Blocks A and B each have a mass m. Determine the largest horizontal force P which can be applied to B so that A will not move relative to B. All surfaces are smooth.

Answers

Answer 1

Answer:

The answer is "15 N".

Explanation:

Please find the complete question in the attached file.

In frame B:

For just slipping:

[tex]\to \frac{P}{2} \cos \theta =mg \sin \theta\\\\\to P=2 mg \tan \theta \\\\[/tex]

        [tex]=2 \times 1 \times g \times \tan 37^{\circ}\\\\ =2 \times 10 \times \frac{3}{4}\\\\ =15 \ N[/tex]

Blocks A And B Each Have A Mass M. Determine The Largest Horizontal Force P Which Can Be Applied To B

Related Questions

What does Faraday's law of induction states?​

Answers

Explanation:

This relationship, known as Faraday's law of induction (to distinguish it from his laws of electrolysis), states that the magnitude of the emf induced in a circuit is proportional to the rate of change of the magnetic flux that cuts across the circuit.

g Steel plates (AISI 1010) of 4 cm thickness initially at a uniform temperature of 500 deg C are cooled by air at 50 deg C with a convection coefficient of 30 W-m2-K-1. Estimate the time it will take for their midplane temperature to reach 100 deg C.

Answers

Solution :

Characteristic length  = thickness / 2

                                    [tex]$=\frac{0.04}{2}$[/tex]

                                    = 0.02 m

Thermal conductivity for steel is 42.5 W/m.K

[tex]$\text{Biot number} = \frac{\text{convective heat transfer coefficient} \times \text{characteristic length}}{\text{thermal conductivity}}$[/tex]

                  [tex]$=\frac{30 \times 0.02}{42.5}$[/tex]

                  = 0.014

Since the Biot number is less than 0.01, the lumped system analysis is applicable.

[tex]$\frac{T-T_{\infty}}{T_0-T_{\infty}} = e^{-b\times t}$[/tex]

Where,

T = temperature after t time

[tex]$T_{\infty}$[/tex] = surrounding temperature

[tex]$T_0$[/tex] = initial temperature

[tex]$b=\frac{\text{heat transfer coefficient}}{\text{density} \times {\text{specific heat } \times \text{characteristic length }}}$[/tex]

t = time

We calculate B:

[tex]$b=\frac{30}{7833 \times 460 \times 0.02}$[/tex]

  = 0.000416

Thus, [tex]$\frac{100-50}{500-50}=e^{-0.00416 \times t}$[/tex]

t = 5281.78 second

  = 88.02 minutes

Thus the time taken for reaching 100 degree Celsius is 88.02 minutes.

A 5.74 kg rock is thrown upwards with a force of 317 N at a location where the local gravitational acceleration is 9.81 m/s^2. What is the net acceleration of the rock?

Answers

Answer:

[tex]a=45.31m/s^2[/tex]

Explanation:

From the question we are told that:

Mass [tex]m=5.74[/tex]

Force [tex]F=317N[/tex]

Gravitational Acceleration [tex]g=9.81m/s^2[/tex]

Generally the equation for Force is mathematically given by

 [tex]F-mg=ma[/tex]

 [tex]317-5.74*9.81=5.74 a[/tex]

 [tex]a=\frac{260.7}{5.74}[/tex]

 [tex]a=45.31m/s^2[/tex]

Atmospheric pressure is 101 kPa. Pressure inside a tire is measured using a typical tire pressure gage to be 900 kPa. Find gage pressure and absolute pressure in the tire. ___________________________________________________________________

Answers

Answer:

The gage and absolute pressures are 900 and 1001 kilopascals, respectively.

Explanation:

The gage pressure ([tex]P_{g}[/tex]), in kilopascals, is the difference between absolute ([tex]P_{abs}[/tex]) and atmospheric pressures ([tex]P_{atm}[/tex]), measured in kilopascals. If we know that [tex]P_{g} = 900\,kPa[/tex] and [tex]P_{atm} = 101\,kPa[/tex], then the gage and absolute pressures are, respectively:

[tex]P_{g} = 900\,kPa[/tex]

[tex]P_{abs} = P_{atm} + P_{g}[/tex]

[tex]P_{abs} = 101\,kPa + 900\,kPa[/tex]

[tex]P_{abs} = 1001\,kPa[/tex]

The gage and absolute pressures are 900 and 1001 kilopascals, respectively.

HELP PLEASE!! ASAP!!!!
can some answer this 2 questions please as paragraph i want it nowww it is graded what action should be taken to make it safe ? also the first question

Answers

Actions violated:

Long hair isn't tied upThe girl isn't wearing a lab coatThe girl isn't wearing safety gogglesExtra: There doesn't seem to be an emergency fire blanket in the safe

Actions to be taken:

Make sure the girl wears a lab coat or kick her outMake sure the girl wears safety goggles or kick her outMake sure her hair is tied up or kick her out

Edit: Use these to write your paragraph.

Jodi hasn’t tied her hair up. Jodi is not wearing goggles and Kimberley and Jodie are not wearing gloves

Do you know who Candice is

Answers

Answer: Can these nuts fit in your mouth?

Explanation:

im just here for the points >:)

Problema:

Una nevera de vinos, con un peso bruto de 50 kg., que tiene las siguientes dimensiones: .60 m Largo x .49 m ancho x .50 m altura. Para ser transportadas en un contenedor de 40 pies D.V. responder las siguientes preguntas:

• 1.Cuántas neveras de vinos de acuerdo al volumen caben en un contenedor de 40 pies?

• De acuerdo dimensiones internas (largo, ancho y alto), ¿Cuántas caben en un contenedor de 40 pies?

• De acuerdo al peso que soporta el contenedor. ¿Cuántas neveras de vinos es posible transportar?

Answers

Answer:

I can't understand this language .

In a CNC machining operation, the has to be moved from point (5, 4) to point(7, 2)along a circular path with center at (7,2). Before starting operation, the tool is at (5, 4).The correct G and M code for this motion is

Answers

Answer: hello your question is incomplete below is the complete question

answer:

N010 GO2 X7.0 Y2.0 15.0 J2.0  ( option 1 )

Explanation:

Given that the NC machining has to be moved from point ( 5,4 ) to point ( 7,2 ) along a circular path

GO2 = circular interpolation in a clockwise path

G91 = incremental dimension

hence the correct option is :

N010 GO2 X7.0 Y2.0 15.0 J2.0  

A designer needs to select the material for a plate under tensile stress. Assuming that the applied tensile force is 13,000 lb and the area under the stress is 4 square inches, determine which material should be selected to assure safety. Assume safety factor is 2. Material A: Ultimate Tensile stress is 8000 lb/in2Material B: Ultimate Tensile stress is 5500 lb/in2

Answers

Wow Muy bien no se que dice pero bien.

Suppose a causal CT LTI system has bilateral Laplace transform H(s) 2s - 2 $2 + (10/3)s + 1 (8)
(a) Write the linear constant coefficient differential equation (LCCDE) relating a general input x(t) to its corresponding output y(t) of the system corresponding to this transfer function in equation (8).
(b) Suppose the input x(t) = e-tu(t). Find the output y(t). In part (c), the output signal can be expressed as y(t) = - e-(1/3)t u(t) + e-tu(t) e-3tu(t), - 019 Where a, b, and care positive integers. What are they? a = b = C=

Answers

Solution :

Given :

[tex]$H(S) =\frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

Transfer function, [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

[tex]$Y(S) \left(S^2+\frac{10}{3}S+1\right) = (2S-2) \times (S)$[/tex]

[tex]$S^2Y(S) + \frac{10}{3}(SY(S)) + Y(S) = 2(S \times (S)) - 2 \times (S)$[/tex]

Apply Inverse Laplace Transforms,

[tex]$\frac{d^2y(t)}{dt^2} + \frac{10}{3} \frac{dy(t)}{dt} + y(t)=2 \frac{dx(t)}{dt} - 2x(t)$[/tex]

The above equation represents the differential equation of transfer function.

Given : [tex]$x(t)=e^{-t} u(t) \Rightarrow X(S) = \frac{1}{S+1}$[/tex]

We have : [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]

[tex]$Y(S) = X(S) \times \frac{6S-6}{3S^2+10 S + 3} = \frac{6S-6}{(S+1)(3S+1)(S+3)}$[/tex]

[tex]$Y(S) = \frac{A}{S+1}+\frac{B}{3S+1} + \frac{C}{S+3}[/tex]

[tex]$A = Lt_{S \to -1} (S+1)Y(S)=\frac{6S-6}{(3S+1)(S+3)} = \frac{-6-6}{(-3+1)(-1+3)} = 3$[/tex]

[tex]$B = Lt_{S \to -1/3} (3S+1)Y(S)=\frac{6S-6}{(S+1)(S+3)} = \frac{-6/3-6}{(1/3+1)(-1/3+3)} = \frac{-9}{2}$[/tex]

[tex]$C = Lt_{S \to -3} (S+3)Y(S)=\frac{6S-6}{(S+1)(3S+1)} = \frac{-18-6}{(-3+1)(-9+1)} = \frac{-3}{2}$[/tex]

So,

[tex]$Y(S) = \frac{3}{S+1} - \frac{9/2}{3S+1} - \frac{3/2}{S+3}$[/tex]

        [tex]$=\frac{3}{S+1} - \frac{3/2}{S+1/3} - \frac{3/2}{S+3}$[/tex]

Applying Inverse Laplace Transform,

[tex]$y(t) = 3e^{-t}u(t)-\frac{3}{2}e^{-t/3}u(t) - \frac{3}{2}e^{-3t} u(t)$[/tex]

       [tex]$=\frac{-3}{2}e^{-\frac{1}{3}t}u(t) + \frac{3}{1}e^{-t}u(t)-\frac{3}{2}e^{-3t} u(t)$[/tex]

where, a = 2

            b = 1

            c= 2

Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24 C and exits at 1 bar. If the refrigerant undergoes a throttling process, what is the quality of the refrigerant exiting the expansion valve.

Answers

Answer:

[tex]h_{1} = h_2} = 293.45 KJ/kg[/tex].

The quality of the refrigerant exiting the expansion valve is

[tex]x_{2}=0.193596[/tex].

Explanation:

Fluid given Ammonia.

Inlet 1:-

Temperature [tex]T_{1}[/tex] = [tex]24^{o} C[/tex].

Pressure [tex]P_{1}[/tex] = 10 bar.

Exit 2:-

Pressure [tex]P_{2}[/tex] = 1 bar.

Solution:-

The following measurements are taken on particular junction diodes for which V is the terminal voltage and I is the diode current. For each diode, estimate values of Is and the terminal voltage at 10% of the measured current.
(a) V = 0.700 V at I = 1.00 A.
(b) V = 0.650 V at I = 1.00 mA.
(c) V = 0.650 V at I = 10 mu A.
(d) V = 0.700V at I = 100 mA.

Answers

Poop Neal sbskqlgnwnf

The values of Is and V are as: (a) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V. (b) [tex]Is = 4.56 \times 10^{-15} A[/tex] and V = 0.516 V. (c) [tex]Is = 1.18 \times 10^{-16} A\\[/tex] and V = 0.459 V. (d) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V.

The relation between the current and voltage of a diode is given by the Shockley diode equation. It is an exponential function and can be given by the following equation:

[tex]I = Is \times (e^{V/Vt} - 1)[/tex]

Where

I = currentV = voltageVt = thermal voltageIs = reverse saturation current.

(a)

Given that:

V = 0.700 V

And I = 1.00 A.

Substituting these values in the equation above to get,

[tex]1.00 A = Is \times (e^{0.700 V / 0.025 V} - 1)\\Is = 2.34 \times 10^{-11} A[/tex]

The terminal voltage at 10% of the measured current can be found by substituting I = 0.1 A in the above equation and solving for V as:

V = 0.581 V.

(b)

Given that:

V = 0.650 V

And, I = 1.00 mA.

Substituting these values in the equation above to get,

[tex]1.00 mA = Is \times (e^{0.650 V / 0.025 V} - 1)\\ Is = 4.56 \times 10^{-15} A[/tex]

The terminal voltage at 10% of the measured current can be found by substituting I = 0.1 mA in the above equation and solving for V as:

V = 0.516 V.

(c)

Given that:

V = 0.650 V

And, I = 10 μA.

Substituting these values in the equation above to get,

[tex]10 \mu A = Is \times (e^{0.650 V / 0.025 V} - 1)\\Is = 1.18 \times 10^{-16} A[/tex]

The terminal voltage at 10% of the measured current can be found by substituting I = 1 μA in the above equation and solving for V as:

V = 0.459 V.

(d)

Given that:

V = 0.700 V

And, I = 100 mA.

Substituting these values in the equation above to get,

[tex]100 \ mA = Is \times (e^{0.700 V / 0.025 V} - 1)\\Is = 2.34 \times 10^{-11} A[/tex]

The terminal voltage at 10% of the measured current can be found by substituting I = 10 mA in the above equation and solving for V as:

V = 0.581 V.

So, the values of Is and V are as: (a) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V. (b) [tex]Is = 4.56 \times 10^{-15} A[/tex] and V = 0.516 V. (c) [tex]Is = 1.18 \times 10^{-16} A\\[/tex] and V = 0.459 V. (d) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V.

Learn more about Terminal voltage here:

https://brainly.com/question/34372613

#SPJ3

A levee will be constructed to provide some flood protection for a residential area. The residences are willing to accept a one-in-five chance that the levee will be overtopped in the next 15 years. Assuming that the annual peak streamflow follows a lognormal distribution with a log10(Q[ft3/s]) mean and standard deviation of 1.835 and 0.65 respectively, what is the design flow in ft3/s?

Answers

Answer:

1709.07 ft^3/s

Explanation:

Annual peak streamflow = Log10(Q [ft^3/s] )

mean = 1.835

standard deviation = 0.65

Probability of levee been overtopped in the next 15 years = 1/5

Determine the design flow ins ft^3/s

P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2

                         ∴  T = 67.72 years

Q₁₅ = 1 - 0.2 = 0.8

Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )

K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )

    = 2.1504

back to equation 1

Zt = 1.835 + ( 2.1504 * 0.65 )  = 3.23276

hence:

Log₁₀ ( Qt(ft^3/s) ) = Zt  = 3.23276

hence ; Qt = 10^3.23276

                  = 1709.07 ft^3/s

Lab 5A Problem Input two DWORD values from the keyboard. Determine which number is larger or if they are even. Your program should look like the following: First number larger Enter a number 12 Enter a number 10 12 is the larger number Press any key to close this window... Second number larger Enter a number 10 Enter a number 12 12 is the larger number Press any key to close this window... Numbers Equal Enter a number 12 Enter a number 12 Numbers are equal Press any key to close this window...

Answers

Answer:

Explanation:

#include<iostream>

using namespace std;

int main()

{

int n1,n2;

cout<<"Enter a number:"<<endl; //Entering first number

cin>>n1;

cout<<"Enter a number:"<<endl; //Entering second number

cin>>n2;

if(n1%2==0 && n1%2==0) //Checking whether the two number are even or not

{

if(n1>n2)

{

cout<<n1<<" is the larger number"<<endl;

}

else if(n1==n2)

{

cout<<"Numbers are equal"<<endl;

}

else

{

cout<<n2<<" is the larger number"<<endl;

}

}

else

{

cout<<"The number are not even"<<endl;

}

}

Water steam enters a turbine at a temperature of 400 o C and a pressure of 3 MPa. Water saturated vapor exhausts from the turbine at a pressure of 125 kPa. At steady state, the work output of the turbine is 530 kJ/kg. The surrounding air is at 20 o C. Neglect the changes in kinetic energy and potential energy. Determine (20 points) (a) the heat transfer from the turbine to the surroundings per unit mass flow rate, (b) the entropy generation during this process.

Answers

Answer:

a) -505.229 kJ/Kg

b) -1.724 kJ/kg

Explanation:

T1 = 400°C

P1 = 3 MPa

P2 = 125 kPa

work output   = 530 kJ/kg

surrounding temperature = 20°C = 293 k

A) Calculate heat transfer from Turbine to surroundings

Q = h2 + w - h1

h ( enthalpy )

h1 = 3231.229 kj/kg

enthalpy at P2

h2 = hg = 2676 kj/kg

back to equation 1

Q = 2676 + 50 - 3231.229  = -505.229 kJ/Kg  ( i.e.  heat is lost )

b) Entropy generation

entropy generation = Δs ( surrounding )  + Δs(system)

                                =  - 505.229 / 293   + 0

                                = -1.724 kJ/kg  

How much energy does it take to boil water for pasta? For a one-pound box of pasta
you would need four quarts of water, which requires 15.8 kJ of energy for every degree
Celsius (°C) of temperature increase. Your thermometer measures the starting
temperature as 48°F. Water boils at 212°F.
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?

Answers

Answer:

a.  164 °F b. 91.11 °C c. 1439.54 kJ

Explanation:

a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?

Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.

So, Δ°F = 212 °F - 48 °F = 164 °F

b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?

To find the degree change in Celsius, we convert the initial and final temperature to Celsius.

°C = 5(°F - 32)/9

So, 48 °F in Celsius is

°C₁ = 5(48 - 32)/9

°C₁ = 5(16)/9

°C₁ = 80/9

°C₁ = 8.89 °C

Also, 212 °F in Celsius is

°C₂ = 5(212 - 32)/9

°C₂ = 5(180)/9

°C₂ = 5(20)

°C₂ = 100 °C

So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.

So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C

c. [2 pts] How much energy is required to heat the four quarts of water from

48°F to 212°F (boiling)?

Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise =  15.8 kJ/°C × 91.11 °C = 1439.54 kJ

An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.

Answers

Answer:

Input power = 465.63 W

current = 1.94 A

Explanation:

we have the following data to answer this question

V = 9130

i = 0.051

the input power = VI

I = 51.0 mA = 0.051

= 9130 * 0.051

= 465.63 watts

the current = 465.63/240

= 1.94A

therefore the input power is 465.63 wwatts

while the current is 1.94A

the input power is the same thing as the output power.

Represent each of the following units as a combination of primitive
dimensions where M=mass, L=length, T=time. As an example, miles per hour would
correspond to [L/T].

a. kilometer
b. quart
c. pascal
d. watt
e. newton
f. horsepower

Answers

Answer:

a. unit of length: [L]

b. unit of volume: [[tex]L^3[/tex]]

c. unit of pressure:[tex]P=\frac{F}{A} \equiv\frac{[MLT^{-2}]}{[L^2]}[/tex] [tex][ML^{-1}T^{-2}][/tex]

d. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]

e. unit of force: [tex][kg.m/s^2]\equiv [MLT^{-2}][/tex]

f. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]

Force: [tex]F=m.a=m.\frac{v}{t}=m.\frac{x}{t}\div t[/tex]

Power: [tex]P=\frac{W}{t}=\frac{F.x}{t}[/tex]

where:

F = force

A = area

W = work

t = time

a = acceleration

v = velocity

x = displacement

The heat transfer surface area of a fin is equal to the sum of all surfaces of the fin exposed to the surrounding medium, including the surface area of the fin tip. Under what conditions can we neglect heat transfer from the fin tip?

Answers

Answer:

The explanation according to the given query is summarized in the explanation segment below.

Explanation:

If somehow the fin has become too lengthy, this same fin tip temperature approaches the temperature gradient and maybe we'll ignore heat transmission out from end tips.Additionally, effective heat transmission as well from the tip could be ignored unless the end tip surface is relatively tiny throughout comparison to its overall surface.
Other Questions
what type of Literary Devices is this passage and provide an explanation " Only the champion daisy trees were serene. After all, they were part of a rainforest already two thousand years old and scheduled for eternity, so they ignored the men and continued to rock the diamondbacks that slept in their arms. It took the river to persuade them that indeed the world was altered." need this ASAP PLEASE Calculate the volume of 10g of helium ( M= 4kg/kmol) at 25C and 600 mmHg The protein calcineurin binds to the protein calmodulin with an association rate of 8.9 103 M-1s-1 and an overall dissociation constant, Kd, of 10 nM. The dissociation rate kd is:_____. Please explain step by step.A. 8.9 10^3 M-1s-1B. 8.9 10^2 s-1C. 1.1 10-10 s-1D. 8.9 10-5 s-1 What is pulling force? Give any two examples., Which is the graph of the linear inequality x - 2y > -6?-10-21080o Allen is an alcoholic who feels no guilt about his alcohol consumption. He regularly engages in reckless behavior, including getting into fights and spending money that he doesnt have. What else is likely true of Allen? When 50% of a number is added to the number, the results is 165 Please help thank you! identify the mistake and write the correct sentence1.The numbers of students in the school doubles in the last five years.2.If we wouldn't have taken the map we had been last.3.The girls all write neatly,when the boys hand writing is often un readable. One reason to resize a photograph is to make it easier to email. True False A position statement does two things: It names the issue you are writing about and _____. Al works for a company that books vacation rentals. He is a competitive person, so he needs to feel like he can bring in more customers and book more rentals than the other employees. When he is able to book more rentals than his co-workers, he feels a high level of self-respect as well as respect from others. This scenario describes how Al fulfills his ________ needs. HELP ASAP!!!The circle graph shows the percentage of visitors at aconvention who ordered various flavors of juice. There were 700visitors at the convention.About how many visitors ordered grape juice or apple juice?Enter your answer in the box. What does the Representative function mean? A statistician calculates that 8% of Americans own a Rolls Royce. If the statistician is right, what is the probability that the proportion of Rolls Royce owners in a sample of 595 Americans would differ from the population proportion by more than 3% Select all of the following statments that are true The longest day of the year in the Northern Hemisphere, or summer solstice, falls near June 21 every year. This is when the sun is at the top of its rotation.According to context clues, which best defines the underlined words?the day with the least amount of sunlight each yearthe day with the greatest amount of sunlight each yearthe day the sun is at its lowest rotationthe day the sun is at its fastest rotation What is matter made of. asap help answer --------- What is the value of q? 2/52/14