earth would be 618.03 N, weight of a 63-k astronaut on the Moon would be 101.88 N,  weight of a 63-kg astronaut on Mars would be 233.1 N, weight of a 63-kg astronaut in outer space traveling with constant velocity would be zero.

Weight is the force exerted on an object due to gravity. The formula for weight is W = mg, where W is the weight, m is the mass, and g is the acceleration due to gravity. The weight of a 63-kg astronaut on Earth is given by:

W = mg

W = 63 kg x 9.81 m/s² = 618.03 N

To find the weight of a 63-kg astronaut on the moon, we need to use the acceleration due to gravity on the moon which is g = 1.62 m/s².

W = mg

W = 63 kg x 1.62 m/s² = 101.88 N

To find the weight of a 63-kg astronaut on Mars, we need to use the acceleration due to gravity on Mars which is g = 3.7 m/s².

W = mg

W = 63 kg x 3.7 m/s² = 233.1 N

In outer space, there is no gravity acting on the astronaut. Therefore, the weight of a 63-kg astronaut in outer space traveling with constant velocity is zero (0N).

Learn more about Weight  at https://brainly.com/question/21272180

#SPJ11

Find the value of the constant C that normalizes the wave function in the state (nx, ny, nz) = (4, 4, 5) for a box with sides Lx = 3L, Ly = ± L, and Lz = 4L. Note: the reason you are normalizing the function for a particular state is because the length Ly means that the normalization constant is actually a function of ny. (b) Find the probability of finding the particle in the region of the box where L/9 ≤ x ≤ 4L/5,0 ≤ z ≤L/3 when the state is (nx, ny, nz) = (4, 4, 5).

Answers

The probability of finding the particle in the specified region is 0.0182. The time-independent Schrödinger wave equation is the wave function's differential equation.

The Schrödinger wave equation is given by:((h^2)/(8π^2m))∇^2ψ=Eψ  where m is the mass of the particle,h is the Plank constant,E is the energy of the particle, and ψ is the wave function.

ψ(n_x, n_y, n_z)=sqrt(8/L_x L_y L_z)*sin((n_x πx)/L_x)*sin((n_y πy)/L_y)*sin((n_z πz)/L_z) is the wave function that describes a particle in a 3D box with sides Lx, Ly, and Lz.ψ(4, 4, 5) = sqrt(8/3L*2L*4L)*sin((4πx)/3L)*sin((4πy)/2L)*sin((5πz)/4L).

The wave function is normalized using the following formula∫(0 to L_x) ∫(0 to L_y) ∫(0 to L_z) |ψ|^2 dxdydz = 1.

If L_y is positive, the formula is slightly different and is given by:∫(0 to L_x) ∫(-L_y/2 to L_y/2) ∫(0 to L_z) |ψ|^2 dxdydz = 1.

We can use this formula to determine the normalization constant C for the wave functionψ(4,4,5)ψ* = sqrt(8/3L*2L*4L)*sin((4πx)/3L)*sin((4πy)/2L)*sin((5πz)/4L).

We must now integrate |ψ|^2 over the box to determine the normalization constant.∫(0 to 3L) ∫(-L/2 to L/2) ∫(0 to 4L) sqrt(8/3L*2L*4L)*sin((4πx)/3L)*sin((4πy)/2L)*sin((5πz)/4L)*sqrt(8/3L*2L*4L)*sin((4πx)/3L)*sin((4πy)/2L)*sin((5πz)/4L) dx dy dz.

The value of the constant C is 1.

(b)We can now find the probability of finding the particle in the region of the box where L/9 ≤ x ≤ 4L/5, 0 ≤ z ≤ L/3 when the state is (nx, ny, nz) = (4, 4, 5).

We use the following formula to calculate the probability of finding the particle:

Probability = ∫(0 to L_x) ∫(-L_y/2 to L_y/2) ∫(0 to L_z) |ψ|^2 dxdydz∫(L/9 to 4L/5) ∫(-L/2 to L/2) ∫(0 to L/3) |ψ|^2 dxdydz = (5/8π^2) ∫(L/9 to 4L/5) ∫(-L/2 to L/2) ∫(0 to L/3) sin^2((4πx)/3L)*sin^2((4πy)/2L)*sin^2((5πz)/4L) dxdydz.

The probability of finding the particle in the specified region is 0.0182.

Learn more about wave function here ;

https://brainly.com/question/32239960

#SPJ11

An intravenous (IV) system is supplying saline solution to a patient at the rate of 0.09 cm3/s through a needle of radius 0.2 mm and length 6.36 cm. What gauge pressure (in Pa) is needed at the entrance of the needle to cause this flow? Assume that the viscosity of the saline solution to be the same as that of water, n = 1.0*10-3 Pa-s, and that the gauge pressure of the blood in the vein is 1500 Pa. Enter an integer.

Answers

The gauge pressure needed at the entrance of the needle to cause this flow is approximately 16658.73 Pa.

To determine the gauge pressure needed at the entrance of the needle to cause the given flow, we can use the Hagen-Poiseuille equation, which describes the flow rate of a fluid through a cylindrical pipe:

Q = (πΔP [tex]r^{4}[/tex]) / (8ηL)

Where:

Q is the volumetric flow rate (0.09 [tex]cm^{3}[/tex]/s),

ΔP is the pressure difference across the needle (unknown),

r is the radius of the needle (0.2 mm = 0.02 cm),

η is the viscosity of the fluid (1.0 × 1[tex]0^{-3}[/tex] Pa-s),

L is the length of the needle (6.36 cm).

Rearranging the equation to solve for ΔP, we have:

ΔP = (8ηQL) / (πr [tex]r^{4}[/tex])

Substituting the given values into the equation:

ΔP = [tex](8 8 * 1.0 * 10^-3 Pa-s * 0.09 cm^3/s * 6.36 cm) / (\pi * (0.02 cm)^4)[/tex]

ΔP ≈ 18158.73 Pa

Since we are interested in the gauge pressure, we need to subtract the pressure of the blood in the vein (1500 Pa):

Gauge Pressure = ΔP - 1500 Pa

Gauge Pressure ≈ 16658.73 Pa

Therefore, the gauge pressure needed at the entrance of the needle to cause this flow is approximately 16658.73 Pa.

To know more about gauge pressure here

https://brainly.com/question/30698101

#SPJ4

A spider crawling across a table leaps onto a magazine blocking its path. The initial velocity of the spider is 0.880 m/s at an angle of 38.0

above the table, and it lands on the magazine 0.0610 s after leaving the table. Ignore air resistance. How thick is the magazine Express your answer in millimeters. Number Units

Answers

We have to calculate the thickness of the magazine.

Let's find out the horizontal and vertical components of the spider's velocity.

We can use the following formula to calculate the horizontal component of the velocity:

v_x = v_0 cos θ

Where,

v_0 = 0.880 m/sθ = 38.0 degrees

v_x = 0.880 cos 38.0 degrees

= 0.695 m/s

Now, we can calculate the horizontal distance (x) traveled by the spider using the formula

:x = v_x t

Where,t = 0.0610 s

x = 0.695 × 0.0610

= 0.0423 m

Now, we need to find the vertical component of the spider's velocity.

We can use the following formula to calculate the vertical component of the velocity:

v_y = v_0 sin θ

Where,v_0 = 0.880 m/sθ = 38.0 degrees

v_y = 0.880 sin 38.0 degrees

= 0.528 m/s

Now, we can use the following formula to calculate the time (T) taken by the spider to reach its maximum height:

T = v_y / g

Where,g = 9.81 m/s²

T = 0.528 / 9.81 = 0.0538 s

Now, we can use the following formula to calculate the maximum height (H) reached by the spider:

H = (v_y T) - (0.5 g T²)H = (0.528 × 0.0538) - (0.5 × 9.81 × (0.0538)²)H

= 0.0143 m

Now, the thickness of the magazine is the difference between the initial  and the maximum height. The initial height is zero, so the thickness of the magazine is equal to the maximum height.

We have to convert the result from meters to , so we multiply by 1000

Thickness of the magazine = 0.0143 × 1000 = 14.3 mm

The thickness of the magazine is 14.3 mm.

Answer: 14.3 mm

To know more about initial visit:

https://brainly.com/question/31326019

#SPJ11

A spinning table has radius 2.50 m and moment of inertia 1900 kg×m^2 about a vertical axle through its center, and it can turn with negligible friction. Two persons, one directly in from of the other. (consider that the persons are standing at opposite ends of a line that passes through the center of rotation) apply each a force of 8.0 N tangentially to the edge of the table for 10.0 s. A. If the table is initially at rest, what is its angular speed after this 10.0 s interval? \{10 points\} rad/s^2
B. How much work is done on the table by EACH person?

Answers

A spinning table with radius 2.50 m and moment of inertia 1900 kg×m^2 remains at rest after two people apply forces of 8.0 N tangentially to the edge for 10.0 s. Each person does zero work, and the table's angular speed remains zero rad/s.

A. To find the angular speed of the table after the 10.0 s interval, we can use the principle of angular momentum conservation. Initially, the table is at rest, so its initial angular momentum is zero (L₀ = 0).

The angular momentum of an object is given by the formula:

L = Iω

where L is the angular momentum, I is the moment of inertia, and ω is the angular speed.

The total angular momentum after the 10.0 s interval is the sum of the angular momenta contributed by each person:

L = L₁ + L₂

Since the forces applied are tangential to the edge of the table, the torque exerted by each person's force is equal to the force multiplied by the radius:

τ = Fr

where F is the force and r is the radius.

The change in angular momentum is equal to the torque multiplied by the time interval:

ΔL = τΔt

Since the table is initially at rest, the change in angular momentum is equal to the final angular momentum:

L = τΔt

Substituting the values into the equation, we get:

I₁ω - I₂ω = F₁r₁Δt + F₂r₂Δt

where I₁ and I₂ are the moments of inertia of the table with respect to the first and second person, respectively, ω is the final angular speed, F₁ and F₂ are the forces applied by the first and second person, r₁ and r₂ are the distances from the axis of rotation to the points where the forces are applied, and Δt is the time interval.

Since both persons apply the same force (8.0 N) and the same radius (2.50 m), we can simplify the equation:

I₁ω - I₂ω = 8.0 N * 2.50 m * 10.0 s

The moment of inertia of the table (I) is given as 1900 kg×m^2, so we have:

1900 [tex]kg*m^2[/tex] * ω - 1900 kg×m^2 * ω = 8.0 N * 2.50 m * 10.0 s

0 = 200 N * m * s

Therefore, the angular speed of the table after the 10.0 s interval is zero rad/s.

B. The work done by each person can be calculated using the work-energy theorem, which states that the work done is equal to the change in kinetic energy.

The change in kinetic energy (ΔK) is equal to the work done (W). The work done by each person is given by:

W = ΔK = 1/2 * I * ω²

Substituting the given values, we have:

W = 1/2 * 1900 [tex]kg*m^2\\[/tex] * (0 rad/s)²

W = 0 Joules

Therefore, each person does zero work on the table.

Learn more about moment of inertia  here

https://brainly.com/question/33002666

#SPJ11

Which of the following takes place when a transverse pulse wave traveling down a string is reflected off of a fixed end of a string? harmonics overtones phase reversal no phase reversal

Answers

When a transverse pulse wave traveling down a string is reflected off of a fixed end of a string, a phase reversal occurs. The reflected wave is inverted when it comes back.

This means that the crests of the wave become troughs and the troughs become crests.

A transverse wave on a string is where the particles of the medium (string) vibrate perpendicular to the direction the wave is traveling. The reflection of a wave can occur when a wave encounters a new medium and changes direction, such as when light reflects off a mirror.

When a wave reflects off of a fixed end of a string, the wave is reversed and reflected back along the same string. This is called a fixed boundary condition.

There are two different types of boundary conditions.

A fixed boundary is when the string is anchored at both ends, and the ends of the string can’t move up and down.

When the pulse wave hits this fixed boundary, it will bounce back with a phase reversal, meaning that the wave will be inverted and will return to its original direction of travel with a reflected wave.

To know more about traveling visit :

https://brainly.com/question/18090388

#SPJ11

Final answer:

A phase reversal occurs when a transverse pulse wave reflects off a fixed end of a string, causing the wave to reflect back along the string in opposite direction while inverting its wave disturbance pattern.

Explanation:

When a transverse pulse wave traveling down a string reflects off a fixed end, a phase reversal takes place. This is a 180° change in phase with respect to the incident wave, as opposed to no phase change occurring when reflecting off a free end. During a phase reversal, the incident pulse or wave that travels down the string reflects back along the string in the opposite direction, with an inversion in its wave disturbance pattern. Nodes, where the wave disturbance is zero, appear at the fixed ends where the string is immobile. This phenomenon, where standing waves are created due to reflections of waves from the ends of the string, is common in stringed musical instruments, where the wave reflection is regulated by the boundary conditions of the system.

Learn more about Phase Reversal here:

https://brainly.com/question/33517325

#SPJ12

If a standing wave on a string is produced by the superposition of the following two waves: y1 = A sin(kx - wt) and y2 = A sin(kx + wt), then all elements of the string would have a zero acceleration (ay = 0) for the first time at: O t = T/2 "where T is the period" O t = (3/2)T "where Tis the period O t = T where T is the period" O t = (1/4)T "where Tis the period"

Answers

To find the time at which all elements of the string have zero acceleration, we need to consider the superposition of the two waves.

In this case, y1 = A sin(kx - wt) and y2 = A sin(kx + wt).

Taking the sum of the two waves, we have:

y = A sin(kx - wt) + A sin(kx + wt).

To determine when the acceleration is zero, we need to find the time at which the second derivative of y with respect to time (ay) is zero.

A w^2 [sin(kx + wt) - sin(kx - wt)] = 0.

For the expression to equal zero, one of the factors must be zero:

sin(kx + wt) - sin(kx - wt) = 0.

Now, we can use the trigonometric identity sin(A) - sin(B) = 2 cos((A + B)/2) sin((A - B)/2):

2 cos((kx + wt + kx - wt)/2) sin((kx + wt - kx + wt)/2) = 0.

Simplifying further:

2 cos(2kx/2) sin(2wt/2) = 0.

cos(kx) sin(wt) = 0.

For the product of two values to be zero, either cos(kx) or sin(wt) must be zero:

cos(kx) = 0:

This occurs when kx = (2n + 1)π/2, where n is an integer.

sin(wt) = 0:

Now, let's focus on the first case: cos(kx) = 0.

For cos(kx) to be zero, kx must be equal to (2n + 1)π/2:

kx = (2n + 1)π/2.

Solving for x:

x = (2n + 1)π/(2k).

Since x is a constant value for each element of the string, we can rewrite the equation as:

(2n + 1)π/(2k) = constant.

2n + 1 = 2kC/π.

To learn more about acceleration follow:

https://brainly.com/question/2303856

#SPJ11

Besides the gravitational force, a 2.60−kg object is subjected to one other constant force. The object starts from rest and in 1.20 s experiences a displacement of (5.05
i
^
−3.30
j
^

)m, where the direction of
j
^

is the upward vertical direction. Determin the other force. (Express your answer in vector form.)

Answers

The other force acting on the 2.60 kg object is equal to (-2.08 i^ + 3.42 j^) N.

To determine the other force acting on the object, we need to use Newton's second law of motion, which states that the net force on an object is equal to the product of its mass and acceleration (F = ma). Since the object starts from rest, its initial velocity is zero, and the displacement and time are given, we can calculate the acceleration using the equation d = (1/2)at^2, where d is the displacement, a is the acceleration, and t is the time.

In this case, the displacement is given as (5.05 i^ - 3.30 j^) m, and the time is 1.20 s. By rearranging the equation, we can solve for acceleration: a = (2d)/(t^2).

Once we have the acceleration, we can calculate the net force using the formula F = ma. Since the gravitational force is acting in the downward direction with a magnitude of (2.60 kg)(9.8 m/s^2), we subtract that force from the net force to find the other force acting on the object.

The result is (-2.08 i^ + 3.42 j^) N, where i^ and j^ represent the unit vectors in the x and y directions, respectively. The negative sign in the x-component indicates that the other force is acting in the opposite direction of the positive x-axis.

for such more questions on force

https://brainly.com/question/12785175

#SPJ8

Explain how Cavendish was able to determine the force of attraction in his experimental apparatus.

Answers

Cavendish used a torsion balance to measure the tiny twisting motion caused by gravitational attraction.

Henry Cavendish, an English scientist, devised an ingenious experiment in the late 18th century to determine the force of attraction between two masses, which is now known as the Cavendish experiment. His apparatus consisted of a horizontal torsion balance, two small lead spheres, and two larger lead spheres.

Cavendish suspended the horizontal torsion balance from a thin wire, with two smaller lead spheres attached to either end. The larger lead spheres were positioned near the smaller spheres but did not touch them. The balance was enclosed in a chamber to minimize external influences.

Cavendish's ingenious method involved measuring the tiny twisting motion of the torsion balance caused by the gravitational attraction between the large and small spheres. The gravitational force between the spheres would induce a small torque on the balance, causing it to rotate slightly.

By carefully observing the angle of rotation of the torsion balance, Cavendish could infer the magnitude of the gravitational force. This was achieved by comparing the observed deflection to the known torsional constant of the wire, which related the angle of rotation to the torque applied.

The key to Cavendish's experiment was the sensitivity of the torsion balance and his ability to measure tiny angular deflections. He used a telescope to observe the movements of a small mirror attached to the balance, allowing him to detect even minute changes in its position.

By conducting repeated measurements and applying precise mathematical calculations, Cavendish was able to determine the force of attraction between the masses. His groundbreaking experiment provided the first accurate measurement of the gravitational constant, an essential parameter in understanding the fundamental forces of nature.

learn more about Cavendish Experiment.

brainly.com/question/29331473

#SPJ11

T/F: light fuels take on and give up moisture faster than heavier fuels.

Answers

True, lighter fuels take on and give up moisture faster than heavier fuels. Light fuels refer to fuels that have a low mass or density, such as grass, leaves, and twigs.

These fuels generally take on and give up moisture more quickly than heavier fuels like branches and logs. Lighter fuels have a higher surface-area-to-volume ratio than heavier fuels, making them more sensitive to changes in moisture content.

When the relative humidity is high, light fuels are more likely to absorb moisture and when the relative humidity is low, they are more likely to release moisture.Lighter fuels tend to ignite more quickly than heavier fuels and they also burn faster and with greater intensity.

For this reason, light fuels are an important factor in wildfire behavior and fire management strategies. In fire-prone regions, managing light fuels is often a key component of wildfire prevention efforts.

In summary, the statement "light fuels take on and give up moisture faster than heavier fuels" is true.

Learn more about Light fuels here ;

https://brainly.com/question/24182630

#SPJ11

an object's initial velocity is 1.74 m/s in the +x direction. It slows down with a constant acceleration whose magnitude is 1.11 m/s2 . After it reaches a momentary stop it reverses its direction of motion, to the -x, and speeds up with the same magnitude of the acceleration. What is its displacement (in meters) from the initial moment to t = 6.00 s ? Keep 3 digits after the decimal point.

Answers

The object's displacement from the initial moment to t = 6.00 s is approximately -5.386 meters.

To find the displacement of the object from the initial moment to t = 6.00 s, we need to calculate the distance traveled during each phase of its motion: the deceleration phase and the acceleration phase.

Initial velocity (v0) = 1.74 m/s in the +x direction

Acceleration (a) =[tex]-1.11 m/s^2[/tex] (for the deceleration phase) and [tex]1.11 m/s^2[/tex](for the acceleration phase)

Time (t) = 6.00 s

First, let's find the time it takes for the object to come to a momentary stop during the deceleration phase. We can use the equation of motion:

v = v0 + at

0 = 1.74 m/s +[tex](-1.11 m/s^2)[/tex] * t_stop

Solving for t_stop:

t_stop = 1.74 m/s / [tex]1.11 m/s^2 = 1.567 s[/tex]

During the deceleration phase, the object travels a distance given by:

d1 = v0 * t_stop + (1/2) * a * [tex]t_stop^2[/tex]

d1 = 1.74 m/s * 1.567 s + (1/2) *[tex](-1.11 m/s^2) * (1.567 s)^2[/tex]

d1 = 1.723 m

Next, let's calculate the distance traveled during the acceleration phase, from t_stop to t = 6.00 s. Since the object reverses its direction, the initial velocity for this phase is -1.74 m/s.

During the acceleration phase, the object travels a distance given by:

d2 = v0 * (t - t_stop) + (1/2) * a * [tex](t - t_stop)^2[/tex]

d2 = (-1.74 m/s) * (6.00 s - 1.567 s) + (1/2) * ([tex]1.11 m/s^2) * (6.00 s - 1.567 s)^2[/tex]

d2 = -7.109 m

Finally, we can find the total displacement by summing the distances traveled during the two phases:

Total displacement = d1 + d2 = 1.723 m + (-7.109 m) = -5.386 m

To know more about displacement refer to-

https://brainly.com/question/11934397

#SPJ11

stability of nuclear fusion & gravity is reached; the star is now called a ____________________ star

Answers

When stability is achieved in a star due to the balance between nuclear fusion and gravity, the star is referred to as a main sequence star. The main sequence is a phase in the life cycle of a star, characterized by stable energy production through nuclear fusion in its core.

During this phase, the star's gravity pulls matter inward, creating high temperatures and pressures at the core. These conditions allow for the fusion of hydrogen atoms into helium, releasing a tremendous amount of energy in the form of light and heat. The outward pressure generated by this energy production counteracts the force of gravity, resulting in a stable equilibrium.

Main sequence stars exhibit a wide range of sizes and temperatures. The duration of this phase depends on the mass of the star, with more massive stars consuming their fuel faster and having shorter main sequence lifetimes.

As a star exhausts its hydrogen fuel, it eventually evolves into other phases, such as red giants or white dwarfs, depending on its mass. However, the main sequence phase is the defining stage for a star when it reaches stability through the delicate balance between nuclear fusion and gravity.

To know more about hydrogen fuel click this link-

https://brainly.com/question/29765115

#SPJ11

(b) What in if the thickness of the board is (1.2+0.1)cm, what is the volume of the bosid and the uncortanty in this volume? (Give your answers in am?3)

Answers

The volume of the board is approximately 0.016 cm³, with an uncertainty of ±0.002 cm³.

To calculate the volume of the board, we need to multiply its length, width, and thickness. The given thickness is (1.2 + 0.1) cm, which simplifies to 1.3 cm. Assuming the length and width are known, let's focus on the thickness.

Using the formula for the volume of a rectangular solid (V = l × w × h), we substitute the given values: V = l × w × 1.3 cm. The uncertainty in the thickness is ±0.1 cm, which means it can be either 1.3 cm + 0.1 cm or 1.3 cm - 0.1 cm.

Calculating the upper and lower values for the thickness, we have:

Upper value: 1.3 cm + 0.1 cm = 1.4 cm

Lower value: 1.3 cm - 0.1 cm = 1.2 cm

Substituting these values into the formula, we can calculate the volumes:

Upper volume: V = l × w × 1.4 cm

Lower volume: V = l × w × 1.2 cm

The difference between the upper and lower volumes represents the uncertainty. Subtracting the lower volume from the upper volume, we get:

Uncertainty in volume = (l × w × 1.4 cm) - (l × w × 1.2 cm)

                   = l × w × (1.4 cm - 1.2 cm)

                   = l × w × 0.2 cm

Therefore, the volume of the board is approximately 0.016 cm³, with an uncertainty of ±0.002 cm³.

Learn more about volume of the board

brainly.com/question/4949486

#SPJ11


3 bulbs are in series and the same 3 bulbs are in parallel with
the same battery. Which battery will run out faster?

A. Parallel
B. Series
C. The same
D. Not enough info

Answers

When three bulbs are in series and the same three bulbs are in parallel with the same battery, the battery in the parallel circuit will run out faster. The correct option is A.

What are series and parallel circuits?

A series circuit is a type of circuit in which there is just one path for current to flow. Components in a series circuit are connected in a sequential manner, such that the current flows through one component before moving on to the next.

Parallel circuit, on the other hand, has multiple paths for the current to flow. Components in a parallel circuit are connected such that each component is connected across the same voltage.

A battery will run out faster in the parallel circuit than in the series circuit because in the parallel circuit, the bulbs will have more current running through them than they do in the series circuit. This is due to the fact that in the parallel circuit, each bulb receives the full voltage from the battery, and the total current is divided among the bulbs. So, as more bulbs are added to the parallel circuit, the total current through the circuit increases, resulting in a quicker depletion of the battery.

To know more about series and parallel circuits, refer to the link below:

https://brainly.com/question/14997346#

#SPJ11

According to our convention, when we first connect the circuit together for Part 1 (Part I), the switch is to the "Right", so the center terminals are connected to the "jumper". In this condition, the known capacitor, C2, is in which state? Discharged and charged to 16.8 Volts Discharged and not connected to the power supply Discharged and (electrically) in parallel with C
1

Charged to the power supply voltage and out of the circuit QUESTION 4 When the switch is in the "left" position Part 2 (Part II ), the capacitors C
1

and C
2

are connected to the power supply. What voltage will be measured by the voltmeter? V
0

, the voltage after C
1

and C
2

are discharged V
0

, the power supply voltage V
0

, the difference between the voltages on C
1

and C
2

V
0

, the sum of the voltages on C
1

and C
2

QUESTION 5 For Part 1 (Part I ), we will make a plot of Q
1

versus V
1

. What do we expect this plot to show? A line with slope 1/C
1

A curve which asymptotically approaches a value of y=1 A line with slope C
1

A line with y-intercept C
1

Answers

Question 4 When the switch is in the "left" position Part 2 (Part II), the capacitors C1 and C2 are connected to the power supply. What voltage will be measured by the voltmeter?Answer:

V0, the power supply voltage.Question 5For Part 1 (Part I), we will make a plot of Q1 versus V1.

What do we expect this plot to show?Answer:

A line with slope C1. As given,According to the given convention, when we first connect the circuit together for Part 1.

(Part I), the switch is to the "Right", so the center terminals are connected to the "jumper". In this condition, the known capacitor, C2, is Discharged and (electrically) in parallel with C1.So, for Part 1 (Part I), the capacitor C1 will be charged and capacitor C2 will be in a discharged state and electrically in parallel with C1.For Part 2 (Part II), when the switch is in the "left" position, capacitors C1 and C2 are connected to the power supply. So, the voltage measured by the voltmeter will be V0, the power supply voltage.Now, for Part 1 (Part I), we will make a plot of Q1 versus V1. This plot will show a line with slope C1.

About voltage

Voltage on electricity or electric voltage is the amount of energy needed to move a unit of electric charge from one point to another. This electric voltage is expressed in units of Volts (V) which is also an electric potential difference. Electric voltage or potential difference is the voltage acting on an element or component from one terminal/pole to another terminal/pole that can move electric charges.

Learn More About Voltage at https://brainly.com/question/1176850

#SPJ11

A 3.40 kg block of ice at 0

C is added to a picnic cooler. How much heat will the ice remove as it melts to water at 0

C ? kcal

Answers

When a 3.40 kg block of ice at 0∘C is added to a picnic cooler, the amount of heat that the ice will remove as it melts to water at 0∘C is found using the formula for latent heat of fusion of ice and heat capacity of water.

Latent heat of fusion of ice is the heat required to change ice into water at the same temperature.

Heat capacity of water is the heat required to raise the temperature of water by 1 degree Celsius.

Latent heat of fusion of ice = 80 kcal/kg

Heat capacity of water = 1 kcal/kg*∘C

The amount of heat that the ice will remove as it melts to water at 0∘C is given by;

Q = m * L

Where;

Q = Amount of heat remove dm = Mass of the block of iceL = Latent heat of fusion of ice

The mass of the block of ice is given as 3.40 kg

Hence;

Q = 3.40 kg * 80 kcal/kg= <<3.40*80=272>>272 kcal

The amount of heat that the ice will remove as it melts to water at 0∘C is 272 kcal.

To know more about amount visit :

https://brainly.com/question/32453941

#SPJ11

Find the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 10-19 J.
(a) a photon having a frequency of 2.20e17 Hz
=_______ eV

(b) a photon having a wavelength of 7.40e2 nm
=___________ eV

Answers

The energy of the photon having a frequency of 2.20e17 Hz is 9.10 eV. The energy of the photon having a wavelength of 7.40e2 nm is 16.8 eV. The energy of a photon is determined by its frequency (ν) or wavelength (λ).

The relation between the energy and frequency of a photon is given as, E = hf.                                                                            The frequency of a photon, f = 2.20 x 10^17 Hz= 2.20 x 10^17 s^(-1), Planck's constant, h = 6.626 x 10^(-34) Js.                         So, the energy of a photon can be calculated as, E = hf= 6.626 x 10^(-34) J s x 2.20 x 10^17 s^(-1)= 1.46 x 10^(-16) J.                                      Energy of a photon in electron volts, E = E (J) / (1.60 x 10^(-19) J/eV)= (1.46 x 10^(-16) J) / (1.60 x 10^(-19) J/eV)= 9.10 eV.                                                                                                                                                                                                                             Therefore, the energy of the photon having a frequency of 2.20e17 Hz is 9.10 eV.                                                                                                      The relation between the energy and wavelength of a photon is given as, E = hc/λ.                                                                                     The wavelength of a photon, λ = 7.40 x 10^(-7) m= 7.40 x 10^(-2)cm, Planck's constant, h = 6.626 x 10^(-34) Js, Speed of light, c = 3 x 10^8 m/s= 3 x 10^10 cm/s.                                                                                                                                               So, the energy of a photon can be calculated as, E = hc/λ= 6.626 x 10^(-34) J s x 3 x 10^10 cm/s / (7.40 x 10^(-7) m)= 2.68 x 10^(-15) J.                                                                                                                                                                                                                    Energy of a photon in electron volts, E= E (J) / (1.60 x 10^(-19) J/eV)= (2.68 x 10^(-15) J) / (1.60 x 10^(-19) J/eV)= 16.8 eV.                                                                                                                                 Therefore, the energy of the photon having a wavelength of 7.40e2 nm is 16.8 eV.

Read more about energy of the photon.                                                                                             https://brainly.com/question/3764691                                                                                                                                             #SPJ11

ultra high vacuum (UHV) is required for particle accelerators and a number of analytical and thin film synthesis techniques, including photoelectron spectroscopy, chemical vapor deposition and sputtering. typical UHV environmenta have residual gas pressure lower than about 10^-7 Pa. how many gas particles remain in eacg cubic centimeter under this pressure and at 25 C?

Answers

The expression for the number of particles in a given volume of gas can be found using the Ideal Gas Law. The formula for the Ideal Gas Law is:

PV = nRT,

where P is pressure,

V is volume,

n is the number of moles,

R is the gas constant, and

T is the temperature.

The number of gas molecules per unit volume (number density) can be found using the formula:

n/V = P/RT,

where n is the number of molecules,

V is the volume,

P is the pressure,

R is the gas constant, and

T is the temperature.

We can rearrange this formula to find the number density:

N/V = n/NA.V = P/RT .NA

Where NA is Avogadro's number.

We can then use the formula for the number density to find the number of gas particles in a given volume and at a certain temperature and pressure. At standard temperature and pressure, the number density of gas molecules is approximately 2.7 × 1019 molecules/[tex]cm^3[/tex] or 2.7 × 1025 molecules/[tex]m3[/tex].

To know more about volume visit:

https://brainly.com/question/13338592

#SPJ11

The free-fall acceleration on the moon is 1.62 m/s2. What is the length of a pendulum whose period on the moon matches the period of a 1.50 - m-long pendulum on the earth? Express your answer in meters.

Answers

The length of a pendulum on the Moon whose period matches the period of a 1.50 m-long pendulum on Earth is approximately 0.165 m.

The period of a simple pendulum is given by the formula:

[tex]T=2\pi \sqrt{\frac{l}{g} }[/tex]

Where:

T = Period of the pendulum

L = Length of the pendulum

g = Acceleration due to gravity

We are given:

L_earth = 1.50 m (Length of the pendulum on Earth)

g_moon = 1.62 m/s² (Acceleration due to gravity on the Moon)

We need to find the length of the pendulum on the Moon, L_moon.

Using the formula for the period of a pendulum, we can write the following equation:

[tex]T earth=2\pi \sqrt{\frac{learth}{gearth} }[/tex]

Since the period T on the Moon should be the same as the period on Earth, we can equate the two expressions:

[tex]Tearth=Tmoon2\pi \sqrt{\frac{learth}{gearth} }[/tex]

[tex]2\pi \sqrt{\frac{lmoon}{gmoon} }[/tex]

We can simplify this equation by canceling out the common terms:

[tex]\sqrt{\frac{L earth}{g earth} } = \sqrt{\frac{L moon}{g moon} }[/tex]

Solving for L_moon:

L_moon = (g_moon ÷ g_earth)  L_earth

Substituting the given values:

L_moon = (1.62 m/s² / 9.81 m/s²) * 1.50 m

L_moon ≈ 0.165 m

Learn more about gravity here:

https://brainly.com/question/31321801

#SPJ11

In an L-R-C series circuit, L=0.280 H and C=4.00 μF. The voltage amplitude of the source is 120 V.

part a.What is the resonance angular frequency of the circuit?

part b.When the source operates at the resonance angular frequency, the current amplitude in the circuit is 1.70 AA. What is the resistance RR of the resistor?

part c.At the resonance angular frequency, what are the peak voltage across the inductor?

part d.
At the resonance angular frequency, what are the peak voltage across the capacitor?

part e.At the resonance angular frequency, what are the peak voltage across the resistor?

Answers

a) The resonance angular frequency (

res

ω

res

​ ) of the L-R-C series circuit can be calculated using the formula:

res

=

1

ω

res

=

LC

​1

​Where:

res

ω

res

 is the resonance angular frequency.

L is the inductance of the circuit.

C is the capacitance of the circuit.

By substituting the given values of

=

0.280

H

L=0.280H and

=

4.00

F

C=4.00μF into the formula, you can calculate the resonance angular frequency.

b) When the source operates at the resonance angular frequency, the current amplitude (

I) in the circuit is given as 1.70 A. To find the resistance (

R) of the resistor, you can use Ohm's Law:

=

R=

I

V

, where

V is the voltage amplitude of the source.

c) At the resonance angular frequency, the peak voltage across the inductor (

L

V

L

) is equal to the peak voltage of the source. This is because at resonance, the inductive reactance and capacitive reactance cancel each other out, resulting in a maximum voltage across the inductor.

d) At the resonance angular frequency, the peak voltage across the capacitor (

C

V

C

) is also equal to the peak voltage of the source. This is because at resonance, the inductive reactance and capacitive reactance cancel each other out, resulting in a minimum voltage across the capacitor.

e) At the resonance angular frequency, the peak voltage across the resistor (

R

V

R

) can be calculated using Ohm's Law:

R

=

V

R

=I⋅R, where

I is the current amplitude in the circuit and

R is the resistance of the resistor.

To learn more about angular frequency, Click here:

https://brainly.com/question/33441639

#SPJ11

Calculate how much it would cost if you used gasoline (at $4.00 per gallon) as an energy source to generate 3.68×10
3
kWh of electricity. $402.08 $398.62 $103.25 $364.82 $474.73 $3.40×10
6
Question 12 5 pts Calculate how much it would cost if you used cane sugar (at $4.19 per 5 pound bag) as an energy source to generate 3.68×10
3
kWh of electricity? $3.40×10
6
$1559.95 $400.59 $702.40 $1687.12 $47.19

Answers

The answer is the cost of generating 3.68 x 10³ kWh of electricity using gasoline is $117,760. To calculate the cost of generating 3.68 x 10³ kWh of electricity, we have to calculate the number of gallons of gasoline required.

It can be calculated using the formula: Number of gallons = Energy generated / Energy per gallon of gasoline

= 3.68 x 10³ kWh / 0.125 kWh/gallon= 29,440 gallons

The cost of generating 3.68 x 10³ kWh of electricity using gasoline will be the cost of 29,440 gallons of gasoline.

Cost of gasoline = Number of gallons x Price per gallon= 29,440 gallons x $4.00/gallon= $117,760

Therefore, the cost of generating 3.68 x 10³ kWh of electricity using gasoline is $117,760.

Question 12: The answer is the cost of generating 3.68 x 10³ kWh of electricity using cane sugar is $8580.04. To calculate the cost of generating 3.68 x 10³ kWh of electricity using cane sugar, we need to determine the number of bags of cane sugar required.

It can be calculated using the formula: Number of bags = Energy generated / Energy per bag of cane sugar= 3.68 x 10³ kWh / 1.8 kWh/bag= 2044.4 bags

The cost of generating 3.68 x 10³ kWh of electricity using cane sugar will be the cost of 2044.4 bags of cane sugar. Cost of cane sugar = Number of bags x Price per bag= 2044.4 bags x $4.19/bag= $8580.04

Therefore, the cost of generating 3.68 x 10³ kWh of electricity using cane sugar is $8580.04.

Learn more about electricity: https://brainly.com/question/776932

#SPJ11

Figure 3 shows a ping-pong ball rolling constantly at 0.8 m/s towards the end of the desk. The desk is 1.20 m in height.

a) Calculate how far the ping pong ball land from the edge of the table.

b) Calculate the vertical velocity of the ball when it reaches the floor.

Answers

A.  the ping pong ball will land 0.3936 m from the edge of the table.

B. the vertical velocity of the ball when it reaches the floor is 4.848 m/s.

a) Calculate how far the ping pong ball lands from the edge of the table:

The distance, d, that the ping-pong ball will land from the edge of the table can be calculated using the formula as follows:

d = v * t

Where:

v is the horizontal velocity, and

t is the time taken for the ball to fall.

Horizontal velocity, v = 0.8 m/s

Time taken, t = ?

Height, h = 1.2 m

Acceleration due to gravity, g = 9.8 m/s²

Now, using the formula to calculate the time taken:

t = sqrt(2 * h / g)

t = sqrt(2 * 1.2 / 9.8)

t = 0.492 s

Now, using the time taken, we can calculate the distance that the ping pong ball will land from the edge of the table as follows:

d = v * t

d = 0.8 m/s * 0.492 s

d = 0.3936 m

Therefore, the ping pong ball will land 0.3936 m from the edge of the table.

b) Calculate the vertical velocity of the ball when it reaches the floor:

The vertical velocity, v1, of the ball when it reaches the floor can be calculated using the formula as follows:

v1 = sqrt(v0² + 2gh)

Where:

v0 is the initial velocity of the ball, which is zero since it is dropped from rest, and

h is the height from which it is dropped.

Height, h = 1.2 m

Acceleration due to gravity, g = 9.8 m/s²

Now, using the formula, we can calculate the vertical velocity as follows:

v1 = sqrt(0² + 2 * 9.8 * 1.2)

v1 = sqrt(23.52)

v1 = 4.848 m/s

Therefore, the vertical velocity of the ball when it reaches the floor is 4.848 m/s.

To learn more about velocity, refer below:

https://brainly.com/question/30559316

#SPJ11

In our first class, we had developed a numerical method (Forward Euler Method) to numerically solve the problem of free falling. What we did was to linearize the air resistance (Fu = k*V). Solve the same problem using a quadratic air resistance (Fu = k*V2). Use the forward Euler method. Repeat your calculations until the terminal velocity is reached. This means that the velocity should stay constant between iterations. You can choose the time step (At) yourselves. Remember that if you cannot reach the terminal velocity, your time step may be not appropriate. Use the following variables: v(0) = 0 m/sn g=9.81 m/sn 2 m=68.1 kg c=0.25 kg/m k=C/m Some remarks: You will upload a pdf that shows all of the calculation and formulation steps in your solution. Any suspicion on cheating results in the homework not being considered.

Answers

By using the Forward Euler method and incorporating a quadratic air resistance model, we can numerically solve the problem of free falling until terminal velocity is reached.

To solve the problem of free falling with quadratic air resistance using the Forward Euler method, we start with the given variables: initial velocity (v(0)) is 0 m/s, acceleration due to gravity (g) is 9.81 m/s^2, mass (m) is 68.1 kg, drag coefficient (c) is 0.25 kg/m, and k = C/m, where C is the coefficient of quadratic air resistance.

In the Forward Euler method, we approximate the change in velocity over a small time step (At) using the equation:

Δv = At * (g - (k/m) * v^2)

Here, v represents the velocity at each iteration. We repeat the calculations until the velocity reaches the terminal velocity, which is the point where the velocity remains constant between iterations.

To determine the appropriate time step (At), we need to ensure that the terminal velocity is reached. If the time step is too large, the numerical approximation may not accurately capture the behavior of the system. By experimenting with different time steps, we can find a value that allows us to converge to the terminal velocity.

During each iteration, we update the velocity using the Forward Euler method and check if the velocity remains constant. If the velocity is not constant, we continue iterating. Once the velocity no longer changes, we have reached the terminal velocity.

To summarize, by implementing the Forward Euler method and accounting for quadratic air resistance, we can iteratively solve the problem of free falling until the terminal velocity is achieved. The appropriate time step is crucial to accurately capture the behavior of the system.

Learn more about Problem

brainly.com/question/31611375

#SPJ11


A boat floating in fresh water displaces 12500 N of water. How
many newtons of salt water would it displace if it floats in salt
water of relative density 1.11?.......... N, round to one decimal
place

Answers

the boat would displace approximately 13323.8 N of salt water when floating in salt water with a relative density of 1.11.

Buoyant force = Density of salt water * Volume of salt water displaced * Acceleration due to gravity

12500 N = 1110 kg/m^3 * Volume of salt water displaced * 9.8 m/s^2

Volume of salt water displaced = 12500 N / (1110 kg/m^3 * 9.8 m/s^2)

Volume of salt water displaced ≈ 1.23 m^3

Finally, we can calculate the buoyant force in salt water using the density of salt water and the volume of salt water displaced:

Buoyant force in salt water = Density of salt water * Volume of salt water displaced * Acceleration due to gravity

Buoyant force in salt water = 1110 kg/m^3 * 1.23 m^3 * 9.8 m/s^2

Buoyant force in salt water ≈ 13323.84 N

To know more about Density please  click :-

brainly.com/question/15164682

#SPJ11

A 0.40 - kg particle moves under the influence of a single conservative force. At point A where the particle has a speed of 10 m/s, the potential energy associated with the conservative force is +40 J. As the particle moves from A to B, the force does +25 J of work on the particle. What is the value of the potential energy at point B? a. + 65 J b. + 15 J c. + 35 J d. + 45 J e.

Answers

The work done by the conservative force is equal to the change in potential energy hence the answer to the given problem is option e) -5 J.

Mass of the particle, m = 0.40 kg

Speed of the particle at point A, vA = 10 m/s

Potential energy at point A, UA = 40 J

Work done by conservative force from point A to point B, WAB = 25 J

To find the potential energy at point B, UB

We know, Kinetic energy at point A, KA = 1/2 m vA²

Now, KA = 1/2 × 0.40 kg × (10 m/s)²KA = 20 J

Total mechanical energy at point A, EA = KA + UA = 20 J + 40 J = 60 J

Now, by the law of conservation of energy, Total mechanical energy at point B, EB = EA = 60 J

The work done by the conservative force is equal to the change in potential energy.

That is, WAB = UB - UA25 J = UB - 40 JUB = 25 J + 40 JUB = 65 J. But the answer choices do not have 65 J.

Therefore, the correct answer is option e) -5 J.

More on work done: https://brainly.com/question/31428590

#SPJ11




What should be the radius of the twentieth boundary of a zone plate that, with light of 500 nm wavelength, has a focal length of 160 cm?

Answers

The radius of the twentieth boundary of the zone plate is 0.032 cm. To determine the radius of the twentieth boundary of a zone plate with a given focal length and wavelength of light, we need to use the formula for zone plate radius.

The radius can be calculated by multiplying the square root of the zone number (20) by the focal length and dividing it by the square root of the wavelength.

The formula for the radius of a zone plate is given by:

r = √(n * f * λ) / √2

Where:

r = radius of the zone plate

n = zone number (in this case, 20)

f = focal length of the zone plate

λ = wavelength of light

In this case, the given focal length is 160 cm and the wavelength of light is 500 nm. To find the radius of the twentieth boundary, we substitute these values into the formula:

r = √(20 * 160 * 500 * [tex]10^-^9)[/tex] / √2

Simplifying the equation, we get:

r = 0.032 cm

Therefore, the radius of the twentieth boundary of the zone plate is 0.032 cm.

Learn more about focal length here:

brainly.com/question/2194024

#SPJ11

Other Questions
Please Help me i need this for now Subject : Service MarketingMcDonald is a restaurant service provides various menu for thecustomers. Examine any 5 common different features of McDonaldsservices as compared to a Huawei smartphone. Length of metal strips produced by a machine process are normally distributed with a mean length of 500mm and a standard deviation of 10mm.Giving your answer as a decimal to 4 decimal places, find the probablility that the length of a randomly selected strip isa)Shorter than 490mm?b)Longer than 509mm?c)Between 479mm and 507mm ? a) After implementing organisational changes there is a need to ensure that the desired changes are institutionalised so that the changes are permanent. Outline at least three indicators that indicate that desired changes are internalised in the organisation. b) Discuss your understanding of how change takes place in organisations according to Kurt Lewins three steps model of change. If f(x)=sin(x) Find f(1)Find f(1) Which of the following statements best describes the impact of the Fourteenth Amendments?a.The addition of the Fourteenth Amendment requires states to immediately abide by the First Amendment to the Constitution but not to any of the other amendments in the Bill of Rights.b.The Fourteenth Amendment had no effect on state governments because it was designed to applyonly to the federal government Solve the equation over the interva[0,2). sinxcosx=3/4The solution set is . (Type an exact answer, using as needed. Use a comma to separate answers as needed.) One benefit of deploying wind turbines is they have a small "footprint. True False QUESTION 13 A mayor benefit of solar and wind energy is thoy are available 24 hours of each day True: False QUESTION 14 Now York State has set a goal of increasing fossil fuel consumption for power production by 80\% by 2050 . True False Solve the separable differential equation forudu/dt=e5u+6tUse the following initial condition:u(0)=3. Question 1 // What is the difference between market skimming and market penetration and where might you see both of them practiced in consumer goods like real estate industry?Question 2 /// How is strategic planning done at different levels of the organization? Support your answer with implementation on mobile phones.Question 3 ///. Different consumers have different needs during the purchase process. Researchers Nunes and Cespedes argue that, in many markets, buyers fall into four categories. List and briefly define these four categories. pls answer asapIllustrates and explain why sound travels faster in solidcompared than in a gas. Product Lines Research the two brands Samsung and General Mills and perform the following:List the product mix for the brand List the product lines for the brandExplain how the product lines they currently support make sense together.how does the product line make sense for the company and its processes.Be sure to cite your sources for the research portion of this assignment.The written part of this assignment should be 7-8 written paragraphs. Explain in your own words the purpose of an exit interview andwhat benefit is it to the organization Quiz Company's manufacturing process is organized into two producing departments ( P1 and P2 ) and two service departments (S1 and S2). Overhead costs from S1 are allocated based on machine hours. Overhead costs from S2 are allocated based on square footage. The following information is available for the four departments. Note: For all questions, round allocation ratios to four decimal points and round all dollar amounts to the nearest dollar. Determine the total overhead cost for P1 using the direct method to allocate service department costs. To find the distance across a river, a surveyor choose points A and B, which are 225 m apart on one side of the river. She then chooses a reference point C on the opposite side of the river and finds that BAC81 and ABC56 . NOTE: The picture is NOT drawn to scale. Approximate the distance from point A to point C. distance =m Find the distance across the river. height = m Enter your answer as a number; your answer should What is the present value of $500 to be received 8years from now discounted back to the present at 11 percent? Objective: To create a performance-based self-assessment and to evaluate your self-assessment. Scenario: As a teacher, you will be evaluated periodically by yourself, your supervisor, and/or your colleagues. Your supervisor bases his or her evaluations on observable, specific information and ties the goals of the program to the teachers activities and responsibilities. He or she explains to you that it is important for teachers to value the process of performance evaluations and understand their implications for professional growth. You respond by stating that youd like to create a performance-based self-assessment to illustrate the teaching goals that are most important to you. Your supervisor enthusiastically agrees. When people maintain their position in a group over time, they displayA. mean level stability.B. rank order stability.C. personality coherence.D. possible selves. Which of the following words best describes "building up" an idea in your paper?A. RefiningB. Developing what is the difference between an array and a list