At an animal rescue, 80% of the animals are dogs and 20% of the animals are cats. If the average age of the dogs is 7 months and the average age of the cats is 12 months, what is the overall average age of the animals at the rescue?

A) 7 months
B) 8 months
C) 9 months
D) 10 months

Answers

Answer 1

Answer: b

Step-by-step explanation: 7% of 80 = 5.6

12% of 20=2.4

5.6+2.4=8.0

 

Answer 2

To calculate the overall average age of the animals at the rescue, we need to consider the proportions of dogs and cats and their respective average ages.

Let's calculate the overall average age:

Average age of dogs = 7 months

Average age of cats = 12 months

Proportion of dogs = 80% = 0.8

Proportion of cats = 20% = 0.2

Overall average age = (Proportion of dogs * Average age of dogs) + (Proportion of cats * Average age of cats)

                   = (0.8 * 7) + (0.2 * 12)

                   = 5.6 + 2.4

                   = 8

Therefore, the overall average age of the animals at the rescue is 8 months.

The correct answer is B) 8 months.

To know more about proportions visit-

brainly.com/question/31902872

#SPJ11


Related Questions

Suppose Event is an attribute, and in a dataset it is given as
1_265232_A. What data type is this? Select one answer only
Metric continuous
Categorical ordinal
Categorical metric
Nominal discrete
Nomi

Answers

In the dataset, 1_265232_A is given as the attribute for Event. The data type of this attribute can be identified by analyzing the given values.

The first number 1 can be considered as a code that may represent a specific category or level, while 265232 is a numerical identifier. The letter A indicates that the attribute could be classified according to a particular qualitative characteristic, such as quality, color, or size. From this information, it can be determined that the data type of the attribute "Event" is a nominal discrete type. Nominal data is the type of categorical data that does not have any inherent order or ranking to its categories. A nominal variable is typically a categorical variable that is often binary (only two groups, such as sex or yes or no) or Polytomous  (more than two categories).

It can be concluded that the data type of the attribute "Event" in the given dataset is nominal discrete, and it is represented by the value 1_265232_A.

To know more about data type visit:

https://brainly.com/question/30615321

#SPJ11

We determined that f(y1, y2) = 6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1, 0, elsewhere, is a valid joint probability density function. (a) Find the marginal density function for Y1.

Answers

From the given density function, we see that f(y1, y2) = 6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1, 0, elsewhere. Therefore,f1(y1) = ∫0

Given that the joint probability density function of y1 and y2 is f(y1, y2) = 6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1, 0, elsewhere. The task is to find the marginal density function for Y1.The marginal probability density function for Y1 can be found as follows:The marginal probability density function for Y1 is obtained by integrating the joint probability density function over all possible values of Y2.

Thus we can write f1(y1) as follows:f1(y1) = ∫f(y1, y2)dy2From the given density function, we see that f(y1, y2) = 6(1 − y2), 0 ≤ y1 ≤ y2 ≤ 1, 0, elsewhere. Therefore,f1(y1) = ∫0.

To know more about function visit:-

https://brainly.com/question/21426493

#SPJ11

Suppose babies born after a gestation period of 32 to 35 weeks have a mean weight of 2500 grams and a standard deviation of 500 grams, while babies born after a gestation period of 40 weeks have a mean weight of 2900 grams and a standard deviation of 415 grams. If a 32-week gestation period baby weighs 2875 grams and a 41-week gestation period baby weighs 3275 grams, find the corresponding
-scores. Which baby weighs more relative to the gestation period?

Answers

By comparing the z-scores we obtain that the 41-week gestation baby weighs more relative to their gestation period compared to the 32-week gestation baby.

To find the z-score for each baby, we can use the formula:

z = (X - μ) / σ

where X is the baby's weight, μ is the mean weight, and σ is the standard deviation.

For the 32-week gestation baby weighing 2875 grams:

z = (2875 - 2500) / 500 = 0.75

For the 41-week gestation baby weighing 3275 grams:

z = (3275 - 2900) / 415 = 0.9

The z-score measures the number of standard deviations a data point is from the mean.

A positive z-score indicates that the data point is above the mean.

Comparing the z-scores, we see that the 41-week gestation baby (z = 0.9) has a higher z-score than the 32-week gestation baby (z = 0.75).

This means that the 41-week gestation baby weighs more relative to their gestation period compared to the 32-week gestation baby.

To know more about z-scores refer here:

https://brainly.com/question/31871890#

#SPJ11

find the volume of the solid bounded by the paraboloids z=−9 2x2 2y2 and z=5−2x2−2y2

Answers

We are given two paraboloids as:z = (-9/2)(x^2 + y^2)andz = 5 - 2(x^2 + y^2)The volume of the solid enclosed between the two paraboloids is given byV = ∫∫R[(5 - 2(x^2 + y^2)) - (-9/2)(x^2 + y^2)] d[tex]z = (-9/2)(x^2 + y^2)andz = 5 - 2(x^2 + y^2)[/tex]A

where R is the region in the xy-plane that is bounded by the circular region of radius a centered at the origin.We can rearrange the equation and simplify it as follows:V = ∫∫R (23/2)x^2 + (23/2)y^2 - 5 dAWe will use polar coordinates (r, θ) to evaluate the integral, and the limits of integration for the radius will be 0 and a, and the limits of integration for the angle will be 0 and 2π.

Hence, we can rewrite the integral as:V = ∫[0, 2π] ∫[0, a] (23/2)r^2 - 5r dr dθEvaluating this integral:V = ∫[0, 2π] [23/6 * a^3 - 5/2 * a^2] dθV = 4π [23/6 * a^3 - 5/2[tex]V = ∫[0, 2π] ∫[0, a] (23/2)r^2 - 5r dr dθ Evaluating this integral:V = ∫[0, 2π] [23/6 * a^3 - 5/2 * a^2] dθV = 4π [23/6 * a^3 - 5/2 * a^2]V = (46/3)πa^3 - 10πa^2[/tex] * a^2]V = (46/3)πa^3 - 10πa^2Hence, the volume of the solid enclosed between the two paraboloids is (46/3)πa^3 - 10πa^2.The explanation has a total of 152 words.

To know more about limits visit:

https://brainly.com/question/12211820

#SPJ11

Confidence Intervals (Proportions), Sample Size Score: 6.5/15 6/9 answered Question 9 You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately p = 0.37. You would like to be 98% confident that your esimate is within 4% of the true population proportion. How large of a sample size is required?

Answers

To be 98% confident that your estimate is within 4% of the true population proportion. A sample size of at least 602  is required.

To determine the sample size required to estimate a population proportion with a desired level of confidence, we can use the formula: n = (Z² * p * (1 - p)) / E²

n = sample size

Z = z-score corresponding to the desired level of confidence

p = estimated population proportion

E = maximum allowable error (margin of error)

In this case, we want to be 98% confident which corresponds to a z-score of approximately 2.33), and we want the estimate to be within 4% of the true population proportion which corresponds to a margin of error of 0.04). Substituting the values into the formula: n = (2.33² * 0.37 * (1 - 0.37)) / 0.04².

Calculating this expression:

n = (5.4229 * 0.37 * 0.63) / 0.0016

n = 0.9626 / 0.0016

n ≈ 601.625

Rounding up to the nearest whole number, we would need a sample size of at least 602 to estimate the population proportion with a 98% confidence level and a margin of error of 4%.

To know more about population proportion, refer here :

https://brainly.com/question/32671742#

#SPJ11

A survey of 25 randomly selected customers found the ages shown​(in years). The mean is 31.88 years and the standard deviation is 9.25years. ​

31 20 28 38 13
27 38 35 27 41
31 43 40 35 20
35 33 23 49 23
43 32 16 32 44
a) How many degrees of freedom does the​ t-statistic have?

​b) How many degrees of freedom would the​ t-statistic have if the sample size had been ​100?

a) The​ t-statistic has ___ degrees of freedom. ​(Simplify your​answer.)

Answers

The sample size had been ​100, then the degrees of freedom for the t-statistic would be: df = 100 - 1 = 99 Therefore, if the sample size had been 100, the t-statistic would have 99 degrees of freedom.

a) Degrees of Freedom (df) is a statistical term that refers to the number of independent values that may be assigned to a statistical distribution, as well as the number of restrictions imposed on that distribution by the sample data from which it is calculated. To calculate degrees of freedom for a t-test, you will need the sample size and the number of groups being compared.

The equation for calculating degrees of freedom for a t-test is: Degrees of freedom = (number of observations) - (number of groups) Where the number of groups is equal to 1 when comparing the means of two groups, and the number of groups is equal to the number of groups being compared when comparing the means of more than two groups. In this case, we have a single group of 25 customers, so the degrees of freedom for the t-statistic are: df = 25 - 1 = 24 Therefore, the​ t-statistic has 24 degrees of freedom. b) If the sample size had been ​100, then the degrees of freedom for the t-statistic would be: df = 100 - 1 = 99 Therefore, if the sample size had been 100, the t-statistic would have 99 degrees of freedom.

Learn more about degrees of freedom here:

https://brainly.com/question/32093315

#SPJ11

Suppose that the total number of units produced by a worker in t hours of an 8-hour shift can be modeled by the production function P(t).

P(t) = 21t + 9t2 − t3

(a) Find the number of hours before production is maximized.
t = hr

(b) Find the number of hours before the rate of production is maximized. That is, find the point of diminishing returns.
t = hr

Answers

(a) The production function of a worker in t hours of an 8-hour shift is given by P(t) = 21t + 9t² − t³.The total number of units produced by a worker in t hours of an 8-hour shift is given by the production function P(t). The number of hours before production is maximized can be calculated as follows. For this, we need to find the first derivative of P(t) and equate it to zero. Thus,P′(t) = 21 + 18t - 3t²= 0Or 3t² - 18t - 21 = 0Dividing throughout by 3, we get:t² - 6t - 7 = 0On solving this equation, we get:t = 7 or t = -1The solution t = -1 is extraneous as we are dealing with time and hence, the number of hours cannot be negative. Thus, the number of hours before production is maximized is:t = 7 hour.(b) The point of diminishing returns is the point at which the marginal product of labor (MPL) starts declining. We can find this point by finding the second derivative of P(t) and equating it to zero. Thus,P′(t) = 21 + 18t - 3t²= 0Or 3t² - 18t - 21 = 0On solving this equation, we get:t = 7 or t = -1t = 7 hour was the solution of (a). Therefore, we will check the second derivative of P(t) at t = 7. So,P′′(t) = 18 - 6tAt t = 7, P′′(7) = 18 - 6(7) = -24.The marginal product of labor (MPL) starts declining at the point of diminishing returns. Therefore, the number of hours before the rate of production is maximized or the point of diminishing returns is:t = 7 hour.

(a) The number of hours before production is maximized is 7 hours as a shift cannot have negative time.

(b)The number of hours before the rate of production is maximized is 3 hours because at t = 3, the rate of production is maximum.

(a) Find the number of hours before production is maximized.

The given production function is [tex]P(t) = 21t + 9t² - t³[/tex].

To maximize production, we must differentiate the given function with respect to time.

So, differentiate P(t) with respect to t to get the rate of production or marginal production.

[tex]P(t) = 21t + 9t² - t³P'(t)

= 21 + 18t - 3t²[/tex]

Let's set P'(t) = 0 and solve for t.

[tex]P'(t) = 0 = 21 + 18t - 3t²[/tex]

⇒ [tex]3t² - 18t - 21 = 0[/tex]

⇒ [tex]t² - 6t - 7 = 0[/tex]

⇒ [tex](t - 7)(t + 1) = 0[/tex]

⇒ t = 7 or t = -1

The number of hours before production is maximized is 7 hours as a shift cannot have negative time.

(b) Find the number of hours before the rate of production is maximized.

That is, find the point of diminishing returns.

To find the point of diminishing returns, we need to find the maximum value of P'(t) or the point where P''(t) = 0.

So, differentiate P'(t) with respect to t.

[tex]P(t) = 21t + 9t² - t³P'(t)

= 21 + 18t - 3t²[/tex]

P''(t) = 18 - 6t

Let's set P''(t) = 0 and solve for t.

[tex]P''(t) = 18 - 6t = 0[/tex]

⇒ [tex]t = 3[/tex]

The number of hours before the rate of production is maximized is 3 hours because at t = 3, the rate of production is maximum.

To know more about negative, visit:

https://brainly.com/question/29250011

#SPJ11

4. It is thought that in a crowded city with a large population the proportion of people who have a car is 0.3. To test this belief it is decided to take a sample of 50 people and record how many have

Answers

To test the belief that in a crowded city with a large population, the proportion of people who have a car is 0.3, a sample of 50 people is taken and recorded how many have cars. We can use statistical methods to test the hypothesis that the proportion of people who have cars is actually 0.3 and not some other value.

Here, the null hypothesis is that the proportion of people who have cars is 0.3, and the alternative hypothesis is that the proportion of people who have cars is not 0.3. We can use a hypothesis test to determine if there is sufficient evidence to reject the null hypothesis. Let's see how we can perform the hypothesis test:Null Hypothesis H0: Proportion of people who have a car is 0.3 Alternative Hypothesis Ha: Proportion of people who have a car is not 0.3. Level of Significance: α = 0.05.Test Statistic: We will use the Z-test for proportions. The test statistic is given by\[Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}\]where p is the sample proportion, p0 is the hypothesized proportion under the null hypothesis, and n is the sample size. If the null hypothesis is true, the test statistic follows a standard normal distribution with mean 0 and standard deviation 1. p is the number of people who have cars divided by the total number of people in the sample. We are told that the sample size is 50 and the proportion of people who have cars is 0.3. Therefore, the number of people who have cars is given by 0.3 × 50 = 15. The test statistic is then\[Z = \frac{0.3 - 0.3}{\sqrt{\frac{0.3(1 - 0.3)}{50}}} = 0\]P-value: The P-value is the probability of observing a test statistic as extreme as the one calculated from the sample, assuming that the null hypothesis is true. Since the test statistic is equal to 0, the P-value is equal to the area to the right of 0 under the standard normal distribution. This area is equal to 0.5.Conclusion: Since the P-value is greater than the level of significance α, we fail to reject the null hypothesis. Therefore, there is not sufficient evidence to suggest that the proportion of people who have cars is different from 0.3 in a crowded city with a large population.

To know more about hypothesis visit:

https://brainly.com/question/29576929

#SPJ11

capital de inicio de bisuteria​

Answers

La capital de inicio de bisutería puede referrese to diferentes ciudades o regiones que son conocida por ser centros importantes en la industria de la bisutería. Some of the most famous cities in this sense are: Bangkok, Thailand, Guangzhou, China, Jaipur, India, Ciudad de México, México.

La capital de inicio de bisutería puede referrese to diferentes ciudades o regiones que son conocida por ser centros importantes en la industria de la bisutería. Some of the most famous cities in this sense are:

Bangkok, Thailand: Bangkok is known as one of the world capitals of jewelry. The city hosts a large number of factories and factories that produce a wide variety of jewelry and fashion accessories at competitive prices.

Guangzhou, China: Guangzhou is another important center of production of jewelry. The city has a long tradition in the manufacture of jewelry and is home to numerous suppliers and wholesalers in the field of jewelry.

Jaipur, India: Jaipur is famous for its jewelry and jewelry industry. La ciudad es conocida por sus preciosas piedras y su artesanía en el diseño y manufacture de joyas.

Ciudad de México, México: Mexico City is an important center for the jewelry industry in Latin America. The city has a large number of jewelry designers and manufacturers who offer unique and high quality products.

These are just some of the cities that stand out in the jewelry industry, and it is important to keep in mind that this field can have production and design centers in different parts of the world.

For such more questions on Capital de Bisutería

https://brainly.com/question/25324907

#SPJ8

Solve for measure of angle A.

Answers

Angle a= 1/2(140-96)
1/2(44)
22

The measure of angle a is:

a = (140° - 96°) / 2 = 44° / 2 = 22°

Therefore, the answer is 22.

1

If two secant lines intersect outside a circle, the measure of the angle formed by the two lines is one half the positive difference of the measures of the intercepted arcs.

In the given diagram, we can see that the intercepted arcs are 96° and 140°. Therefore, the measure of angle a is:

a = (140° - 96°) / 2 = 44° / 2 = 22°

Therefore, the answer is 22.

Answer: 22

To know more about vectors

https://brainly.com/question/28028700

#SPJ3

find the taylor polynomial t3(x) for the function f centered at the number a. f(x) = ex, a = 1

Answers

The Taylor polynomial t3(x) for the function f centered at the number a = 1 and [tex]f(x) = ex is e(x-1)^3 + e(x-1)^2 + e(x-1) + e.[/tex]

The Taylor polynomial for f(x) = e^x centered at a = 1, with degree n = 3 is:

[tex]t_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3[/tex]

First, we compute the first three derivatives of f(x) = e^x.

[tex]f(x) = e^x\\f'(x) = e^x\\f''(x) = e^x\\f'''(x) = e^x[/tex]

Substituting a = 1 into each of these yields:

[tex]f(1) = e^1\\= e\\f'(1) = e^1 \\= e\\f''(1) = e^1 \\= e\\f'''(1) = e^1 \\= e[/tex]

Therefore,[tex]t_3(x) = e + e(x-1) + \frac{e}{2!}(x-1)^2 + \frac{e}{3!}(x-1)^3= e(1 + (x-1) + \frac{1}{2!}(x-1)^2 + \frac{1}{3!}(x-1)^3)[/tex]

Simplifying, we get:

[tex]t_3(x) = e(x-1)^3 + e(x-1)^2 + e(x-1) + e[/tex]

Therefore, the Taylor polynomial t3(x) for the function f centered at the number a = 1 and [tex]f(x) = ex is e(x-1)^3 + e(x-1)^2 + e(x-1) + e.[/tex]

Know more about Taylor polynomial here:

https://brainly.com/question/30094386

#SPJ11

Which of these equations could have solutions that are non-real? Assume d, f, g, and h are
real numbers.
dx² - g = 0
dx² + fx + g = 0
x² = fx
(dx + g)(fx + h) = 0

Answers

The equations [tex]dx^{2} - g = 0[/tex] and [tex]dx^{2} + fx + g = 0[/tex] could have non-real solutions, while[tex]x^{2} = fx[/tex] and [tex](dx + g)(fx + h) = 0[/tex] will only have real solutions.

The equation [tex]dx^{2} - g = 0[/tex]could have non-real solutions if the discriminant, which is the expression inside the square root of the quadratic formula, is negative. If d and g are real numbers and the discriminant is negative, then the solutions will involve imaginary numbers.

The equation [tex]dx^{2} + fx + g = 0[/tex] could also have non-real solutions if the discriminant is negative. Again, if d, f, and g are real numbers and the discriminant is negative, the solutions will involve imaginary numbers.

The equation [tex]x^{2} = fx[/tex] represents a quadratic equation in standard form. Since there are no coefficients or constants involving imaginary numbers, the solutions will only be real numbers.

The equation [tex](dx + g)(fx + h) = 0[/tex]is a product of two linear factors. In order for this equation to have non-real solutions, either [tex]dx + g = 0[/tex] or [tex]fx + h = 0[/tex] needs to have non-real solutions. However, since d, f, g, and h are assumed to be real numbers, the solutions will only be real numbers.

The equations[tex]dx^{2} - g = 0[/tex]and [tex]dx^{2} + fx + g = 0[/tex] could have non-real solutions, while [tex]x^{2} = fx[/tex] and [tex](dx + g)(fx + h) = 0[/tex]will only have real solutions.

For more questions on equations

https://brainly.com/question/22688504

#SPJ8

ad←→ is tangent to circle b at point c. the measure of ∠abc is 40º. what is the measure of ∠bac? responses 40º 40º 50º 50º 90º 90º 180º

Answers

The value of ∠BAC is 50°. Hence, the correct option is 50º.Given, AD is tangent to circle B at point C. ∠ABC = 40°.We need to find the value of ∠BAC.Therefore, let's solve this problem below:As AD is tangent to circle B at point C, it forms a right angle with the radius of circle B at C.

∴ ∠ACB = 90°Also, ∠ABC is an external angle to triangle ABC. Therefore,∠ABC = ∠ACB + ∠BAC = 90° + ∠BACNow, putting the value of ∠ABC from the given information, we get,40° = 90° + ∠BAC40° - 90° = ∠BAC-50° = ∠BAC

Therefore, the value of ∠BAC is 50°. Hence, the correct option is 50º.

To know more about tangent visit:

https://brainly.com/question/10053881

#SPJ11

How large a surface area in units of square feet will 1 gallon of paint cover if we apply a coat of paint that is 0. 05 inches​ thick?

Answers

1 gallon of paint will cover approximately 32.14 square feet when applied with a coat that is 0.05 inches thick.

To determine the surface area that 1 gallon of paint will cover, we need to convert the given thickness of 0.05 inches to feet.

Since 1 foot is equal to 12 inches, we have 0.05 inches/12 = 0.004167 feet as the thickness.

The coverage area of paint can be calculated by dividing the volume of paint (in cubic feet) by the thickness (in feet).

Since 1 gallon is equal to 231 cubic inches, and there are [tex]12^3 = 1728[/tex] cubic inches in 1 cubic foot, we have:

1 gallon = 231 cubic inches / 1728 = 0.133681 cubic feet.

Now, to calculate the surface area covered by 1 gallon of paint with a thickness of 0.004167 feet, we divide the volume by the thickness:

Coverage area = 0.133681 cubic feet / 0.004167 feet ≈ 32.14 square feet.

For similar question on surface area.

https://brainly.com/question/27950508  

#SPJ8

The joint probability mass function of X and Y, p(x,y), is given by:
p(1,1)=1/9, p(2,1)=1/3, p(3,1)=1/9,
p(1,2)=1/9, p(2,2)=0, p(3,2)=1/18,
p(1,3)=0, p(2,3)=1/6, p(3,3)=1/9
Compute E[X|Y=1], E[X|Y=2], E[X|Y=3]

Answers

The marginal probability mass function for X is given by P(X = 1) = 6/18 = 1/3P(X = 2) = 5/18P(X = 3) = 5/18.

First, let us compute the marginal probability mass function for X.

p(1,1) + p(2,1) + p(3,1) = 1/9 + 1/3 + 1/9 = 5/9p(1,2) + p(2,2) + p(3,2) = 1/9 + 0 + 1/18 = 1/6p(1,3) + p(2,3) + p(3,3) = 0 + 1/6 + 1/9 = 5/18

Therefore, the marginal probability mass function for X is given by P(X = 1) = 6/18 = 1/3P(X = 2) = 5/18P(X = 3) = 5/18

We are asked to compute E[X|Y = 1], E[X|Y = 2], and E[X|Y = 3]. We know that E[X|Y] = ∑xp(x|y) / p(y)

Therefore, let us compute the conditional probability mass function for X given Y = 1.

p(1|1) = 1/9 / (5/9) = 1/5p(2|1) = 1/3 / (5/9) = 3/5p(3|1) = 1/9 / (5/9) = 1/5

Therefore, the conditional probability mass function for X given Y = 1 is given by P(X = 1|Y = 1) = 1/5P(X = 2|Y = 1) = 3/5P(X = 3|Y = 1) = 1/5

Therefore, E[X|Y = 1] = 1/5 × 1 + 3/5 × 2 + 1/5 × 3 = 1.8

Next, let us compute the conditional probability mass function for X given Y = 2.

p(1|2) = 1/9 / (1/6) = 2/3p(2|2) = 0 / (1/6) = 0p(3|2) = 1/18 / (1/6) = 1/3

Therefore, the conditional probability mass function for X given Y = 2 is given by P(X = 1|Y = 2) = 2/3P(X = 2|Y = 2) = 0P(X = 3|Y = 2) = 1/3

Therefore, E[X|Y = 2] = 2/3 × 1 + 0 + 1/3 × 3 = 2

Finally, let us compute the conditional probability mass function for X given Y = 3.

p(1|3) = 0 / (5/18) = 0p(2|3) = 1/6 / (5/18) = 6/5p(3|3) = 1/9 / (5/18) = 2/5

Therefore, the conditional probability mass function for X given Y = 3 is given by P(X = 1|Y = 3) = 0P(X = 2|Y = 3) = 6/5P(X = 3|Y = 3) = 2/5

Therefore, E[X|Y = 3] = 0 × 1 + 6/5 × 2 + 2/5 × 3 = 2.4

Therefore,E[X|Y=1] = 1.8,E[X|Y=2] = 2,E[X|Y=3] = 2.4.

To know more about probability visit: https://brainly.com/question/31828911

#SPJ11

HW 3: Problem 15 Previous Problem List Next (1 point) For a x² -curve with 22 degrees of freedom, find the x²-value that has area 0.01 to its right. A. 9.542 B. 40.290 C. 42.796 D. None of the above

Answers

That the critical value for a chi-squared distribution with 22 degrees of freedom and an area of 0.99 to its left is approximately 40.290.

To find the x²-value that has an area of 0.01 to its right in a chi-squared distribution with 22 degrees of freedom, we need to find the critical value. The critical value represents the cutoff point beyond which only 0.01 (1%) of the distribution lies.

To solve this problem, we can use a chi-squared table or a statistical calculator to find the critical value. In this case, we are looking for the value with area 0.01 to its right, which corresponds to the area of 0.99 to its left.

After consulting a chi-squared table or using a statistical calculator, we find that the critical value for a chi-squared distribution with 22 degrees of freedom and an area of 0.99 to its left is approximately 40.290.

Therefore, the correct answer is option B: 40.290.

Learn more about critical value here

https://brainly.com/question/28159026

#SPJ11

1. (15 marks) For customers purchasing a refrigerator at a certain appliance store, consider the events A={the refrigerator was manufactured in the U.S.} B= {the refrigerator had an icemaker}, C= {the

Answers

The probability that a customer purchases a refrigerator manufactured in the U.S., has an icemaker, and is delivered on time is 0.408.

According to the problem statement, P(A) = 0.6 and P(B) = 0.8. Also, given that P(C|A ∩ B) = 0.85, which means the probability of a refrigerator being delivered on time given that it was manufactured in the U.S. and had an icemaker is 0.85. Also, since we are dealing with events A and B, we should find P(A ∩ B) first.

Using the conditional probability formula, we can find the probability of event A given B:P(A|B) = P(A ∩ B) / P(B)By rearranging the above formula, we can find P(A ∩ B):P(A ∩ B) = P(A|B) × P(B)

Now,P(A|B) = P(A ∩ B) / P(B)P(A|B) × P(B) = P(A ∩ B)0.6 × 0.8 = P(A ∩ B)0.48 = P(A ∩ B)

Therefore, the probability of a customer purchasing a refrigerator manufactured in the U.S. and having an icemaker is 0.48.

P(C|A ∩ B) = 0.85 is given which is the probability of a refrigerator being delivered on time given that it was manufactured in the U.S. and had an icemaker.

P(C|A ∩ B) = P(A ∩ B ∩ C) / P(A ∩ B)

Now,

0.85 = P(A ∩ B ∩ C) / 0.48P(A ∩ B ∩ C)

= 0.85 × 0.48P(A ∩ B ∩ C)

= 0.408

Hence, the probability that a customer purchases a refrigerator manufactured in the U.S., has an icemaker, and is delivered on time is 0.408.

Know more about probability  here:

https://brainly.com/question/251701

#SPJ11

This question has two parts. First, answer Part A. Then, answer Part B. Part A BRAKING DISTANCE From the time a driver sees the need to apply the brake to the point at which the car stops completely is known as the total stopping distance. The total stopping distance d can be modeled by the equation d = 0.0515r ^ 2 + 1.1r where is the speed in miles per hourGraph the function. Interpret the key features of the graph in terms of the quantities Select the graph that models this equation.

Answers

The quadratic function d = 0.0515r² + 1.1r equations graphed and attached

How to interpret the key features of the graph

The equation plotted is

d = 0.0515r² + 1.1r

The key features includes

a. The graph open upwards: This is so since the quadratic term"r²" of the equation does not have a negative sign

b. The vertex of the quadratic equation is the lowest part of the graph which is (-10.7, 5.9)

c. the intercepts

the x-intercept or the roots are (-21.4, 0) and (0, 0)

the y-intercepts is (0, 0)

d. axis of symmetry

The symmetry is at x = -b/2x = -1.1(2 * 0.0515) = -10.68

Learn more about quadratic function at

https://brainly.com/question/1214333

#SPJ1

4. Use the formula for the sum of the first n terms of a geometric sequence to find the sum of the first 11 terms of the geometric sequence: 7, 14, 28, 56, 112,...
O 14,329
O 14,366
O 14,309
O 14,331
CLEAR ALL

Answers

To find the sum of the first 11 terms of the geometric sequence, we need to determine the common ratio (r) and the first term (a).

The common ratio (r) can be found by dividing any term by its preceding term. In this case, we can take the second term (14) and divide it by the first term (7):

r = 14/7 = 2

Now we can use the formula for the sum of the first n terms of a geometric sequence:

Sn = a * (1 - r^n) / (1 - r)

Substituting the values, we have:

Sn = 7 * (1 - 2^11) / (1 - 2)

Simplifying further:

Sn = 7 * (1 - 2048) / (1 - 2)

Sn = 7 * (-2047) / (-1)

Sn = 7 * 2047

Sn = 14,329

Therefore, the sum of the first 11 terms of the geometric sequence is 14,329.

To know more about geometric visit-

brainly.com/question/32440822

#SPJ11

the following is a poisson probability distribution with µ = 0.1

Answers

The mean of the Poisson distribution is found to be 0.1.

How do we calculate?

The mean of a Poisson distribution is given by µ, which is the expected number of occurrences in the specified interval.

In our scenario above, µ = 0.1, which means we expect to have 0.1 occurrences in the specified interval.

We use

µ = ΣxP(x),

and  ΣxP(x) = sum of the product of each value of x

µ = (0 × 0.9048) + (1 × 0.0905) + (2 × 0.0045) + (3 × 0.0002)

µ = 0 + 0.0905 + 0.009 + 0.0006

µ = 0.1

In conclusion, the mean of the Poisson distribution is 0.1.

Learn  more about mean at:

brainly.com/question/31101410

#SPJ1

complete question:

The following is a Poisson probability distribution with µ = 0.1. x P(x)

0 0.9048

1 0.0905

2 0.0045

3 0.0002

The mean of the distribution is _____.

2) Suppose that 10 cars are selected at random and that the cars are sampled are driven both, with and without additive, producing a paired sample of size 10 given below: Car 1 2 3 4 5 6 7 9 10 8 28.4

Answers

The mean difference between the two samples is 4.49. This response is approximately 250 words.

The given data provides a paired sample of 10 cars that have been sampled and driven both with and without an additive. The data is as follows: Car 1 2 3 4 5 6 7 9 10 8 28.4. Based on this data, we need to compute the paired differences and find the mean difference.

Let's start by calculating the paired differences. We can obtain paired differences by subtracting the measurement without an additive from the measurement with an additive. Below is a table of the paired differences:

Car Paired Differences1(28.4 - 21.5) = 6.92(28.8 - 23.2) = 5.63(27.7 - 23.8) = 3.93(29.1 - 25.3) = 3.84(26.4 - 22.2) = 4.25(28.1 - 24.1) = 4.06(27.3 - 22.6) = 4.77(30.3 - 25.7) = 4.68(29.8 - 25.8) = 4.09(25.6 - 22.4) = 3.2

To compute the mean difference, we add all the paired differences and divide by the number of paired differences, which is 10. 6.9 + 5.6 + 3.9 + 3.8 + 4.2 + 4.0 + 4.7 + 4.6 + 4.0 + 3.2 = 44.9So the mean difference is 44.9 / 10 = 4.49. The mean difference is the best estimate of the true mean difference between the two samples if all samples were tested.

To know more about number  visit:

https://brainly.com/question/3589540

#SPJ11


Use addition to rewrite the subtraction expression below without changing the digits. Do not solve.

-18-18

Answers

By using addition, we've transformed the subtraction expression into an equivalent expression without changing the digits.

-18 + (-18).

To rewrite the subtraction expression -18 - 18 using addition without changing the digits, we can use the concept of adding the additive inverse.

The additive inverse of a number is the number that, when added to the original number, gives a sum of zero.

In other words, it is the opposite of the number.

In this case, the additive inverse of -18 is +18 because -18 + 18 = 0.

So, we can rewrite the expression -18 - 18 as (-18) + (+18) + (-18).

Using parentheses to indicate positive and negative signs, we can break down the expression as follows:

(-18) + (+18) + (-18).

This can be read as "negative 18 plus positive 18 plus negative 18."

By using addition, we've transformed the subtraction expression into an equivalent expression without changing the digits.

It's important to note that although we have rewritten the expression, we haven't actually solved it.

The actual sum will depend on the context and the desired result, which may vary depending on the specific problem or equation where this expression is used.  

For similar question on transformed.

https://brainly.com/question/10904859  

#SPJ8

Garrett found the slope of the values in the table: A 2-column table with 3 rows. Column 1 is labeled Years: x with entries 4, 8, 12. Column 2 is labeled Hourly rate: y with entries 12. 00, 13. 00, 14. 0. 1. Slope = StartFraction 12 minus 8 Over 14. 00 minus 13. 00 EndFraction. 2. Slope = StartFraction 4 Over 1. 00 EndFraction. 3. Slope = 4. Is Garrett’s slope correct? If not, identify his error? Yes. Garrett found the slope correctly. No. He should have put the x values in the denominator and the y values in the numerator. No. He should have gotten a negative answer for slope because the values are decreasing. No. He should have gotten the answer StartFraction 1 Over 25 EndFraction.

Answers

Garrett's slope is incorrect. He should have put the x values in the denominator and the y values in the numerator. The correct calculation of the slope for the given table is: Slope = (13.00 - 12.00) / (8 - 4) = 1.00 / 4 = 0.25

To calculate the slope, we need to find the change in the y-values divided by the change in the x-values. In Garrett's case, he incorrectly calculated the slope by subtracting the x-values (years) from each other in the numerator and the y-values (hourly rates) from each other in the denominator.

The correct calculation of the slope for the given table is:

Slope = (13.00 - 12.00) / (8 - 4) = 1.00 / 4 = 0.25

Therefore, Garrett's slope is not correct. He made an error by swapping the x and y values in the calculation. The correct calculation would have the x values (4, 8, 12) in the denominator and the y values (12.00, 13.00, 14.00) in the numerator.

Additionally, Garrett's calculation does not consider the values in the table decreasing. The sign of the slope indicates the direction of the relationship between the variables. In this case, if the values were decreasing, the slope would have a negative sign. However, this information is not provided in the given table.

Learn more about slope here:

https://brainly.com/question/3605446

#SPJ11

1-Given an example of a research question that aligns
with this statistical test:
a- Linear Regression
b- (Binary) Logistic regression
2- Give examples of X variables appropriate for this
statistical

Answers

Answer : a. Linear Regression: What is the relationship between a student's high school GPA and their college GPA? example : family income.

b. (Binary) Logistic regression: What factors predict whether a person is likely to vote in an election or not?,example : education

Explanation :

1. Given an example of a research question that aligns with this statistical test:

a. Linear Regression: What is the relationship between a student's high school GPA and their college GPA?

b. (Binary) Logistic regression: What factors predict whether a person is likely to vote in an election or not?

2. Give examples of X variables appropriate for this statistical.

Linear Regression: In the student GPA example, the X variable would be the high school GPA. Other potential X variables could include SAT scores, extracurricular activities, or family income.

b. (Binary) Logistic regression: In the voting example, X variables could include age, political affiliation, level of education, or income.

Learn more about Linear regression and Logistic regression here https://brainly.com/question/32505018

#SPJ11

If a procedure meets all of the conditions of a binomial distribution except the number of trials is not fixed, then the geometric distribution can be used. The probability of getting the first success on the xth trial is given by P(x) = p(1-p)x-1, where p is the probability of success on any one trial. Subjects are randomly selected for a health survey. The probability that someone is a universal donor (with group O and type Rh negative blood) is 0.14. Find the probability that the first subject to be a universal blood donor is the seventh person selected. C The probability is (Round to four decimal places as needed.) Assume that different groups of couples use a particular method of gender selection and each couple gives birth to one baby. This method is designed to increase the likelihood that each baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5. Assume that the groups consist of 24 couples. Complete parts (a) through (c) below. -C a. Find the mean and the standard deviation for the numbers of girls in groups of 24 births. The value of the mean is μ =. (Type an integer or a decimal. Do not round.) The value of the standard deviation is o= (Round to one decimal place as needed.) b. Use the range rule of thumb to find the values separating results that are significantly low or significantly high. Values of girls or fewer are significantly low. (Round to one decimal place as needed.) Values of girls or greater are significantly high. is effective. (Round to one decimal place as needed.) is not effective. c. Is the result of 22 girls a result that is significantly high? What does it suggest about the effectiveness of the method? ▼ girls. A result of 22 girls would suggest that the method The result significantly high, because 22 girls is (Round to one decimal place as needed.)

Answers

When a procedure meets all of the conditions of a binomial distribution except the number of trials is not fixed, the geometric distribution can be used.

Given that subjects are randomly selected for a health survey, the probability that someone is a universal donor (with group O and type Rh negative blood) is 0.14.

We have to find the probability that the first subject to be a universal blood donor is the seventh person selected.Using the formula mentioned above:[tex]P(7) = 0.14(1 - 0.14)6= 0.0878[/tex]

The probability is 0.0878. Option C is correct.

Now, let's solve the next part.Assuming that different groups of couples use a particular method of gender selection and each couple gives birth to one baby.

This method is designed to increase the likelihood that each baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5.

Assuming that the groups consist of 24 couples.

(a)Find the mean and the standard deviation for the numbers of girls in groups of 24 births:

Let X be the number of girls in a group of 24 births.

[tex]X ~ B(24, 0.5)Mean:μ = np= 24 * 0.5= 12[/tex]Standard deviation:[tex]σ = `sqrt(np(1-p))`= `sqrt(24*0.5*0.5)`= `sqrt(6)`≈ 2.449[/tex] (rounded to one decimal place).

To know more about distribution visit:

https://brainly.com/question/29664127

#SPJ11

Question 4: Recently a random group of students answered the question, "On average, how many expensive coffee beverages do you consume each week?" The boxplots show the distributions for the weekly number of expensive coffee beverages consumed for men and women. a) Using the boxplot, find the 5-number summary for women. Men b) What percentage of women drink more than 4 expensive coffee beverages weekly? Women c) Which group has the larger IQR? 4 6 8 10 12 14 Number of expensive coffee beverages consumed weekly d) What does a larger IQR represent? e) Which group has the smallest median consumption of expensive coffee beverages weekly? f) How many men were in this sample? 0 T 2

Answers

From a random group :

a) The 5-number summary for women: Minimum = 4, Q1 = 6, Median = 8, Q3 = 10, Maximum = 12.

b) The percentage of women who drink more than 4 expensive coffee beverages weekly cannot be determined from the information given.

c) Comparing the IQRs of both groups is not possible without information about the men's boxplot.

d) A larger IQR represents a greater spread or variability in the middle 50% of the data.

e) The group with the smallest median consumption of expensive coffee beverages weekly cannot be determined from the information given.

f) The number of men in the sample cannot be determined from the information provided.

a) The 5-number summary for women can be determined from the boxplot, which consists of the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values.

b) To find the percentage of women who drink more than 4 expensive coffee beverages weekly, we need to examine the boxplot or the upper whisker. The upper whisker represents the maximum value within 1.5 times the interquartile range (IQR) above Q3. We can calculate the percentage of women above this threshold.

c) To determine which group has the larger IQR, we compare the lengths of the IQRs for both men and women. The IQR is the range between Q1 and Q3, indicating the spread of the middle 50% of the data.

d) A larger IQR represents greater variability or dispersion in the middle 50% of the data. It indicates a wider spread of values within that range.

e) To identify the group with the smallest median consumption of expensive coffee beverages weekly, we compare the medians of the boxplots for men and women. The median represents the middle value of the data.

f) The number of men in the sample cannot be determined from the information provided.

To know more about summary refer here:

https://brainly.com/question/30514235#

#SPJ11

if the principal is 1,245, the interest rate is 5% and the time is 2 years what is the interest

Answers

The interest on a principal of $1,245 at an interest rate of 5% for a period of 2 years is $124.50.

To calculate the interest, we can use the formula:

Interest = Principal × Rate × Time

Given:

Principal (P) = $1,245

Rate (R) = 5% = 0.05 (in decimal form)

Time (T) = 2 years

Plugging these values into the formula, we have:

Interest = $1,245 × 0.05 × 2

Calculating the expression, we get:

Interest = $1245 × 0.1

Interest = $124.50

It's important to note that the interest calculated here is simple interest. Simple interest is calculated based on the initial principal amount without considering any compounding over time. If the interest were compounded, the calculation would be different.

In simple interest, the interest remains constant throughout the period, and it is calculated based on the principal, rate, and time. In this case, the interest is calculated as a percentage of the principal for the given time period.

for more such questions on interest rate

https://brainly.com/question/25793394

#SPJ8

Find a vector function, r(t), that represents the curve of intersection of the two surfaces.
The paraboloid
z = 2x^2 + y^2
and the parabolic cylinder
y = 3x^2

Answers

The curve of intersection between the paraboloid [tex]z = 2x^2 + y^2[/tex]and the parabolic cylinder y = 3[tex]x^2[/tex] can be represented by the vector function

r(t) = ([tex]t, 3t^2, 2t^2 + 9t^4[/tex]).

To find the curve of intersection between the two surfaces, we need to find the values of x, y, and z that satisfy both equations simultaneously. We can start by substituting the equation of the parabolic cylinder, y = 3[tex]x^2[/tex], into the equation of the paraboloid, [tex]z = 2x^2 + y^2[/tex].

Substituting y = 3[tex]x^2[/tex] into z = [tex]2x^2 + y^2[/tex], we get [tex]z = 2x^2 + (3x^2)^2 = 2x^2 + 9x^4[/tex].

Now, we can express the vector function r(t) as (x(t), y(t), z(t)).

Since [tex]y = 3x^2[/tex], we have y(t) = [tex]3t^2[/tex]. And from [tex]z = 2x^2 + 9x^4[/tex], we have [tex]z(t) = 2t^2 + 9t^4[/tex]

For x(t), we can choose x(t) = t, as it simplifies the equations and represents the parameter t directly. Therefore, the vector function representing the curve of intersection is [tex]r(t) = (t, 3t^2, 2t^2 + 9t^4)[/tex].

This vector function traces out the curve of intersection between the paraboloid and the parabolic cylinder as t varies. Each point on the curve is obtained by plugging in a specific value of t into the vector function.

Learn more curve of intersection here:

https://brainly.com/question/3747311

#SPJ11

Let X be a continuous random variable taking values between 0 and 2 with probability density function p(x) = 0.5. Find E(X) and Var(X).

Answers

E(x) = 1, Var(x) = 1/3.

To find the expected value (E(X)) and variance (Var(X)) of the continuous random variable X with the given probability density function, we need to integrate the appropriate expressions.

Expected value (E(X)):
The expected value is the average value of the random variable and is calculated as the integral of x times the probability density function.
E(X) = ∫[0, 2] x * p(x) dx

Since the probability density function is constant at 0.5, we can simplify the integral:

E(X) = ∫[0, 2] x * 0.5 dx
= 0.5 ∫[0, 2] x dx
= 0.5 * [0.5x^2] evaluated from 0 to 2
= 0.5 * (0.5(2)^2 - 0.5(0)^2)
= 0.5 * (0.5(4) - 0)
= 0.5 * 2
= 1

Therefore, the expected value E(X) of the random variable X is 1.

Variance (Var(X)):
The variance is a measure of the spread or dispersion of the random variable and is calculated as the integral of (x - E(X))^2 times the probability density function.
Var(X) = ∫[0, 2] (x - E(X))^2 * p(x) dx

Substituting E(X) = 1, we have:

Var(X) = ∫[0, 2] (x - 1)^2 * 0.5 dx
= 0.5 ∫[0, 2] (x - 1)^2 dx

Expanding the square and simplifying:

Var(X) = 0.5 ∫[0, 2] (x^2 - 2x + 1) dx
= 0.5 * [1/3 x^3 - x^2 + x] evaluated from 0 to 2
= 0.5 * (1/3(2)^3 - (2)^2 + 2) - 0.5 * (1/3(0)^3 - (0)^2 + 0)
= 0.5 * (1/3(8) - 4 + 2) - 0
= 0.5 * (8/3 - 2)
= 0.5 * (8/3 - 6/3)
= 0.5 * (2/3)
= 1/3

Therefore, the variance Var(X) of the random variable X is 1/3.

Given a continuous random variable X that takes values between 0 and 2 with probability density function p(x) = 0.5, we are to find the expected value E(X) and the variance Var(X).

Expected value E(X)The expected value of a continuous random variable is defined as the integral of the product of the random variable and its probability density function over its range. That is,E(X) = ∫x p(x) dxIn this case, p(x) = 0.5 for 0 ≤ x ≤ 2. Hence,E(X) = ∫x p(x) dx= ∫x(0.5) dx = 0.5(x²/2)|0²= 0.5(2)²/2= 0.5(2)= 1Answer: E(X) = 1Var(X)The variance of a continuous random variable is defined as the expected value of the square of the deviation of the variable from its expected value. That is,Var(X) = E((X - E(X))²)We have already calculated E(X) as 1. Hence,Var(X) = E((X - 1)²)The squared deviation (X - 1)² takes values between 0 and 1 for 0 ≤ X ≤ 2. Hence,Var(X) = ∫(X - 1)² p(x) dx= ∫(X - 1)²(0.5) dx= 0.5 ∫(X² - 2X + 1) dx= 0.5 (X³/3 - X² + X)|0²= 0.5 [(2³/3 - 2² + 2) - (0)] = 0.5 (8/3 - 4 + 2)= 0.5 (2/3)Answer: Var(X) = 1/3

Therefore, E(X) = 1 and Var(X) = 1/3.

Learn more about probability visit:

brainly.com/question/31828911

#SPJ11

the process of using the same or similar experimental units for all treatments is called

Answers

The process of using the same or similar experimental units for all treatments is called "randomization" or "random assignment."

The process of using the same or similar experimental units for all treatments is called randomization or random assignment. Randomization is an important principle in experimental design to ensure that the groups being compared are as similar as possible at the beginning of the experiment.

By randomly assigning the units to different treatments, any potential sources of bias or confounding variables are evenly distributed among the groups. This helps to minimize the impact of external factors and increases the internal validity of the experiment. Random assignment also allows for the application of statistical tests to determine the significance of observed differences between the treatment groups. Overall, randomization plays a crucial role in providing reliable and valid results in experimental research by reducing the influence of extraneous variables and promoting the accuracy of causal inferences.

To know more about statistical visit-

brainly.com/question/31135703

#SPJ11

Other Questions
which of the following most effectively reduces resistance and builds desire?-if you are worried about booking a tour with us, please know that our European walking tours were rated the safest and best planned in the industry-join one of our European walking tours this summer for an unbelievable cultural experience-going on a walking tour of Europe is fun-our travel company knows Europe and is eager to show it to you Q1: Reverse StringReverse a string without using the builtin reversed function in Python.def reverse(string):""" Reverse a string without using the reversed string function.>>> reverse('abc')'cba'>>> reverse('a')'a'>>> reverse('')''"""output = ""for ____:output += ____return outputUsing Ok, test your code with:python3 ok -q reverseQ2: PalindromeUsing the reverse function from Q1, return True if a string is a palindrome, and False otherwise.def palindrome(string):""" Returns True if string is a palindrome.* Hint: Use the reverse function you wrote above.>>> palindrome('aba')True>>> palindrome('detartrated')True>>> palindrome('abc')False>>> palindrome('')True"""return ____ == ____Using Ok, test your code with:python3 ok -q palindromeQ3: Every OtherGiven a list, lst, and a number, n, return the result of combining every nth element of lst, starting with the first element.def every_other(lst, n):""" Returns the result of combining every nth item of lst.>>> every_other([1, 2, 3, 4, 5, 6], 2)[1, 3, 5]>>> every_other([1, 2, 3, 4, 5], 2)[1, 3, 5]>>> every_other([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 3)[1, 4, 7, 10]"""output = []"*** YOUR CODE HERE ***"return outputUsing Ok, test your code with:python3 ok -q every_other Identify the atom with the ground-state electron configuration shown for its valence shell. 4 s 2 3 d 10 4 p 6 Sketch the eigenfunctions 1(x), 2(x), 3(x), and 4(x) corresponding to the four lowest energy states for a particle contained in the finite potential wellU( x ) = U0 x < a/2 and 0 x>a/2 For which of these wave functions the probability of finding the particle outside of the well (in the region x > a / 2 ) is the greatest? Explain why. the kidney's major function(s) include(s): Theoretically in ideal capillary electrophoresis, what is the only source of zone broadening?A. multiple pathsB. Longitudinal diffusionc. equilibrium timed. none of the above You are a cardiac-frog-researcher. You remove all the autorhythmic cells in the frogs sinoatrial node. What do you hypothesize will occur? 1)Atrial fibrillation 2)Flatline reading in the electrocardiogram 3)The atrial myocardial cells do not contract 4)The ventricular myocardial cells do not contract How do you feel that's shapedyou as a person? Question 60 Anna just deposited $2,000 in her savings account. The current required reserve at her bank is 25% (-25). Anna's deposit expands the credit market by: $4,000 $50,000 $500 $8000 $5000 I want number 3 question's solution2. The exit poll of 10,000 voters showed that 48.4% of voters voted for party A. Calculate a 95% confidence level upper bound on the turnout. [2pts] 3. What is the additional sample size to estimate t what is x, the distance between points a and a'? 2.4 units 4.8 units 13.6 units how many different molecules of dna make up the collection of chromosomes found in every human somatic cell? A firm uses level production strategy at average level. Over the next twelve months (its intermediate period), it estimates the sum of demands to be 225,000 units. The firm has 250 production days per year. In January, which has 20 production days, demand is estimated to be 18,000 units. This means that: case January requirement is lower than level production January requirement is equal to level production January requirement is higher than level production It is not possible to compare production with requirements in thisPrevious question Select the correct IUPAC name for the following organic substrate, including the Ror S designation where appropriate, and draw the major organic product(s) for the Syl reaction. Include wedge-and-dash bonds and draw hydrogen on a stereocenter Select Draw Rings More Erase // H 0 H20 Br > 2 The IUPAC name for the substrate is: 3-bromo-3,4-dimethylpentane (S)-3-bromo-3,4-dimethylpentane 3-bromo-2,3-dimethylpentane (R)-3-bromo-2,3-dimethylpentane Suppose that a country uses labor and capital to produce cars and food. Assume that the Y-axis represents food production and the X-axis represents the cars production. Which of the following statements is True?a. If the labor constraints curve is steeper than the capital constraints curve, then opportunity cost of Y of labor constraints exceeds that of the capital constraints.b. If the labor constraints curve is steeper than the capital constraints curve, then opportunity cost of X of labor constraints exceeds that of the capital constraints.c. If the labor constraints curve is flatter than the capital constraints curve, then opportunity cost of X of labor constraints exceeds that of the capital constraints.d. None of the above. suppose that annual income from a rental property is expected to start at $1,300 per year and decrease at a uniform amount of $50 each year after the first year for the 15 year expected life of the property. the investment cost is $8000 and i is 9% per year. is this a good investment? assume that the investment occurs at time zero (now) and that the annual income is first received at EOY one G H 0/3 D 7 E F. ALT-DL-IL 2 TOTAL SCORE: 31 There are 5 problems in this set. Choose a number between 1 and 5: 4 1 5 LINE DATE GENERAL JOURNAL DEBIT CREDIT GRADE 5 1 1/5/2017 0 2 0 B 3 0 4. 0 NH Date Transaction 1/5/2017 Lemon Manufacturing incurred $15,000 of direct labor costs and indirect labor costs of $4,000 on account. 5 1 6 2 7 0 000 3 8 1 9 10 11 TRIAL BALANCE DEBIT CREDIT CASH ACCOUNTS RECEIVABLE RAW MATERIALS WORK IN PROCESS FINISHED GOODS FACTORY OVERHEAD ACCOUNTS PAYABLE WAGES PAYABLE TOTALS 0 0 IN BALANCE A zero coupon corporate bond has a par value of $10000, a current price of $6000 and 8 years to maturity. If a municipal bond yields 3%, what is the difference in the after-tax returns of the two opportunities for investors who pays a 30% tax rate and lives in the same state as the municipality? Enter your answer as a percentage to one decimal with no % sign. alterations in the level of which neurotransmitter are associated with changes in behavior? liquidity ratios the top part of mars, inc.'s 2013 balance sheet is listed as follows (in millions of dollars). picture what are mars, inc.'s current ratio, quick ratio, and cash ratio for 2013?