11. A bag of marbles contains 8 red, 12 black, and 15 blue marbles. If marbles are chosen at random and replaced, what is the probability that a blue marble is not chosen until the 10th try?

Answers

Answer 1

To find the probability that a blue marble is not chosen until the 10th try when marbles are chosen at random with replacement, we can break down the problem into individual probabilities.

The probability of not choosing a blue marble on each try is given by the ratio of the non-blue marbles to the total number of marbles.

In this case, there are 8 red + 12 black = 20 non-blue marbles, and a total of 8 red + 12 black + 15 blue = 35 marbles in the bag.

The probability of not choosing a blue marble on each try is therefore 20/35.

Since each try is independent, we need to calculate this probability for each of the first 9 tries, as we want to find the probability that a blue marble is not chosen until the 10th try.

The probability of not choosing a blue marble on the first try is 20/35.

The probability of not choosing a blue marble on the second try is also 20/35.

And so on, up to the ninth try.

Therefore, the overall probability of not choosing a blue marble in any of the first 9 tries is (20/35)^9.

However, we want the probability that a blue marble is not chosen until the 10th try, so we need to account for the fact that a blue marble will be chosen on the 10th try.

The probability of choosing a blue marble on the 10th try is 15/35.

Therefore, the final probability that a blue marble is not chosen until the 10th try is:

(20/35)^9 * (15/35) = 0.0114 (rounded to four decimal places) or approximately 1.14%.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11


Related Questions

Decide if each statement is necessarily true or necessarily false. a. If a matrix is in reduced row echelon form, then the first nonzero entry in each row is a 1 and all entries directly below it (if there are any) are b. If the solution to a system of linear equations is given by (4 — 2%, −3+ z, z), then (4, −3, 0) is a solution to the system. c. If the bottom row of a matrix in reduced row echelon form contains all 0s, then the corresponding linear system has infinitely many solutions.

Answers

a. The statement is necessarily true. In reduced row echelon form, the leading entry in each row is 1, and all entries below the leading entry are zeros.

b. The statement is necessarily true. The given solution (4, -2t, -3+z, z) corresponds to the values t = 0 and z = 0, which results in the solution (4, -3, 0) satisfying the system of linear equations.

c. The statement is necessarily true. When the bottom row of a matrix in reduced row echelon form contains all zeros, it corresponds to an equation of the form 0 = 0 in the corresponding linear system. This indicates that there are infinitely many solutions to the system.

a. In reduced row echelon form, each row has a leading entry (the first nonzero entry) that is equal to 1, and all entries below the leading entry are zeros. This ensures that the rows are in a simplified form.

b. The given solution (4, -2t, -3+z, z) corresponds to specific values of t and z. If we substitute t = 0 and z = 0, we get (4, -3, 0) as a solution, which satisfies the original system of equations.

c. When the bottom row of a matrix in reduced row echelon form consists of all zeros, it corresponds to an equation of the form 0 = 0 in the linear system. This equation is always true, indicating that there are infinitely many solutions to the system.

Therefore, the statements a and c are necessarily true, while statement b is necessarily false.

To learn more about matrix click here:

brainly.com/question/29132693

#SPJ11

Calculate Ihe Instantaneous Rate of Change (IROC) atx=] for Ihe function f(x) = -r+4rtl Do this calculation twice, using two different numerical approximalions for Ax that are very close tox = SketchlInsert a graphical representation of this calculation (use DESMOS, If necessary) (5 marks)

Answers

To calculate the instantaneous rate of change (IROC) at x=a for the function f(x) = -x^2 + 4x + 1, we need to find the derivative of the function and evaluate it at x=a.

Let's perform this calculation using two different numerical approximations for Δx that are very close to x=a.

First, let's calculate the IROC using Δx = 0.001:

f'(a) = lim(Δx -> 0) [f(a + Δx) - f(a)] / Δx

f'(a) = [-a^2 + 4a + 1 - (-(a + Δx)^2 + 4(a + Δx) + 1)] / Δx

Next, let's calculate the IROC using Δx = 0.0001:

f'(a) = lim(Δx -> 0) [f(a + Δx) - f(a)] / Δx

f'(a) = [-a^2 + 4a + 1 - (-(a + Δx)^2 + 4(a + Δx) + 1)] / Δx

To visualize this calculation and its results, a graphical representation can be created using a graphing tool like Desmos. The graph would show the function f(x) = -x^2 + 4x + 1 and its tangent line at x=a, which represents the instantaneous rate of change at that point.

To know more about the instantaneous rate of change click here: brainly.com/question/30760748

#SPJ11

what is the surface area of a right triangular prism with a height of 20 units and a base with legs of length 3 united and 4 united and a hypotenuse of length 5 units

Answers

The surface area of the right triangular prism is 312 square units.To find the surface area of a right triangular prism, we need to calculate the area of each face and then sum them up.

A right triangular prism has three rectangular faces and two triangular faces. Given the dimensions: Height (h) = 20 units, Legs of the base (a, b) = 3 units, 4 units, Hypotenuse of the base (c) = 5 units. Let's calculate the surface area: Area of the triangular face: The area of a triangle can be calculated using the formula: A = (1/2) * base * height. For the triangular face with legs of length 3 units and 4 units, the area is: A_triangular = (1/2) * 3 * 4 = 6 square units.

Since there are two triangular faces, the total area for the triangular faces is: Total area of triangular faces = 2 * A triangular = 2 * 6 = 12 square units. Area of the rectangular faces: The area of a rectangle is calculated as: A = length * width. For the rectangular faces, the length is the height of the prism (20 units), and the width is the base's hypotenuse (5 units). Since there are three rectangular faces, the total area for the rectangular faces is: Total area of rectangular faces = 3 * (20 * 5) = 300 square units.

Total surface area: The total surface area is the sum of the areas of all faces: Total surface area = Total area of triangular faces + Total area of rectangular faces. Total surface area = 12 + 300 = 312 square units.. Therefore, the surface area of the right triangular prism is 312 square units.

To learn more about hypotenuse, click here: brainly.com/question/30512440

#SPJ11

For each of the following statements decide whether it is true/false. If true - give a short (non formal) explanation. If False, provide a counter example. (a) For every field F and for every symmetric bilinear form B : Fⁿ × Fⁿ → F there is some basis for F such that the matrix representing B with respect to ß is diagonal. (b) The singular values of any linear operator T ∈ L(V, W) are the eigenvalues of T*T. (c) There exists a linear operator T ∈ L(Cⁿ) which has no T-invariant subspaces besides Cⁿ and {0}. (d) The orthogonal complement of any set S⊆V (S is not necessarily a subspace) is a subspace of V. (e) Linear operators and their adjoints have the same eigenvectors.

Answers

(a) False. There exist symmetric bilinear forms for which no basis exists such that the matrix representation is diagonal. A counterexample is the symmetric bilinear form B : ℝ² × ℝ² → ℝ defined by B((x₁, x₂), (y₁, y₂)) = x₁y₂ + x₂y₁. For any basis, ß = {(1, 0), (0, 1)} of ℝ², the matrix representing B with respect to ß is [[0, 1], [1, 0]], which is not diagonal.

(b) True. The singular values of a linear operator T are the square roots of the eigenvalues of TT. The eigenvalues of TT and TT's adjoint (TT)† are the same, and the singular values of T are the square roots of the eigenvalues of TT. Therefore, the singular values of T are indeed the eigenvalues of TT.

(c) False. For any linear operator T ∈ L(Cⁿ), the subspaces {0} and Cⁿ are always T-invariant subspaces. However, it is not true that there are no other T-invariant subspaces. A counterexample is the identity operator I ∈ L(Cⁿ). Every subspace of Cⁿ is T-invariant under the identity operator I.

(d) True. The orthogonal complement of a set S⊆V is always a subspace of V. The orthogonal complement of S denoted S⊥, is defined as the set of all vectors in V that are orthogonal to every vector in S. Since the zero vector is orthogonal to every vector, it belongs to S⊥. Additionally, the sum of two vectors orthogonal to S is also orthogonal to S, and any scalar multiple of a vector orthogonal to S is also orthogonal to S. Therefore, S⊥ satisfies the subspace properties and is a subspace of V.

(e) True. Linear operators and their adjoints have the same eigenvectors. If v is an eigenvector of a linear operator T with eigenvalue λ, then v is also an eigenvector of the adjoint operator T† with eigenvalue λ*. This can be proven by considering the definition of eigenvectors and the properties of the adjoint operator. Thus, the eigenvectors of a linear operator and its adjoint are the same.

Learn more about eigenvalues here:- brainly.com/question/29861415

#SPJ11

There has been a long-standing need for a technique that can provide fast, accurate and precise results regarding the presence of hazardous levels of lead in settled house dust. Several home testing kits are now available. One kit manufactured by Hybrivet (Lead Check Swabs) is advertised as able to detect lead dust levels that exceed the U.S. Environmental Protection Agency's dust lead standard for floors (40 kg/n). You would like to investigate Hybrivet's claims. You are interested in the proportion of test swabs that correctly detect high lead dust levels. a) You'd like to find a 93% confidence interval for the proportion of swabs that correctly detect high lead dust levels to within 5 percentage points. Your budget is $600. If it costs $3 per test strip to do the test, will you be able to take the needed sample? (show detailed calculations - you have to find the minimum sample size first) b) Due to the budgetary constraints, you decided to take a random sample of 100 test swabs. It is reasonable here to assume the different swabs are independent. You find that 26 of the swabs test positive for high lead. Estimate a 93% confidence interval for the true proportion of positive test results. point estimate (ii) Calculate a 93% Confidence interval: c)Does the truc population proportion lie in the interval calculated above? (Just circle the correct answer) Yes No Can not tell dyThere is a 0.93 probability that the true proportion will be included in the confidence interval computed above Truc False

Answers

In this scenario, we are interested in investigating the proportion of test swabs that correctly detect high levels of lead dust. We want to construct a 93% confidence interval for the proportion within a margin of error of 5 percentage points.

To calculate the minimum sample size needed, we use the formula n = (Z^2 * p * (1-p)) / (E^2), where Z is the z-score corresponding to the desired confidence level, p is the estimated proportion, and E is the desired margin of error. We substitute the given values and solve for n. If the cost of the sample exceeds the available budget, we cannot proceed with the required sample size.

Due to budget constraints, a random sample of 100 test swabs is taken. Among these swabs, 26 test positive for high lead. We can use this information to estimate a 93% confidence interval for the true proportion of positive test results using the formula: Confidence interval = sample proportion ± (Z * √((p * (1-p)) / n)), where Z is the z-score corresponding to the desired confidence level, p is the sample proportion, and n is the sample size.

To determine if the true population proportion lies within the calculated confidence interval, we compare the interval to the hypothesized value of the true proportion. If the hypothesized value falls within the interval, we can conclude that the true proportion is likely to be within the range.

Learn more about percentage here:

https://brainly.com/question/16797504

#SPJ11

Consider the functions f(x)=√16-x and g(x) = x².

(a) Determine the domain of the composite function (fog)(x). In MATLAB, define the domain of fog using the linspace command, and define the composite function fog. Copy/paste the code to your document.
(b) Plot the composite function using the plot () command.
(c) Add an appropriate title, and x, y-labels to your figure and save as a PDF. Attach the figure to the main document, using the online merge packages.

Answers

The domain of the composite function (fog)(x) can be determined by considering the restrictions imposed by both functions f(x) and g(x). In this case, we have f(x) = √(16 - x) and g(x) = x².

For the composite function (fog)(x), we need to ensure that the output of g(x) falls within the domain of f(x). Since g(x) is defined for all real numbers, we only need to consider the domain of f(x). In the given function f(x) = √(16 - x), the expression under the square root must be non-negative to have a real-valued result. Thus, we have the condition 16 - x ≥ 0. Solving this inequality, we find x ≤ 16.

Therefore, the domain of the composite function (fog)(x) is x ≤ 16.  The resulting plot will have the composite function (fog)(x) on the y-axis and the corresponding values of x on the x-axis. The figure will be saved as a PDF file named "composite_function_plot.pdf". Please make sure to attach the generated figure to the main document using the online merge packages.

Learn more about composite function here: brainly.com/question/30660139

#SPJ11

(a) Use the method of first principles to determine the derivative of f(x)=x6​ (6) (b) Use an appropriate method of differentiation to determine the derivative of the following functions (simplify your answers as far as possible): (i) f(x)=cos(sin(tanπx)​) (ii) p(t)=1−sin(t)cos(t)​ (iii) g(x)=ln(1+exex​)

Answers

By using the chain rule, Derivative of g(x)=d/dx(ln(1+exex​))=exex​/(1+exex​)×d/dx(exex​)=exex​/(1+exex​)×exex​=ex/(1+ex)2.

(a) Derivative of f(x) using first principle :f′(x)=limh→0f(x+h)−f(x)h=f(x+0)−f(x)0=6x5

(b) The appropriate methods of differentiation used to determine the derivative of f(x)=cos(sin(tanπx)​),

p(t)=1−sin(t)cos(t)​ and g(x)=ln(1+exex​) are given below:

Derivative of f(x) using chain rule: Here, u=sin(tanπx) ,

so that du/dx=πcos(tanπx)/cos2πx and dv/dx=−sin(x).

Therefore, f′(x)=dvdu × dudx=−sin(u)×πcos(tanπx)/cos2πx=

−πcos(sin(tanπx))cos(tanπx)2

Derivative of p(t):By using the product rule: Derivative of g(x)

using chain rule: By using the chain rule, Derivative of g(x)=d/dx(ln(1+exex​))=exex​/(1+exex​)×d/dx(exex​)=exex​/(1+exex​)×exex ​=ex/(1+ex)2.

To know more about  chain rule Visit:

https://brainly.com/question/28972262

#SPJ11

What is the NPV of a project that costs $449,000 today and cash inflows $4.200 monthly paid analy, for seven years from today if the opportunity cost of capital is 4%? 101,106 - 146,496 0 302,504 851,504 -246,496

Answers

The NPV of a project that costs $449,000 today and cash inflows $4,200 monthly paid annually, for seven years from today if the opportunity cost of capital is 4 is -$146,499.20.

What is the NPV?

The NPV (net present value) is the difference between the discounted cash inflows and the discounted cash outflows.

In this situation, the cash inflows form an annuity and we can use the present value annuity factor to compute the present value of the cash inflows from which the cash outflows are deducted.

The projects costs = $449,000

Monthly cash inflows = $4,200

Annual cash inflows = $50,400 ($4,200 x 12)

Project lifespan = 7 years

The opportunity cost of capital (discount rate) = 4%

Annuity factor of 4% for 7 years = 6.002

Discounted present value of cash inflows = $302,500.80 ($50,400 x 6.002)

NPV = -$146,499.20 (-$449,000 + $302,500.80)

Thus, the project yields a negative NPV of -$146,499.20, implying that the cash outflows are greater than the discounted cash inflows.

Learn more about the net present value at https://brainly.com/question/13228231.

#SPJ1

Question Completion:

What is the NPV of a project that costs $449,000 today and cash inflows $4,200 monthly paid annually, for seven years from today if the opportunity cost of capital is 4%?

1 s² + 10s + 106 1 = F s²+10s+106 Therefore f(t) = 1 (s+1 where F(s) = + 2

Answers

The required inverse Laplace transform of F(s) is given by:f(t) = (-3/14) e^(-t) + {(3/14)- (√71i/14)} e^(-5t) sin(√71t) + {(3/14)+ (√71i/14)} e^(-5t) cos(√71t).

Given the transfer function, F(s) = 2/[(s+1)(s² + 10s + 106)]and we have to find the inverse Laplace transform of F(s).

Step 1: Factorize the denominator as (s+1) and (s² + 10s + 106)

We need to factorize the denominator of the given transfer function. On factorizing the denominator we get:s² + 10s + 106 = (s+5+√71i) (s+5-√71i) (by using the quadratic formula)

Therefore, F(s) = 2/ [(s+1) (s+5+√71i) (s+5-√71i)]

Step 2: Partial Fraction Decomposition

We will now use partial fraction decomposition to split the above expression into simpler ones.

The partial fraction decomposition of F(s) is as follows:

F(s) = (2/A) (1/(s+1)) + (2/B) (1/(s+5+√71i)) + (2/C) (1/(s+5-√71i))where A = (s+1), B = (s+5+√71i) and C = (s+5-√71i)On solving the above equation for A, B, and C, we get:

A = -3/14, B = (3/14)- (√71i/14) and C = (3/14)+ (√71i/14)

Step 3: Inverse Laplace Transform of F(s)

Therefore, we get the inverse Laplace transform of F(s) as follows:f(t) = (-3/14) e^(-t) + {(3/14)- (√71i/14)} e^(-5t) sin(√71t) + {(3/14)+ (√71i/14)} e^(-5t) cos(√71t)

Hence, the required inverse Laplace transform of F(s) is given by:f(t) = (-3/14) e^(-t) + {(3/14)- (√71i/14)} e^(-5t) sin(√71t) + {(3/14)+ (√71i/14)} e^(-5t) cos(√71t).

Know more about inverse Laplace transform here:

https://brainly.com/question/30358120

#SPJ11

11. Here we connect the Law of Cosines with SSS. (a) Does the value of cos y uniquely determine an angle y satisfying 0 ≤ y ≤? Why? (b) Use the Law of Cosines to show that if we know all three sid

Answers

(a) Yes, the value of cos y uniquely determines an angle y satisfying 0 ≤ y ≤ π. Why?cosine is a decreasing function in the interval [0, π] with range [−1, 1].

Therefore, if 0 ≤ y ≤ π, the value of cos y is within the range of [−1, 1], and the value of cos y uniquely determines the angle y that satisfies the inequality.(b) If we know all three sides of a triangle, the Law of Cosines can be used to determine the value of cos y, where y is an angle opposite to the side c.

In a triangle ABC, the Law of Cosines states that:$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$Let c be the side opposite to the angle y, and let a and b be the other two sides. Then, we can write$$\cos y = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$Therefore, if we know all three sides of the triangle, we can determine the value of cos y and use part (a) to determine the angle y that satisfies the inequality 0 ≤ y ≤ π.

To know more about angle visit :-

https://brainly.com/question/29912603

#SPJ11

Solve each triangle. Round your answers to the nearest tenth.

Answers

The best I can do is provide with the equation. Sine= opposite over hypotenuse. Cosine= adjacent over hypotnuse and tangent = opposite over adjacent.

Answer:

Step-by-step explanation:

You can use law of sin and law of cos to solve for this triangle because this is not a right triangle

Law of Cosine

b² =  a² + c² − 2ac cos (B)      

b² = 26² + 13² - 2(26)(13) cos 88

b² = 821.41

b= 28.66

AC=28.66

Now use Law of Sin to find angles:

[tex]\frac{sin B}{b} = \frac{sin C}{c}[/tex]

[tex]\frac{sin 88}{28.66} = \frac{sin C}{13}[/tex]

[tex]13\frac{sin 88}{28.66} = sin C[/tex]

sin C = .4533

C = 26.96

A = 180-C-B

A= 180-88-26.96

A= 65.04


Numerical Analysis
Derive the formula f ′′(x0) ≈ 1/4h 2 [f(x0 + 2h) − 2f(x0) + f(x0
− 2h)] and establish the associated error formula.

Answers

The formula f ′′(x0) ≈ 1/4h 2 [f(x0 + 2h) − 2f(x0) + f(x0 − 2h)] is derived using central differencing to approximate the second derivative of a function f(x) at a point x0. The associated error formula indicates that the error of this approximation is proportional to h^2, where h is the step size used in the differencing.

The formula f ′′(x0) ≈ 1/4h 2 [f(x0 + 2h) − 2f(x0) + f(x0 − 2h)] is derived through central differencing, which involves approximating the second derivative of a function f(x) at a point x0. To understand this derivation, we start by considering the Taylor expansion of f(x) about x0. Using the Taylor series up to the second derivative term, we have f(x0 ± h) = f(x0) ± hf'(x0) + (h^2/2)f''(x0) ± O(h^3), where O(h^3) represents higher-order terms.

By subtracting the two Taylor expansions for f(x0 + h) and f(x0 - h), we can eliminate the linear terms involving f'(x0) and obtain the following equation:

f(x0 + h) - f(x0 - h) = 2hf'(x0) + (h^3/3)f''(x0) + O(h^3).

Now, if we subtract the Taylor expansions for f(x0 + 2h) and f(x0 - 2h), we can eliminate the quadratic terms involving f''(x0) and obtain:

f(x0 + 2h) - f(x0 - 2h) = 4hf'(x0) + (16h^3/3)f''(x0) + O(h^3).

We can rearrange this equation to isolate f''(x0):

f''(x0) = (f(x0 + 2h) - 2f(x0) + f(x0 - 2h))/(4h^2) + O(h^2).

This gives us the formula f ′′(x0) ≈ 1/4h^2 [f(x0 + 2h) − 2f(x0) + f(x0 - 2h)] to approximate the second derivative of f(x) at x0. The associated error formula shows that the error of this approximation is proportional to h^2, indicating that as the step size h decreases, the approximation becomes more accurate.

To learn more about function click here: brainly.com/question/31062578

#SPJ11

what is the five number summary for the data set? 1, 4, 6, 7, 8, 10, 12, 13, 14, 16, 19, 22, 23, 27, 30, 31, 31, 33, 34, 36, 41, 42, 47

Answers

The five-number summary for the given dataset is as follows: Minimum = 1, First Quartile = 10.5, Median = 19, Third Quartile = 31, Maximum = 47.

The five-number summary is a way to summarize the distribution of a dataset using five key values: the minimum, the first quartile (Q1), the median (Q2), the third quartile (Q3), and the maximum.

To find the minimum and maximum values, we simply identify the smallest and largest values in the dataset, which in this case are 1 and 47, respectively.

The quartiles divide the dataset into four equal parts. The first quartile (Q1) represents the lower 25% of the data, while the third quartile (Q3) represents the upper 25% of the data. To find the quartiles, we arrange the dataset in ascending order and locate the values that divide it into four equal parts. In this dataset, the first quartile (Q1) is 10.5 and the third quartile (Q3) is 31.

The median (Q2) is the middle value of the dataset when it is arranged in ascending order. If the dataset has an odd number of values, the median is the middle value itself. If the dataset has an even number of values, the median is the average of the two middle values. In this case, the median is 19.

Therefore, the five-number summary for the given dataset is

Minimum = 1, Q1 = 10.5, Median = 19, Q3 = 31, and Maximum = 47. These values provide a concise summary of the dataset's central tendency, spread, and range.

Learn more about five-number summary here:

https://brainly.com/question/30451903

#SPJ11








Use implicit differentiation to determine the derivative of: tan² (xy² + y) = 2x.

Answers

The given function is tan² (xy² + y) = 2x. To find its derivative, we can apply implicit differentiation by differentiating both sides of the equation with respect to x.

To determine the derivative of the function tan² (xy² + y) = 2x using implicit differentiation method, we need to use the chain rule of differentiation, product rule, and power rule as shown below:$$\text{ Given } : \ tan² (xy² + y) = 2x

Differentiating both sides with respect to x:

\frac{d}{dx}(tan² (xy² + y)) = \frac{d}{dx}(2x)

Now, to find the derivative of tan² (xy² + y) we apply the chain rule. So, we get:

\frac{d}{dx}(tan² (xy² + y)) = \frac{d}{du}(tan² u)\times \frac{d}{dx}(xy² + y)

=2tan(xy^2 + y)\times (y^2+x\frac{dy}{dx})+\frac{dy}{dx}tan(xy^2 + y)

=tan(xy^2 + y)(2y^2+2xy\frac{dy}{dx}+1)

The derivative of 2x is simply 2. Therefore: tan(xy^2 + y)(2y^2+2xy\frac{dy}{dx}+1) = 2 To find the derivative \frac{dy}{dx}, we simplify the above equation as shown below: 2y^2tan^2(xy^2 + y)+2xytan^2(xy^2 + y)\frac{dy}{dx}+tan(xy^2 + y) = 2

\Rightarrow 2y^2tan^2(xy^2 + y)+tan(xy^2 + y) = 2-2xytan^2(xy^2 + y)\frac{dy}{dx}

\Rightarrow tan(xy^2 + y)(2y^2+1) = 2-2xytan^2(xy^2 + y)\frac{dy}{dx}

Finally, isolating \frac{dy}{dx} in the above equation gives the derivative of the given function as follows:

frac{dy}{dx} = \frac{2- tan(xy^2 + y)(2y^2+1)}{2xytan^2(xy^2 + y)}

Therefore, the derivative of tan² (xy² + y) = 2x is given by:

\frac{dy}{dx} = \frac{2- tan(xy^2 + y)(2y^2+1)}{2xytan^2(xy^2 + y)}

Hence, The given function is tan² (xy² + y) = 2x.

To find its derivative, we can apply implicit differentiation by differentiating both sides of the equation with respect to x. After applying the chain rule of differentiation, product rule, and power rule, we simplify the resulting equation to get the derivative \frac{dy}{dx}

as shown above. Therefore, the derivative of tan² (xy² + y) = 2x is given by:

\frac{dy}{dx} = \frac{2- tan(xy^2 + y)(2y^2+1)}{2xytan^2(xy^2 + y)}.

To know more about implicit differentiation visit :

https://brainly.com/question/14027997

#SPJ11

Find the lateral and surface area.
11
10
8.7

(please see attached photo)

Answers

The lateral and surface area is 574.2 unit² and 1,096.2 unit².

We know,

Lateral Surface Area = 6ah

= 6 x 8.7 x 11

= 574.2 unit²

and, Surface Area of Prism

= 6 x 10 x 8.7 + LSA

= 522 + 574.2

= 1,096.2 unit²

Learn more about Surface area of Prism here:

https://brainly.com/question/32429268

#SPJ1

QUESTION S In the diagram below, A.B and C are points in the same horizontal plan.P is a point vertically above A The angle of elevation from B to p is a.ACB=b and BC=20 units 5.1 Write AP in terms of AB and a 5.2 prove that :AP=20sinB.tana/sin(a+b) 5.3 Give that AB=AC,determine AP in terms of a and b in its simplest from​

Answers

a. Based on the information regarding the triangle, AP = AB * tan(a)

b. The proof to show that AP = 20sin(b)tan(a)/sin(a+b) is given.

How to explain the information

a. Write AP in terms of AB and a

AP = AB * tan(a)

b. Prove that AP = 20sin(b)tan(a)/sin(a+b)

In triangle APB, we have:

tan(a) = AP/AB

In triangle ABC, we have:

tan(b) = BC/AC = 20/AC

Since AB = AC, we can substitute tan(b) = 20/AB into the equation for tan(a):

tan(a) = AP/AB = 20/AB * AB/AC = 20/AC

We can then substitute tan(a) = 20/AC into the equation for AP:

AP = AB * tan(a) = AB * 20/AC = 20 * AB/AC

We can also write AC as 20sin(b) since AC = BC = 20:

AP = 20 * AB/(20sin(b)) = 20sin(b)tan(a)

Learn more about triangles on

https://brainly.com/question/1058720

#SPJ1

Compute the following cross products of vectors in R³: (1, 0, 0) × (0, 1, 0): (_,_,_)
(2,−1,0) × (1, 1, 2): (_,_,_)
( (3, 4, 2) × (0, −1,0): (_,_,_)
(−23, -26, 67) × (−23, −26, 67): (_,_,_)

Answers

To compute the cross products of vectors in ℝ³, we can use the formula for the cross product.

The cross product of two vectors, A = (a₁, a₂, a₃) and B = (b₁, b₂, b₃), is given by the formula A × B = (a₂b₃ - a₃b₂, a₃b₁ - a₁b₃, a₁b₂ - a₂b₁). By applying this formula to the given vector pairs, we can calculate the cross products.

Cross product of (1, 0, 0) and (0, 1, 0):

Using the formula A × B = (a₂b₃ - a₃b₂, a₃b₁ - a₁b₃, a₁b₂ - a₂b₁), we have (0, 0, 1) as the cross product.

Cross product of (2, -1, 0) and (1, 1, 2):

Applying the formula, we get (-2, -4, 3) as the cross product.

Cross product of (3, 4, 2) and (0, -1, 0):

Using the formula, we obtain (2, 0, -4) as the cross product.

Cross product of (-23, -26, 67) and (-23, -26, 67):

Applying the formula, we have (0, 0, 0) as the cross product.

Therefore, the cross products of the given vector pairs are: (0, 0, 1), (-2, -4, 3), (2, 0, -4), and (0, 0, 0).

To learn more about vector click here:

brainly.com/question/24256726

#SPJ11

Find the value of t in the interval [0, 2n) that satisfies the given equation. csct = -2, cot t > 0 a. π/6 b. 5π/6
c. 7π/6
d. No Solution
Find the value of t in the interval [0, 2n) that satisfies the given equation
cot t = √3, csct < 0 a. π/6
b. 5π/6
c. 7π/6
d. No Solution

Answers

To find the value of t that satisfies the equation csct = -2 and cot t > 0 in the interval [0, 2π), we need to consider the trigonometric relationship between cosecant (csc) and cotangent (cot).

The equation csct = -2 represents the trigonometric relationship between cosecant (csc) and cotangent (cot). Since csct = 1/sint and cot t = cost/sint, we can rewrite the equation as 1/sint = -2(cost/sint). Simplifying further, we have 1 = -2cost. Now, we know that cot t = cost/sint > 0, which means cost > 0 and sint > 0. This implies that t lies in either the first quadrant or the third quadrant, where cosine is positive.

Looking at the equation 1 = -2cost, we can see that it does not have any solutions in the first quadrant, where cost > 0. However, in the third quadrant, cosine is also positive, and we can find a solution for t.Therefore, the correct answer is (c) 7π/6. In the third quadrant, cos(7π/6) = 1/2, which satisfies the equation -2cost = 1.

It's important to note that the interval [0, 2π) was specified, which includes all possible values of t within two complete cycles. However, in this case, the given equation only has a solution in the third quadrant.

To learn more about cotangent click here:

brainly.com/question/30495408

#SPJ11

Consider the following system: →0.86 → 0.86 → Determine the probability that the system will operate under each of these conditions: a. The system as shown. (Do not round your intermediate calculations. Round your final answer to 4 decimal places.) b. Each system component has a backup with a probability of .86 and a switch that is 100 percent reliable. (Do not round your intermediate calculations. Round your final answer to 4 decimal places.)
c. Each system component has a backup with a probability of .86 and a switch that is 99 percent reliable. (Do not round your intermediate calculations. Round your final answer to 4 decimal places.)

Answers

The probability that the system will operate under the given conditions is as follows: a) 0.86, b) 0.7396, c) 0.7216.

a) In the given system, there are no backups or switches. Therefore, the probability of the system operating is simply the probability of each component operating successfully, which is 0.86. Hence, the probability that the system will operate under these conditions is 0.86.

b) In this scenario, each system component has a backup with a probability of 0.86 and a switch that is 100 percent reliable. For the system to operate, either the original component or its backup needs to function. Since the probability of each component operating successfully is 0.86, the probability of at least one of them operating is 1 - (probability that both fail). The probability that both the original component and its backup fail is (1 - 0.86)× (1 - 0.86) = 0.0196. Therefore, the probability that the system will operate under these conditions is 1 - 0.0196 = 0.9804.

c) In this scenario, each system component has a backup with a probability of 0.86 and a switch that is 99 percent reliable. Similar to the previous case, the probability that both the original component and its backup fail is (1 - 0.86)× (1 - 0.86) = 0.0196. Additionally, there is a 1 percent chance that the switch fails, which would render both the original component and its backup useless. Therefore, the probability that the system will operate under these conditions is 1 - (0.0196 + 0.01) = 0.9704.

Learn more about probability here:

https://brainly.com/question/32004014

#SPJ11








Suppose that f(5)-1, f '(5) - 7, g(5) -6, and g(5) 5. Find the following values. (a) (fg)'(5) X (b) (f/g)'(5) (c) (g/f)'(5) 2

Answers

We can find (g/f)'(5) as: (g/f)'(5) = [-g(5)f'(5) + f(5)g'(5)]/[f(5)]² = [(-6)(7) - (-1)(5)]/(-1)² = -37.

Given that f(5) = -1, f'(5) = 7, g(5) = 6, and g'(5) = 5.

We need to find the following:(a) (fg)'(5) (b) (f/g)'(5) (c) (g/f)'(5) (a) (fg)' (5).

The product rule of differentiation is given as:$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$.  We can find (fg)'(5) as: (fg)'(5) = f(5)g'(5) + g(5)f'(5) = (-1)(5) + (6)(7) = 41 (b) (f/g)'(5). The quotient rule of differentiation is given as: $$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x)-f(x)g'(x)}{g^2(x)}$$.

Therefore, we can find (f/g)'(5) as:(f/g)'(5) = [g(5)f'(5) - f(5)g'(5)]/[g(5)]² = [(6)(7) - (-1)(5)]/[6]² = 37/36(c) (g/f)'(5). The quotient rule of differentiation is given as:$$\frac{d}{dx}\left[\frac{g(x)}{f(x)}\right] = \frac{-g(x)f'(x)+f(x)g'(x)}{f^2(x)}$$.

To know more about differentiation visit :-

https://brainly.com/question/32046686

#SPJ11







2. Round off the following a. 1236 to 3 s.f. b. *c. 47.312 to 2 s. f. 0.70453 to s. f. d. 1061.23 to 1 s.f.

Answers

a. 1236 rounded to 3 significant figures (s.f.) is 1240.

b. 47.312 rounded to 2 s.f. is 47.

c. 0.70453 rounded to 1 s.f. is 0.7.

d. 1061.23 rounded to 1 s.f. is 1000.

a. To round 1236 to 3 significant figures, we consider the first three digits from the left: 123. The digit after the third significant figure is 6, which is greater than or equal to 5. Therefore, we round up the last significant figure, resulting in 1240.

b. To round 47.312 to 2 significant figures, we consider the first two digits from the left: 47. The digit after the second significant figure is 3, which is less than 5. Therefore, we keep the significant figures as they are, resulting in 47.

c. To round 0.70453 to 1 significant figure, we consider the first digit from the left: 0. The digit after the first significant figure is 7, which is greater than or equal to 5. Therefore, we round up the last significant figure, resulting in 0.7.

d. To round 1061.23 to 1 significant figure, we consider the first digit from the left: 1. The digit after the first significant figure is 0, which is less than

To learn more about Round off

brainly.com/question/1339170

#SPJ11

The distance between the points x,21 and 4,7 is 10√2. Find the sum of all possible values of x.

Answers

The sum of all possible values of x is 8. To find the sum of all possible values of x given the distance between the points (x, 21) and (4, 7) is 10√2, we can use the distance formula. The distance between two points (x₁, y₁) and (x₂, y₂) is given by the formula:

d = √((x₂ - x₁)² + (y₂ - y₁)²)

In this case, we have the points (x, 21) and (4, 7), so the distance formula becomes:

10√2 = √((4 - x)² + (7 - 21)²)

Simplifying this equation, we get:

100*2 = (4 - x)² + 14²

200 = (4 - x)² + 196

Rearranging the equation, we have:

(4 - x)² = 200 - 196

(4 - x)² = 4

Taking the square root of both sides, we get:

4 - x = ±2

Now we can solve for x:

For 4 - x = 2, we have x = 2

For 4 - x = -2, we have x = 6

So the two possible values of x that satisfy the given distance are x = 2 and x = 6.

To find the sum of all possible values of x, we add them together:

Sum = 2 + 6 = 8

Learn more about distance at: brainly.com/question/31713805

#SPJ11

How much will you have in 10 years, with daily compounding of $15,000 invested today at 12%? SU O 67,214 30.225 62.253 69,330 49.792

Answers

Step-by-step explanation:

Use compounding formula

FV = PV ( 1 + i)^n        FV = future value

                                  PV = present value =$15 000

                                  i = decimal interest per period = .12/365

                                  n = periods = 10 yrs * 365 d/yr = 3650

FV = $  15 000 ( 1 + .12/365)^3650 = ~  $  49,792

Use the cosine of a sum and cosine of a difference identities to find cos (s+t) and cos (s-t). 12 S sin s= and sint= 3 5 13 s in quadrant III and t in quadrant I nr ... nm cos (s+t)= (Simplify your an

Answers

Sine of s = 12/13cosine of s = -5/13 Sine of t = 3/5 cosine of t = 4/5 Formula to use:cosine of (s+t) = cosine s cosine t - sine s sine tcosine of (s-t) = cosine s cosine t + sine s sine t The values of the cosine of s and the sine of s are known.

Find the cosine of s using the Pythagorean theorem. Then, the values of cosine t and the sine of t are known. Find the cosine of t using the Pythagorean theorem.1. To find the cosine of (s + t): cosine of (s+t) = cosine s cosine t - sine s sine t Substitute the known values for cosine s, cosine t, sine s, and sine t. cosine of (s+t) = (-5/13) * (4/5) - (12/13) * (3/5)cosine of (s+t) = -20/65 - 36/65 cosine of (s+t) = -56/65

Therefore, the cosine of (s + t) = -56/65.2. To find the cosine of (s - t): cosine of (s-t) = cosine s cosine t + sine s sine t Substitute the known values for cosine s, cosine t, sine s, and sine t.cosine of (s-t) = (-5/13) * (4/5) + (12/13) * (3/5)cosine of (s-t) = -20/65 + 36/65cosine of (s-t) = 16/65 Therefore, the cosine of (s - t) = 16/65.

To know more about cosine visit:

https://brainly.com/question/22649800

#SPJ11

Prove the following logical equivalences without using
truth tables.
(a) ((pF) → p) = T
(b) (p V q)^(-p Vr) → (qvr) = T
(c) (p V q) ^ (¬q → r) ^ ((¬q V r) → q) = q

Answers

To prove the logical equivalences without using truth tables, we will use logical reasoning and the laws of logic, such as the law of implication and the law of conjunction.

(a) ((p → q) → p) = T

To prove this logical equivalence, we can use the law of implication. Assume that (p → q) is true. If p is false, then the implication (p → q) would be true regardless of the truth value of q. Therefore, the statement is always true.

(b) (p ∨ q) ∧ (¬p ∨ r) → (q ∨ r) = T

To prove this logical equivalence, we can use the law of implication and the law of conjunction. Assume that (p ∨ q) ∧ (¬p ∨ r) is true. If p is true, then the statement (p ∨ q) is true, and (q ∨ r) would also be true. If p is false, then the statement (¬p ∨ r) is true, and again, (q ∨ r) would be true. Therefore, the statement is always true.

(c) (p ∨ q) ∧ (¬q → r) ∧ ((¬q ∨ r) → q) = q

To prove this logical equivalence, we can use the law of implication and the law of conjunction. Assume that (p ∨ q) ∧ (¬q → r) ∧ ((¬q ∨ r) → q) is true. If q is true, then the statement (p ∨ q) is true, and since q is true, the whole statement is q. If q is false, then the statement (¬q → r) is true, and (¬q ∨ r) would be true, which implies that q is true. Therefore, the statement is always q. By applying logical reasoning and using the laws of logic, we have proven the given logical equivalences without resorting to truth tables.

To learn more about truth tables click here:

brainly.com/question/30588184

#SPJ11

Driving trends. Reports suggest that millennials drive fewer miles per day than the preceding generation. Imagine that the number of miles per day driven by millennials in 2015 av- eraged 37.5 with standard deviation 6, and that for persons reaching adulthood in 1995 the average was 51 with standard deviation 8. Do millennials have less relative variability in the number of miles they drive?

Answers

The standard deviation of the number of miles driven per day by millennials is less than the standard deviation of the number of miles driven per day by the generation that reached adulthood in 1995.

The variation of the number of miles driven per day by millennials is therefore lower than the variation of the number of miles driven per day by the previous generation. We will analyze this in greater detail with the aid of the following calculations:

If the average number of miles driven per day by millennials in 2015 was 37.5 with a standard deviation of 6, and for those reaching adulthood in 1995, the average was 51 with a standard deviation of 8, we may use the coefficient of variation to assess which group has more relative variability.

The coefficient of variation is the ratio of the standard deviation to the average expressed as a percentage. It's a measure of the degree of variability in the data.

The coefficient of variation for the 1995 group is 15.7%, which is higher than the coefficient of variation for the millennial group, which is 16%.

Hence, the generation that came of age in 1995 has more relative variability in terms of the number of miles driven per day.

Therefore, millennials have less relative variability in the number of miles they drive.

Thus, we can conclude that the given statement is true.

To know more about standard deviation visit:

https://brainly.com/question/31516010

#SPJ11

If you flip a coin 3 times, what is the probabilty that the coin
will be head exactly one time? or at least 2 times?

Answers

Therefore, the probability of getting at least two heads is 1/8 + 3/8 = 4/8 = 1/2.

When you flip a coin three times, the probability of getting the head one time is 3/8 and the probability of getting at least two heads is 1/8. Let's see how this probability can be calculated below:

When you flip a coin three times, there are 2 possible outcomes (Head or Tail) for each of the 3 flips.

Therefore, the total number of possible outcomes is 2 × 2 × 2 = 8.

Out of these 8 outcomes, there are three outcomes when the coin comes up heads exactly one time.

These outcomes are as follows: H T T, T H T, T T H (where H stands for head, and T stands for tail).

Therefore, the probability of getting the head exactly one time when you flip a coin three times is 3/8.

On the other hand, the probability of getting at least two heads is the probability of getting two heads plus the probability of getting three heads.

There is only one outcome when the coin comes up heads all three times, which is H H H.

Similarly, there are three outcomes when the coin comes up heads exactly two times.

These outcomes are H H T, H T H, T H H.

To know more about probabilty visit:

https://brainly.com/question/31725634

#SPJ11








Find the flux of the curl of field F through the shell S. F = 4yi + 3zj-9xk; S: r(r, 0) = r cos 0i+r sin 0j + (36-r2)k, 0s r s 6 and 0 s0s 2n

Answers

The flux of the curl of the vector field F through the given shell S is zero. This means that the net flow of the curl of F through the shell is balanced and there is no accumulation or divergence of the field within the shell.

To find the flux of the curl of F through the shell S, we need to evaluate the surface integral of the dot product between the curl of F and the outward-pointing normal vector of the shell S. The outward-pointing normal vector of the shell S can be obtained by taking the cross product of the partial derivatives of r with respect to the parameters r and θ.

Using the given parameterization of the shell S, we can calculate the curl of F, which is (9i - 3j + 4k). The outward-pointing normal vector, let's call it N, is obtained by taking the cross product of (∂r/∂r) and (∂r/∂θ). The magnitude of N is √(r^2 + (36 - r^2)^2) = √(r^4 - 72r^2 + 1296).

Now, we can evaluate the surface integral of the dot product between the curl of F and N over the shell S. Since the magnitude of N is non-zero and the dot product of the curl of F and N is also non-zero, we can conclude that the flux of the curl of F through the shell S is non-zero. Therefore, the net flow of the curl of F through the shell S is not balanced, indicating an accumulation or divergence of the field within the shell.

To learn more about vector click here: brainly.com/question/24256726

#SPJ11

consider a situation where p(a) = and p(a and b) =. if the events are independent, then what is p(b)?

Answers

The probability of event B is 4/7.according to given question.

Given the probabilitiesp(a) = P(A)p(a and b) = P(A and B)Given the events are independent events, P(B|A) = P(B)

Multiplying both sides by P(A), we getP(A)*P(B|A) = P(A)*P(B) = P(A and B)

Now, using the given values we getP(A)*P(B) = P(A and B)0.7P(B) = 0.4

On solving, we getP(B) = 0.4/0.7 = 4/7Therefore, the probability of event B is 4/7.

To know more about probability visit :-

https://brainly.com/question/23286309

#SPJ11

Final answer:

In a situation where events A and B are independent, you can find the probability of event B using the equation p(b) = p(a and b) / p(a), given known values for p(a) and p(a and b).

Explanation:

This question deals with the probability of independent events. If events A and B are independent, their probability is defined as p(a and b) = p(a)*p(b). Given that p(a) and p(a and b) are known, you can solve for p(b) using the equation p(b) = p(a and b) / p(a).

Without numerical values, this is the general form the solution will take. To actually calculate p(b), you would need specific probabilities for p(a) and p(a and b).

Learn more about Independent Events here:

https://brainly.com/question/32716243

#SPJ12

If A = (x+|x-1| : x E R}, then which of ONE the following statements is TRUE?
O A. Set A has a supremum but not an infimum.
O B. Set A has an infimum but not a supremum.
O C.inf A=-1.
O D. Set A is bounded.
O E. None of the choices in this list.

Answers

To determine the properties of set A = {(x + |x - 1|) : x ∈ R}, let's analyze its elements and determine its supremum, infimum, and boundedness.

First, let's consider the expression x + |x - 1|:

When x ≤ 1, the absolute value |x - 1| evaluates to 1 - x, so the expression becomes x + (1 - x) = 1.

When x > 1, the absolute value |x - 1| evaluates to x - 1, so the expression becomes x + (x - 1) = 2x - 1.

From this analysis, we can see that set A consists of two constant values: 1 and 2x - 1, where x > 1.

Now, let's evaluate the properties of set A based on the given options:

Option A: Set A has a supremum but not an infimum.

Since set A contains the constant value 1 and the expression 2x - 1, where x > 1, it does not have a supremum because there is no upper bound. However, it does have an infimum, which is the minimum value of the set, namely 1. Therefore, this option is incorrect.

Option B: Set A has an infimum but not a supremum.

This option is correct. As explained above, set A has an infimum of 1 but does not have a supremum.

Option C: inf A = -1.

The infimum of set A is indeed 1, not -1. Therefore, this option is incorrect.

Option D: Set A is bounded.

Set A is not bounded since it does not have an upper bound. Therefore, this option is incorrect.

Option E: None of the choices in this list.

Since option B is correct, option E is incorrect.

Therefore, the correct answer is E. None of the choices in this list.

To learn more about constant : brainly.com/question/31730278

#SPJ11

Other Questions
Mt. Auburn Hospital In December of 1993, two of Boston's largest and best known hospitals, Massachusetts General and Brigham and Women's, announced that they were setting aside their historic rivalry to form an alliance and build a regional health network. In the same way that a sharp rap on the side of a beaker filled with a supersaturated solution causes crystals to form, the announcement set off a wave of merger talk throughout a Boston health care market that was carrying too many specialists, too many beds and too many service providers. Hospitals throughout the region began to seek affiliations lest they be left behind when the market had fully crystallized. Located across the river from Boston in Cambridge, Mt. Auburn Hospital intensified its own interest in forming an affiliation. Mt. Auburn had managed to thrive during the previous decade by restructuring its operations in response to the revolution in managed care. But in a health care environment potentially dominated by regional networks, the hospital's position as a mixture of community and teaching hospital made it vulnerable. Mt. Auburn's board of trustees formed a special task force on alliances to solicit proposals and make a recommendation as to which (if any) organization would make for the best partner. The task force entertained presentations from nearly every type of player in the health care field. In February of 1996, the group faced the daunting task of picking through the various suitors and divining which was most likely to help Mt. Auburn achieve its goals. The changing health care environment Mt. Auburn background Situated on a slight rise overlooking a bend in the Charles River, Mt. Auburn Hospital was dedicated in 1886. Though the opening of the facility came only after an 18-year struggle to raise funds, the time was fortuitous for founding a hospital in the United States. Like most other hospitals at the time, Cambridge Hospital (as Mt. Auburn was known until 1947) began its existence as a purely charitable institution. During its early years, Mt. Auburn was funded by wealthy patrons who "gave a bed" so that working class patients could receive care. In general, early U.S. hospitals were intended to warehouse the poor and the abandoned - those with any money or family bore their illnesses at home. But after the turn of the century, more and more patients came to Mt. Auburn not as a last resort, but to take advantage of the specialized equipment and personnel.1. What is Mt. Auburns strategy?2. What is the threat posed to Mt. Auburn by the merger of MG and BWH? Why is it disrupting the market so much?3. How should the hospital respond to the merger? A bone graft may be used for which of the following reasons? Select all that apply.a) Improvement of motionb) Defect fillingc) Stimulation of bone healingd) Joint stabilizatione) Reduction of a fracture The force F between two parallel wires carrying electric currents is inversely proportional to the distance d between the wires. If a force of 0.750 N exists between wires that are 1.75 cm apart, what is the force between them if they are separated by 2.50 cm? interracial marriage was banned in more than a dozen states as recently as? a. 1947.b. 1957.c. 1967.d. 1977. If the national unemploymentrate rises up to 12 Can Expansionerypolig fix this. The IRS is concerned with improving the accuracy of tax info given by its reps over the phone. Previous studies involved asking a set of 25 questions of a large number of IRS telephone reps to determine the proportion of correct responses. Historically, the average proportion of correct responses has been 71%. Recently, the set of 25 questions were again asked of 20 randomly selected reps. The proportions of correct answers were: Which of the following chemical species is mostly likely to undergo chemistry with hydroxide (OH)? sulfate, chlorine, carbonate, phosphate, chlorine, bromine, iodine, or lead. Describe the difference between Account Providers (AP) and regulated Third-Party Providers (TPP) in the Open Banking context. Briefly explain how each group could economically benefit from the introduction of Open Banking API standards. Which selling technique reflects the salesperson having more control over the amount of the conversation between buyer and seller more than with any other sales presentation metprod. a. professional . b.memorized . c.need-satisfaction . d. barrier .e. problem-solving In the documentary Inside Job, which Bank wanted to acquire Lehman Brothers but required a U.S. guarantee for the transaction? A. Northern Rock Bank of London B. Bank of London C. Central Bank of Great Britain D. Barclay's A rock is dropped off a cliff and falls the first half of thedistance to the ground in t1 seconds. If it fallsthe rest of the distance in t2 seconds, what is thevalue of t2/t1?Answer: 2 - 1 (1 is not included under the root) Critically evaluate the macro environmental factor that are affecting your organization marketing performance on a global scale (textile industry) Compare HRM and SHRM practices, and discuss how SHRM would contribute to improving employees performance and commitment, and to enhancing the organisations competitive advantage, especially in turbulent times. The expected return on XYZ stock is 15.00 percent while the expected return on the market is 13.2 percent. The beta of XYZ is 7.35 What is the risk-free rate of return? (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places. e.g. 32.16) A poll asked college students in 2016 and again in 2017 whether they believed the First Amendment guarantee of freedom of religion was secure of threatened the the country today. In 2016, 2069 of 3108 students surveyed that of religion was secure or very secure. In 2017, 1956 of 2983 students surveyed felt this way.DETERMINE THE Z- score find g(x), where g(x) is the translation 3 units up of f(x)=|x|. write your answer in the form a|xh| k, where a, h, and k are integers. g(x)= submit Selected values of f are given in the table below. If the values in the table are used to approximate f(0.5), what is the difference between the approximation and the actual value of f(0.5)?x 0 1f(x) 1 2A) 0B) 0.176C) 0.824D) 1 Label the components of skeletal muscle tissue. Not all will be used. Consider the follow cash flows of two mutually exclusive projects for AZ-Motorcars. Assume the discount rate (i.e., the cost of capital) for each project is 10 percent. (The quantities are the cash flows of each project at the given dates, in millions of dollars.)Year, AZM Mini SUV, AZM Full SUV0, -675, -9301, 403, 4302, 274, 4673, 218, 319What is the NPV of AZM Mini-SUV project? Jack takes a standardized Spanish language placement test and obtains a percentile score of 25 with a u = 10, and a = 5. What statement can be made about his performance?