What is the impedance of a series L-R-C circuit with L = 10 mH, R = 0.1k0, C = 1.0 (micro) F and; w = 10¹ rad/ a. 0.1 ΚΩ b. 1 ΚΩ c. 10 ΚΩ d. 100 ΚΩ

Answers

Answer 1

The impedance of the series L-R-C circuit is 184.5 Ω. Thus, option d. 100 ΚΩ is incorrect and the correct option is c. 10 ΚΩ.

Impedance is the total opposition to the flow of an alternating current (AC) circuit because of resistance (R), inductance (L), and capacitance (C).

To find the impedance of a series L-R-C circuit with L = 10 mH, R = 0.1kΩ, C = 1.0 (micro) F, and w = 10¹ rad/ a, we will use the formula for the total impedance, given by:

Z = √(R² + (XL - XC)²), where XL = 2πfL is the inductive reactance, and XC = 1/2πfC is the capacitive reactance.

Substituting the given values in the above formula,

Z = √(0.1kΩ)² + (2π x 10¹ x 10 mH - 1/2π x 10¹ x 1.0 µF)²Z

= √(10² + (200 - 15.9)²)Z

= √(10² + 184²)Z

= 184.5 Ω

Therefore, the impedance of the series L-R-C circuit is 184.5 Ω. Thus, option d. 100 ΚΩ is incorrect and the correct option is c. 10 ΚΩ.

To learn more about impedance visit;

https://brainly.com/question/30475674

#SPJ11


Related Questions

Air at 1 atm pressure, 30°C and 60% relative humidity is cooled
to the dew point temperature under constant pressure. Calculate the
required cooling [kJ/kgkh] for this process. Describe step by
step.

Answers

To calculate the required cooling in kJ/kg of air to reach the dew point temperature, we can follow these steps:

Step 1: Determine the properties of the initial air state:

Given conditions:

- Pressure (P1) = 1 atm

- Temperature (T1) = 30°C

- Relative humidity (RH) = 60%

Step 2: Calculate the partial pressure of water vapor:

The partial pressure of water vapor can be calculated using the relative humidity and the saturation pressure of water vapor at the given temperature.

- Convert the temperature from Celsius to Kelvin: T1(K) = T1(°C) + 273.15

- Lookup the saturation pressure of water vapor at T1 from a steam table or using empirical equations. Let's assume the saturation pressure is Psat(T1).

- Calculate the partial pressure of water vapor:

 Pv = RH * Psat(T1)

Step 3: Determine the dew point temperature:

The dew point temperature is the temperature at which the air becomes saturated, meaning the partial pressure of water vapor is equal to the saturation pressure at that temperature.

- Lookup the saturation pressure of water vapor at the dew point temperature from a steam table or using empirical equations. Let's assume the saturation pressure at the dew point temperature is Psat(dew).

- Calculate the dew point temperature:

 Tdew = Psat^-1(Pv)

Step 4: Calculate the required cooling:

The required cooling is the difference in enthalpy between the initial state (T1) and the dew point state (Tdew) under constant pressure.

- Lookup the specific enthalpy of air at T1 from a property table. Let's assume the specific enthalpy at T1 is h1.

- Lookup the specific enthalpy of air at Tdew from the same property table. Let's assume the specific enthalpy at Tdew is hdew.

- Calculate the required cooling:

 Cooling = hdew - h1

Step 5: Convert the required cooling to kJ/kg:

Since the cooling is typically given in J/kg, we need to convert it to kJ/kg by dividing by 1000.

- Required cooling (kJ/kg) = Cooling / 1000

By following these steps, you should be able to calculate the required cooling in kJ/kg of air to reach the dew point temperature under constant pressure.

Learn more about Pressure from:

https://brainly.com/question/28012687

#SPJ11

Consider the following system.

A panel of solar cells

a)Describe the RELEVANT energy levels in one of its functions and its quantum origins. Your responses should be elaborate but punctual, as soon as possible.

b) What considerations are necessary to describe the system you chose using partition functions?

Answers

A solar panel comprises of a set of solar cells which are involved in the process of producing electricity from sunlight. In this process, when sunlight enters the solar panel, electrons present in the valence band of the solar cells absorb the energy from the photons and get excited into the conduction band, thereby leaving behind a positively charged hole.

The movement of electrons generates an electric current which is utilized for generating electrical power. The relevant energy levels in a solar panel are the valence band and the conduction band. The quantum origin of the production of electricity from a solar panel is the excitation of electrons from the valence band to the conduction band by absorbing photons of sunlight.b) While describing a solar panel system using partition functions, the following considerations are necessary:Temperature of the system (T)Energy of each level present in the system (εi)Degeneracy of each level present in the system (gi)Therefore, the partition function of a solar panel system can be written as follows:Q = Σi gi e^(-εi/kT) where k is the Boltzmann constant.

To know more about electricity visit:

https://brainly.com/question/1922668

#SPJ11

The summit of a mountain, 2450 m above base camp, is measured on a map to be 4080 m horizontally from the camp in a direction 35.4 ° west of north. Choose the 3 axis east, y axis north, and z axis up. Part A What are the components of the displacement vector from camp to summit? Enter your answers numerically separated by commas. ΤΑ ΑΣΦ ? Tx, Ty, T,= m Submit Request Answer Part B What is its magnitude? IVO AE FO ? !! m Submit Request Answer

Answers

The required components of the displacement vector from camp to summit are 3546.12 m, 3065.06 m, and 2450 m. The magnitude of the displacement vector from camp to summit is 5373.28 m (approx).

Given that the summit of a mountain, 2450 m above base camp, is measured on a map to be 4080 m horizontally from the camp in a direction 35.4 ° west of north. And we have to find the components of the displacement vector from the camp to the summit.

Part A

The three axes are: x-axis is easty-axis is north-z-axis is up.

We have to find the components of the displacement vector from the camp to the summit.

Let Tx be the displacement along the x-axis and Ty be the displacement along the y-axis.

Tz = 2450 (as the summit is 2450 m above the base camp)

Hence, the components of the displacement vector from camp to summit are:

Tx = 3546.12 mTy = 3065.06 mTz = 2450 m

Thus, the required components of the displacement vector from camp to summit are 3546.12 m, 3065.06 m, and 2450 m.

Part B

Now, we have to find the magnitude of the displacement vector from camp to summit.

The magnitude of the displacement vector from camp to summit is given by:

T = √(Tx² + Ty² + Tz²)

Putting the values in the above formula, we get:

T = √(3546.12² + 3065.06² + 2450²)

T = √(12,562,737.2 + 9,391,375.36 + 6,025,000)

T = √28,979,112.56

T = 5373.28 m (approx)

Thus, the magnitude of the displacement vector from camp to summit is 5373.28 m (approx).

To know more about displacement refer to:

https://brainly.com/question/14422259

#SPJ11

A bottle contains 3.75 L of soda. What percentage is left after 3.50 L is removed? A. 6.9% B. 6.7% C. 7.1% D. 0.93%

Answers

After removing 3.50 L of soda, approximately 6.7% of the original amount remains.

To calculate the percentage of soda remaining after removing 3.50 L, we can use the formula:

Percentage = (Remaining amount / Original amount) * 100

Given that the original amount of soda in the bottle is 3.75 L and 3.50 L is removed, we can calculate the remaining amount:

Remaining amount = Original amount - Removed amount

= 3.75 L - 3.50 L

= 0.25 L

Substituting the values into the percentage formula:

Percentage = (0.25 L / 3.75 L) * 100

≈ 0.0667 * 100

≈ 6.67%

Therefore, approximately 6.7% of the original amount of soda remains after 3.50 L is removed.

Learn more about original amount

brainly.com/question/28970975

#SPJ11

ASAP PLS HELP WILL UPVOTE:

A planet with a diameter of 92,000 miles and a mass of 1.87*10^27kg rotates once every 8.4 hours. If one-third the diameter was lost without losing any mass, how long would it take to rotate. Inertia = (2/5)*MR^2

Answers

It will take the planet about 2.74 hours to complete one rotation after losing one-third of its diameter.

Diameter of the planet, d = 92000 miles.Mass of the planet, m = 1.87 x 10²⁷ kg. Rotational period, T = 8.4 hours Inertia = (2/5) x m x r²When one-third of the diameter is lost, the new diameter is;d₂ = (2/3)d = (2/3) x 92000 = 61333.33 miles.The radius, r₁ = d/2 = 92000/2 = 46000 miles.

The radius, r₂ = d₂/2 = 61333.33/2 = 30666.67 miles.The moment of inertia changes since the radius changes, therefore we can relate them as; I₁/I₂ = (r₁/r₂)²We can substitute the formula of inertia to obtain; I₁/I₂ = [(r₁/r₂)]²I₁ = [(r₁/r₂)]²I₂I₂ = (r₂/r₁)²I₁I₂ = (30666.67/46000)²I₁I₂ = 0.32653 I₁On substituting

we get;0.32653 [(2/5) x m x r₁²] = (2/5) x m x r₂²We can simplify to;0.32653 [(2/5) x m] (46000)² = (2/5) x m x (30666.67)²Let's calculate for the new rotational period, T₂; T₁/T₂ = (I₁/I₂)T₂ = (I₂/I₁)T₁T₂ = (0.32653)T₁T₂ = (0.32653) x 8.4 hrsT₂ = 2.74 hours.

To know more about diameter please refer to:

https://brainly.com/question/33294089

#SPJ11

The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV.
(a) What is the kinetic energy of the electron in this state?
(b) What is the potential energy of the electron in this state?
(c) Which of the answers above would change if the choice of the zero of potential energy is changed?

Answers

(a) The kinetic energy of the electron in the first excited state of the hydrogen atom is -6.8 eV.

(b) The potential energy of the electron in the first excited state of the hydrogen atom is 3.4 eV.

(c) The choice of the zero of potential energy does not affect the values of kinetic and potential energy, only the overall reference point.

(a) To find the kinetic energy of the electron in the first excited state of the hydrogen atom, we need to subtract the potential energy from the total energy. The total energy is given as -3.4 eV, which includes both kinetic and potential energy components. Since the electron is in a bound state, the total energy is negative.

The kinetic energy is equal to the total energy minus the potential energy:

Kinetic energy = Total energy - Potential energy

In this case, the total energy is -3.4 eV, and the potential energy is the negative of the total energy:

Potential energy = -(-3.4 eV) = 3.4 eV

Therefore, the kinetic energy can be calculated as:

Kinetic energy = -3.4 eV - 3.4 eV = -6.8 eV

(b) The potential energy of the electron in the first excited state of the hydrogen atom is given as 3.4 eV. This represents the energy associated with the attraction between the electron and the proton in the hydrogen atom. Since the total energy is negative, the potential energy is positive, indicating a stable bound state.

(c) None of the answers above would change if the choice of the zero of potential energy is changed. The choice of the zero of potential energy is arbitrary and does not affect the relative values of the kinetic and potential energy components. It only affects the overall reference point for potential energy calculations. In this case, if the zero of potential energy were shifted, both the kinetic and potential energy values would change by the same amount, but their relative difference and the total energy would remain unchanged.

For more such information on: kinetic energy

https://brainly.com/question/30337295

#SPJ8

Under constant-volume conditions, 2700 J of heat is added to 1.5 moles of an ideal gas. As a result, the temperature of the gas increases by 86.6 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. QP=

Answers

The amount of heat required to cause the same temperature change under constant-pressure conditions is 3779.986 JOULE.

At constant volume, the conditions are:

heat = 2700 J

number of mole (gas) n = 1.5 moles

change in temperature ΔT = 86.6 k

Now according to the rules of thermodynamic Change in internal energy at constant volume is ΔU =2700 J and change of entropy in a constant pressure will be equal to the transfer heat.

At constant volume :

[tex]Q=mc_v\Delta T\\\\ 2700\ \text{Joule}=1.5\ \text{mole}\times c_v \times\ 86.6\ K\\\\ c_v=20.79 \dfrac{\text{Joule}}{\text{mole}\cdot{K}}[/tex]

since gas undergoes the same temperature change in both process change in internal energy is same.

By Mayors equation :

[tex]c_p-c_v=R[/tex]

[tex]c_p-20.79=8.314\\\\c_p=29.099 \dfrac{\text{Joule}}{\text{mole}\cdot{K}}[/tex]

Heat would be required at constant pressure condition:

[tex]Q=mc_p \Delta T\\\\Q=1.5 \times29.099\times 86.6\\\\Q=3779.988 \rm J[/tex]

hence, the heat at constant pressure is 3779.988 J

Learn more about heat here:

https://brainly.com/question/33518665

#SPJ4

Take a vector with magnitude A=3.4 and angle from the x-axis θ=23.0 degrees. What are the components of this vector and their proper unit vector assignation? Answer to 3 sig figs without units. Use vector component order of x-axis then y-axis values. A=

Answers

The components of this vector and their proper unit vector(PUV) assignation are (-2.86, 1.46), with unit vectors (-0.919, 0.395) along x and y-axis values respectively.

The components of this vector and their PUV  assignation are (-2.86, 1.46), with unit vectors(UV) (-0.919, 0.395) along x and y-axis values respectively. Given, A = 3.4and angle θ = 23°Using the given magnitude and angle, we can calculate the horizontal and vertical components as: x = A cosθy = A sinθ. On substituting the given values, we get; x = 3.4 cos 23°y = 3.4 sin 23° Evaluating the above expression gives the components of the vector as follows; x = 3.4 cos 23° = 2.86y = 3.4 sin 23° = 1.46. We need to find the UVs for the above components.

Unit vector means dividing each component by its magnitude(m) to get a vector of magnitude 1.x-axis unit vector = (x / |x|) = -2.86/3.4 = -0.919 y-axis unit vector = (y / |y|) = 1.46/3.4 = 0.395.

To know more about Unit vector visit:

https://brainly.com/question/28028700

#SPJ11

In a pn junction, under forward bias, the built-in electric field stops the diffusion current Select one: True False
Taking into consideration the Early effect in the npn transistor, we can state tha

Answers

1.  The given statement "In a pn junction, under forward bias, the built-in electric field stops the diffusion current" is False.

2.   The given statement "Taking into consideration the Early effect in the npn transistor, we can state that the collector current I_C decreases with increasing V_CE" is False.

1. In a pn junction under forward bias, the built-in electric field does not stop the diffusion current. Instead, it facilitates the flow of current across the junction. When a pn junction is forward-biased, the p-side (anode) is connected to the positive terminal of a voltage source, and the n-side (cathode) is connected to the negative terminal.

This forward bias reduces the width of the depletion region in the junction, allowing the majority of carriers (electrons in the n-side and holes in the p-side) to easily cross the junction. As a result, diffusion current occurs, where electrons move from the n-side to the p-side, and holes move from the p-side to the n-side.

2. Taking into consideration the Early effect in an NPN transistor, the collector current (I_C) does not decrease with increasing collector-emitter voltage (V_CE). The Early effect, also known as the output or base-width modulation effect, refers to the phenomenon where the collector current is influenced by the variation in the width of the depletion region in the base region of a transistor.

In an npn transistor, increasing the collector-emitter voltage (V_CE) does not directly affect the collector current. However, it does influence the effective base width, which impacts the transistor's current gain (β) and overall characteristics. The Early effect causes a slight decrease in the effective base width with increasing V_CE, resulting in a small increase in the collector current.

The Question was Incomplete, Find the full content below :

1. In a pn junction, under forward bias, the built-in electric field stops the diffusion current Select one: True False

2. Taking into consideration the Early effect in the npn transistor, we can state that the collector current I_C decreases with increasing V_CE.   Select one: True False

know more about electric field here:

https://brainly.com/question/19878202

#SPJ8

The following information pertains to Questions 1-3. A waveguide is formed from a hollow conducting tube of some cross section that is filled with a material having a dielectric constant (relative permittivity) of 2.56. The dominant mode of this waveguide is a TE mode with cutoff frequency of 6 GHz. The next higher order mode is a TM mode with a cutoff frequency of 8.5 GHz. Use c = 3 × 10° (m/s) as the speed of light in air and no = 1207 (2) as the intrinsic impedance of free space. What is the guide wavelength of the dominant mode at 7.8 GHz? Type your answer in millimeters to one place after the decimal. Question 2 What is the wave impedance of the dominant mode at 7.1 GHz? Type your answer in ohms to one place after the decimal. Question 3 1 pts ہے 2 pts Assume all of the dielectric material is removed from the waveguide leaving an air-filled hollow tube. What is the cutoff frequency of the first higher order mode (the TM mode) of the waveguide in this case? Type your answer in GHz to three places after the decimal. Hint: Assume for this geometry that the cutoff wavenumber has the same value independent of the material filling the guide.

Answers

The guide wavelength of the dominant mode at 7.8 GHz is approximately 43.0 mm. The wave impedance of the dominant mode at 7.1 GHz is approximately 1629.6 Ω.

The guide wavelength of the dominant mode at 7.8 GHz, we can use the equation:

Guide wavelength = (cutoff wavelength) / sqrt(1 - (fcutoff/f)^2)

where fcutoff is the cutoff frequency and f is the operating frequency.

Given that the cutoff frequency of the dominant mode is 6 GHz, we can calculate the cutoff wavelength using the equation:

Cutoff wavelength = c / fcutoff

Substituting the values, we have:

Cutoff wavelength = (3 × 10^8 m/s) / (6 × 10^9 Hz) = 0.05 meters

Now we can calculate the guide wavelength:

Guide wavelength = (0.05 meters) / sqrt(1 - (6 × 10^9 Hz / 7.8 × 10^9 Hz)^2) = 0.043 meters

Converting the guide wavelength to millimeters with one decimal place, we get:

Guide wavelength = 43.0 mm

The wave impedance of the dominant mode at 7.1 GHz, we can use the formula:

Wave impedance = (intrinsic impedance of free space) / sqrt(1 - (fcutoff/f)^2)

Substituting the values, we have:

Wave impedance = 1207 Ω / sqrt(1 - (6 × 10^9 Hz / 7.1 × 10^9 Hz)^2) ≈ 1629.6 Ω

For the cutoff frequency of the first higher order mode (TM mode) when the dielectric material is removed, we can assume that the cutoff wavenumber remains the same. Therefore, the cutoff frequency would also be 8.5 GHz.

Cutoff frequency of TM mode = 8.5 GHz.

To know more about wavelength ,

https://brainly.com/question/31143857

#SPJ11

Which of the following statements from Dalton's atomic theory is no longer true, according to modern atomic theory?

Answers

the statement from Dalton's atomic theory that is no longer true is "Atoms are indivisible and cannot be divided into smaller particles."

Dalton's atomic theory, proposed in the early 19th century, stated that atoms were indivisible and indestructible particles, meaning they could not be further divided into smaller particles. However, with advancements in scientific understanding and the development of subatomic particle physics, it has been discovered that atoms are not indivisible. Atoms are composed of subatomic particles, namely protons, neutrons, and electrons. Protons and neutrons reside in the nucleus at the center of the atom, while electrons orbit around the nucleus. Furthermore, scientists have identified even smaller particles within the nucleus, such as quarks and gluons. Hence, the concept of atoms being indivisible, as proposed in Dalton's atomic theory, is no longer valid based on modern atomic theory.

To learn more about photons, click here: https://brainly.com/question/33017722

#SPJ11

Which of the following statements from Dalton's atomic theory is no longer true, according to modern atomic theory?

A) All atoms of a given element are identical.

B) Atoms are not created or destroyed in chemical reactions.

C) Elements are made up of tiny particles called atoms.

D) Atoms are indivisible and cannot be divided into smaller particles.

If a penny was made of pure copper (of course it really is not), and weighed 2.32 g, how much heat would it take to melt the penny? Assume you start out at a room temperature of 20.0∘C. You will need to look up the relevant material

Answers

It would take approximately X joules of heat to melt the penny made of pure copper weighing 2.32 g at room temperature.

To calculate the amount of heat required, we need to consider two factors: the specific heat capacity of copper and the heat of fusion for copper.

The specific heat capacity of copper is the amount of heat energy required to raise the temperature of one gram of copper by one degree Celsius. The specific heat capacity of copper is approximately 0.39 J/g·°C.

The heat of fusion for copper is the amount of heat energy required to change one gram of copper from a solid state to a liquid state at its melting point. The heat of fusion for copper is approximately 205 J/g.

Given that the penny weighs 2.32 g, we can calculate the amount of heat required as follows:

Heat required = (specific heat capacity of copper) × (change in temperature) + (heat of fusion for copper)

Since we are starting at a room temperature of 20.0°C and need to melt the penny, which has a melting point of 1084.62°C, the change in temperature is 1084.62 - 20.0 = 1064.62°C.

Substituting the values into the equation, we get:

Heat required = (0.39 J/g·°C) × (1064.62°C) + (205 J/g) × (2.32 g)

= X joules

Therefore, it would take approximately X joules of heat to melt the penny.

Learn more about joules of heat

brainly.com/question/25947916

#SPJ11

An inductor is connected in parallel with the drain and source of an n-channel power MOSFET that is turned off. The drain to source voltage, Vds, is negative. There is a current, i, flowing through the inductor. (d) Derive a second order differential equation for the time, t, behaviour of the current, i. Define all the symbols used in your equations. By making a linear approximation for the relationship between current and voltage, show that the voltage decays

Answers

The relationship between current and voltage is linear; hence the voltage decays as the current falls.

Consider an inductor L that is in parallel with the source and drain of a power MOSFET.

The MOSFET is off, and the voltage at the drain with respect to the source is negative. There is a current i flowing through the inductor.

The following parameters are used to describe the differential equation:

Vds=Drain to source voltage

i=Current flowing through the inductor

L=Inductor's value

The voltage across the inductor is negative (Vds).

As a result, the current increases, but the rate of change decreases over time. The direction of the current does not change because the MOSFET is turned off.

The following formula can be used to describe the relationship between current and voltage:

V = L (di / dt)

This is the differential equation's first term.

This is the formula for a first-order linear differential equation, which can be simplified as:

V = (1 / L) integral(i dt) + V0

Where V0 is the voltage across the inductor at t=0.

If we differentiate both sides of this formula with respect to time, we get:

(dV / dt) = (1 / L) i

The second term is the differential equation's second-order differential equation. The damping coefficient can be derived from this expression.

Learn more about current and voltage from the given link

https://brainly.com/question/27861305

#SPJ11

2- Starting from the following circuit, explain mathematically in brief poiats how we can develop the combined these two parts circuits in one circuit. Show the details of this combined equivalent cir

Answers

The above equation is the general equation for a second-order linear homogeneous differential equation. By solving this differential equation using the Laplace transform, we can get the transfer function of the combined circuit.

The given circuit can be separated into two parts which is an RC circuit and an RL circuit. The combination of these two circuits can be derived by the application of Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL).RC circuit can be described by the following equation:

i = C(dv/dt)where C is the capacitance of the capacitor, v is the voltage across the capacitor, and i is the current passing through the circuit.

RL circuit can be described by the following equation:

v = L(di/dt)where L is the inductance of the inductor, v is the voltage across the inductor, and i is the current passing through the circuit.

The combined equivalent circuit is shown below:

Combining both equations by replacing v in the RL equation with dv/dt from the RC equation gives the following equation: i = C(d^2i/dt^2) + (1/R)L(di/dt)

Where R is the resistance of the resistor.

Substituting the value of L/R with τ gives the following equation:i = C(d^2i/dt^2) + (1/τ)di/dt

where τ is the time constant of the circuit.

The above equation is the general equation for a second-order linear homogeneous differential equation. By solving this differential equation using the Laplace transform, we can get the transfer function of the combined circuit.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

The primary winding of a power train transformer has 400 turns and the secondary winding has 100. If the input voltage is 120V (rms), what is the output voltage?
A.
2.4 V (rms)

B.
15 V (rms)

C.
50 V (rms)

D.
960 V (rms)

E.
30 V (rms)

A 230,000 V-rms power line carries an average power PAV = 25 MW over a distance of 100 km. If the total resistance of the leads is 10 ohms, what is the resistive power loss?
A.
12 kW

B.
1.0 MW

C.
2.5 MW

D.
3.4 MW

E.
12 MW

Answers

the resistive power loss is 6.25 MW.

Given data;

Primary winding turns, N1 = 400

Secondary winding turns, N2 = 100

Input voltage, V1 = 120V

Output voltage, V2 = ?

The transformer works on the principle of Faraday's Law of Electromagnetic Induction. It states that the voltage induced in the secondary winding (output) is proportional to the primary winding's number of turns (input) as; V2/V1 = N2/N1 = 100/400 = 1/4

Rearranging the above equation,

we get;

V2 = (V1 * N2) / N1 = (120 * 100) / 400 = 30 V

Therefore, the output voltage is 30V (rms).

Calculation of resistive power loss;

Total power transmitted over the line,

P = PAV = 25 MW

Resistance, R = 10 ohms

Distance, D = 100 km = 100 × 10³ m

The power loss in the line is given by;

Ploss = (IR)² = (V²/R)

Where;I = current flowing through the circuit

V = voltage drop across the resistance

The total voltage drop, V = P × D = 25 × 10⁶ × 100 × 10³ = 2.5 × 10¹⁵ VNow, V = IRIR = V / R = (2.5 × 10¹⁵) / 10 = 2.5 × 10¹⁴ A

Therefore, the power loss is given by;

Ploss = (IR)² = (2.5 × 10¹⁴)² × 10 = 6.25 × 10²⁸ W = 6.25 MW

Hence, the resistive power loss is 6.25 MW.

learn more about voltage here

https://brainly.com/question/27861305

#SPJ11

Describe the relationship between the temperature of a radiating body and the wavelengths it emits.

Answers

The temperature of a radiating body directly influences the wavelengths at which it emits radiation, with higher temperatures corresponding to shorter wavelengths and lower temperatures corresponding to longer wavelengths.

The relationship between the temperature of a radiating body and the wavelengths it emits is described by Wien's displacement law. According to this law, the wavelength at which a radiating body emits the most intense radiation (peak wavelength) is inversely proportional to its temperature.

Mathematically, Wien's displacement law is expressed as:

λ_max = (b / T)

where λ_max is the peak wavelength of radiation emitted by the body, T is its temperature in Kelvin, and b is Wien's displacement constant.

Wien's displacement constant (b) is approximately equal to 2.898 × 10^(-3) m·K, and it represents the proportionality constant in the equation.

This means that as the temperature of a radiating body increases, the peak wavelength of its emitted radiation becomes shorter, shifting towards the higher energy end of the electromagnetic spectrum (such as ultraviolet or visible light). Conversely, as the temperature decreases, the peak wavelength becomes longer, shifting towards the lower energy end (such as infrared or radio waves).

In summary, the temperature of a radiating body directly influences the wavelengths at which it emits radiation, with higher temperatures corresponding to shorter wavelengths and lower temperatures corresponding to longer wavelengths.

Learn more about temperature from the given link:

https://brainly.com/question/27944554

#SPJ11

Which of the following statements correctly describes an object's displacement and distance travelled? (1 Mark) a. The magnitude of displacement is equal to the distance travelled. b. The magnitude of displacement is less than or equal to the distance travelled. c. The magnitude of displacement is greater than or equal to the distance travelled. d. The magnitude of displacement can be less than, equal to, or greater than the distance travelled.

Answers

The statement that correctly describes an object's displacement and distance travelled is option d. The magnitude of displacement can be less than, equal to, or greater than the distance travelled.

Displacement and distance are two different quantities used to describe the motion of an object.

Distance refers to the total length of the path covered by an object, regardless of the direction. It is always a positive scalar quantity.

Displacement, on the other hand, refers to the change in position of an object from its initial position to its final position. Displacement takes into account both the distance and direction of the object's motion and is represented as a vector quantity.

In some cases, an object may return to its starting point, resulting in zero displacement but non-zero distance traveled. In other cases, an object may travel a straight path from its initial position to its final position, resulting in the displacement magnitude being equal to the distance traveled. Additionally, displacement can also be greater than the distance traveled if the object takes a non-linear path.

Therefore, the magnitude of displacement can be less than, equal to, or greater than the distance traveled, depending on the specific characteristics of the object's motion (option d).

Learn more about distance here: https://brainly.com/question/7243416

#SPJ11

When a component is used to perform the function of stop in a control circuit, it will generally be a normally ____ component and be connected in ____ with the motor starter coil

Closed series
Change position
Parallel

Answers

When a component is used to perform the function of stop in a control circuit, it will generally be a normally closed component and be connected in parallel with the motor starter coil. Control circuits are an essential component of industrial automation.

They manage the flow of power and information to devices and systems that need to be automated. They control a wide range of machinery and processes, from packaging and filling machines to temperature and pressure control systems. Control circuits require a variety of components that can be used to create the necessary logic and electrical paths.

One of the essential components of control circuits is the stop function. The stop function is necessary to halt the machine's operation in an emergency or planned maintenance. The stop function is accomplished by using a normally closed component, which means the circuit is closed by default.

When the stop function is initiated, the component opens the circuit, stopping the machine. The component is typically connected in parallel with the motor starter coil, which ensures that the motor stops running immediately after the circuit is opened.

To know more about component visit :

https://brainly.com/question/30324922

#SPJ11

Q4 Find the torque of the armature of a motor if it turns (N = 200 r/s )armature current = 100 Amper and the resistance of the armature = 0.5 ohms and back E.M.F. = 120 volts 1- Torgue = 40 N.m 2- Torque = 9.54 N.m O 3-Torque = 78 N.m O

Answers

The torque of the armature of a motor is 9.54 N.m.

Armature current Ia = 100 A

Resistance of the armature Ra = 0.5 Ω

Back emf Eb = 120 V

Speed N = 200 r/s

We know that,The torque T of the armature of a motor is given by,

T = Kφ Ia

Where, K is a constantφ is flux in webersIa is the armature current

The constant K is given as

K = P / 2πA

Where, P is the number of poles

A is the number of parallel paths

We know that, back emf, Eb = Kφ N

Therefore, φ = Eb / K N

Thus, the torque T of the armature of a motor is given as,T = (P φ Ia) / 2πA

Putting the given values in the above equation,

Torque T = (P Eb Ia) / 2πAN

= 200 r/s

Therefore, the speed N in rad/s = 2πN

= 2π × 200

= 1256.64 rad/s

Let's calculate the torque using the above formula.

Torque T = (P Eb Ia) / 2πA

Number of poles, P = 2

For parallel paths, A = 1

Back emf, Eb = 120 V

Armature current Ia = 100 A

Thus, T = (2 × 120 × 100) / (2 × 3.14 × 1 × 1256.64)

= 9.55 N.m

Therefore, the torque of the armature of a motor is 9.54 N.m.

Learn more about torque -

brainly.com/question/30338159

#SPJ11

2. A wave is described by the function: y(x, t) = sin(2 – 3t +0.17). (a) Plot y(xt) as a function of t, when x = 3 m and 0

Answers

For various values of t, we will get different values of y(0, t).

Both waves have the same amplitude and frequency, but they differ in phase and displacement.

The given wave function is y(x, t) = sin(2 – 3t +0.17).

The task is to plot y(xt) as a function of t, when x = 3 m and 0.

The given wave function is y(x, t) = sin(2 – 3t +0.17). For x = 3 m, we have y(x, t) = sin(2 – 3t +0.17)....(1)

When x = 0, we have y(x, t) = sin(2 – 3t +0.17)....(2)

We are supposed to plot y(xt) as a function of t.

We have two functions of y for different values of x. We will plot them separately. (1) For x = 3m, we have y(x, t) = sin(2 – 3t +0.17)

Substituting x = 3 in equation (1), we get y(3, t) = sin(2 – 3t + 0.17)....(3)

For various values of t, we will get different values of y(3, t). We will plot them as follows: For x = 0, we have y(x, t) = sin(2 – 3t +0.17)

Substituting x = 0 in equation (2), we gety(0, t) = sin(2 – 3t + 0.17)....(4)

For various values of t, we will get different values of y(0, t).

Both waves have the same amplitude and frequency, but they differ in phase and displacement.

To know more about wave function refer to:

https://brainly.com/question/31829729

#SPJ11

The electric field 6.0 cm from a small charged object is (1000 N/C, 15° above horizontal).
Part A
What is the magnitude of the electric field 6.0 cm in the same direction from the object?
Express your answer with the appropriate units.
E=________
Part B
What is the direction of the electric field in the same point as in part A? Express your answer in degrees above horizontal.
θ= _________

Answers

The direction of the electric field in the same point as in part A is 15° above horizontal.

Given data:

The distance between a small charged object and a point = 6.0 cm

The electric field at the point = (1000 N/C, 15° above horizontal)

Part A: The magnitude of the electric field at a distance of 6.0 cm from the charged object can be calculated as follows:

E = 1000 N/C

The magnitude of electric field at 6.0 cm distance from the charged object is 1000 N/C.

Part B: The direction of the electric field at a distance of 6.0 cm from the charged object can be calculated as follows:

θ = 15°

The direction of the electric field in the same point as in part A is 15° above horizontal.

To know more about electric field visit:

https://brainly.com/question/11482745

#SPJ11


Q30(7)
D Question 7 2 pts What is the difference between fluorescence and phosphorescence? Which one can persist after the stimulating light has been turned off? Edit View Insert Format Tools Table 12pt Para

Answers

the main difference between fluorescence and phosphorescence is the timing of light emission.

Fluorescence and phosphorescence are both types of photoluminescence, which involve the emission of light by a substance after it has absorbed photons. However, there are distinct differences between the two phenomena.

Fluorescence:

- Fluorescence is the rapid emission of light by a substance upon absorption of photons.

- The emission of light in fluorescence occurs almost immediately after the substance is exposed to the stimulating light.

- Fluorescence typically lasts for a very short duration, ranging from nanoseconds to a few microseconds.

- Once the stimulating light is turned off, fluorescence ceases immediately.

Phosphorescence:

- Phosphorescence is the delayed emission of light by a substance after it has absorbed photons.

- Unlike fluorescence, the emission of light in phosphorescence occurs after a delay, even after the stimulating light has been turned off.

- Phosphorescence can persist for a longer duration, ranging from milliseconds to hours or even longer.

- This delayed emission occurs due to the transition of electrons to lower energy states with a slower rate of relaxation.

In summary, the main difference between fluorescence and phosphorescence is the timing of light emission. Fluorescence is an immediate emission of light that ceases when the stimulating light is turned off, whereas phosphorescence involves a delayed emission of light that can persist even after the stimulating light has been turned off.

to know more about photons visit:

brainly.com/question/28747953

#SPJ11

Determine the skin depth δ
s

of a material at a frequency of f=1kHz. The constitutive parameters of that material are μ
r

=1,ε
r

=60 and σ=65/m. Answer to the 4th digit precision after the decimal place (eg. 1.2345). δ
s

= (m) Your Answer: Answer Green light of wavelength 0.5μm in air enters water with ε
r

=2.25. What color would it appear to a sensor immersed in water? The wavelength ranges of colors in air are violet (0.39 to 0.45μm ), blue (0.45 to 0.49μm ), green (0.49 to 0.58μm ), yellow (0.58 to 0.60μm ), orange (0.60 to 0.62μm ), and red (0.62 to 0.78μm ). violet None of them green orange red yellow blue Question 5 A material is characterized by ε
r

=4,μ
r

=1, and σ=10
−3
S/m. At which frequencies it may be considered a low loss medium? (Hint: there might be multiple correct answers, select all of them that are correct.) 600kHz 6MHz 60MHz 600MHz 60GHz

Answers

Skin depth (δs) of the material at a frequency of 1 kHz is approximately 27.7307 mm.

To determine the skin depth (δs) of a material at a frequency of 1 kHz, we can use the following formula:

δs = √(2 / (πfμ0μrσ))

where:

f = frequency

μ0 = permeability of free space (4π × 10^(-7) H/m)

μr = relative permeability of the material

σ = conductivity of the material

Given:

f = 1 kHz = 1 × 10^3 Hz

μr = 1

σ = 65 S/m

Substituting the values into the formula:

δs = √(2 / (π × 1 × 10^3 × 4π × 10^(-7) × 1 × 65))

Simplifying the expression:

δs = √(2 / (4π × 10^(-4) × 65))

  = √(1 / (2 × 10^(-4) × 65))

  = √(1 / (0.13 × 10^(-4)))

  = √(1 / 0.0013)

  = √769.2308

  ≈ 27.7307 mm

Therefore, the skin depth (δs) of the material at a frequency of 1 kHz is approximately 27.7307 mm.

Learn more about Skin depth from :

https://brainly.com/question/31976186

#SPJ11

Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. What can Andy conclude about these two samples?
Sample A is
, and sample B is
.

Answers

Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. Andy can conclude that sample A is acidic, and sample B is slightly acidic. Sample A is more acidic than sample B, and it has a greater corrosive effect.

Andy has two samples of liquids: Sample A has a pH of 4, and sample B has a pH of 6. The pH scale is used to calculate the acidity of a solution. It ranges from 0 to 14, with 0 being the most acidic and 14 being the most basic, and 7 being neutral. When the pH of a substance is low, it is acidic. A solution with a pH greater than 7 is said to be basic. pH can be determined by a pH meter or by using a pH paper, also known as a litmus paper. Acids are commonly used to clean a variety of things, including steel and concrete. Because acid is a corrosive substance, it can break down and dissolve certain materials.Acids can also react with metals to create flammable hydrogen gas. Acids can also be dangerous if they come into contact with the skin, eyes, or other tissues in the body. It can cause burns, irritation, and other symptoms.Sample A has a pH of 4, which is acidic, whereas Sample B has a pH of 6, which is slightly acidic. The solution with a lower pH is more acidic. Sample A is more acidic than sample B, and its corrosive properties may be more severe. Sample B, on the other hand, is less acidic than sample A, and it may have a more mild effect. In conclusion, Andy can conclude that sample A is acidic, and sample B is slightly acidic. Sample A is more acidic than sample B, and it has a greater corrosive effect.

For more such questions on samples of liquids, click on:

https://brainly.com/question/29580700

#SPJ8

Two d.c. generators are connected in parallel to supply a load of 1500 A. One generator has an armature resistance of 0.5Ω and an c.m.f. of 400 V while the other has an armature resistance of 0.04Ω and an e.m.f. of 440 V. The resistances of shunt fields are 100Ω and 80Ω respectively, Calculate the currents I1 and I2 supplied by individual generator, terminal voltage V of the combination and the output power from each generator.

Answers

The currents I1 and I2 supplied by individual generators are 1360 A and 140 A respectively. The terminal voltage V of the combination is 434.78 V. The output power from each generator is 590.16 kW and 60.86 kW respectively.

When two DC generators are connected in parallel to supply a load, the currents supplied by each generator can be calculated using the principles of electrical circuit analysis. In this case, we have two generators with different armature resistances and electromotive forces (emfs).

First, let's calculate the current supplied by the generator with an armature resistance of 0.5Ω and an emf of 400 V, denoted as I1. We can use Ohm's law (V = I * R) to find the voltage drop across the armature resistance of the generator, which is equal to the difference between its emf and the product of its armature resistance and I1. Thus, we have: 400 V - (0.5Ω * I1) = 0.

Next, we calculate the current supplied by the generator with an armature resistance of 0.04Ω and an emf of 440 V, denoted as I2. Similarly, using Ohm's law, we find: 440 V - (0.04Ω * I2) = 0.

By solving these two equations simultaneously, we can determine the values of I1 and I2. In this case, I1 turns out to be 1360 A, and I2 is 140 A.

To find the terminal voltage V of the combination, we consider the voltage across the shunt field resistances. The total shunt field resistance is obtained by adding the resistances of the two generators: 100Ω + 80Ω = 180Ω. The terminal voltage V is given by the formula V = emf - (I * Rshunt), where Rshunt is the total shunt field resistance. Plugging in the values, we get V = 400 V - (1500 A * 180Ω) = 434.78 V.

Finally, to calculate the output power from each generator, we use the formula P = VI, where P is the power, V is the voltage, and I is the current. The output power of the first generator (P1) is 400 V * 1360 A = 590.16 kW, while the output power of the second generator (P2) is 440 V * 140 A = 60.86 kW.

Learn more about Voltage

brainly.com/question/31347497

#SPJ11

Q1. A lawn sprinkler sprays water from an array of 12 holes, each 0.40 cm in diameter. The sprinkler is fed by a garden hose 3.5 cm in diameter, which is supplied by a tap. a) If the tap can supply 15 litres of water every minute, calculate the speed at which water moves through the garden hose. (4) b) Calculate the velocity with which the water leaves one hole in the sprinkler array. (4)

Answers

(a) The speed at which water moves through the garden hose is 25.97 cm/s. (b) The velocity with which the water leaves one hole in the sprinkler array is 2.57 m/s.

a) To calculate the speed at which water moves through the garden hose, we'll use the formula for the volume rate of flow, which is given by

Q = A×v, where A is the cross-sectional area of the hose and v is the velocity of the water. We have the diameter of the hose, which we'll use to find its radius.

r = d/2 = 3.5/2 = 1.75 cmA = πr² = π(1.75)² = 9.625 cm²

To convert the flow rate from L/min to cm³/s, we'll multiply by 1000/60, because 1 L = 1000 cm³ and 1 min = 60 s.Q = 15 × 1000/60 = 250 cm³/s

Q = A × v ⇒ v = Q/A

= 250/9.625

= 25.97 cm/s

(b)The velocity with which the water leaves one hole in the sprinkler array can be found using Bernoulli's equation, which relates the pressure of the fluid to its velocity.

p1 + (1/2)ρv1² = p2 + (1/2)ρv2²

where p1 and v1 are the pressure and velocity of the water as it enters the sprinkler array, and p2 and v2 are the pressure and velocity of the water as it leaves the hole in the sprinkler.

We'll assume that the pressure remains constant throughout, so p1 = p2. Let's start by finding the velocity of the water as it enters the sprinkler array. Since the cross-sectional area of the hose is much larger than the combined areas of the holes in the sprinkler array, we can assume that the velocity of the water remains constant as it passes through the array. We'll use the equation of continuity to relate the velocity of the water in the hose to the velocity of the water in the sprinkler. A1v1 = A2v2

where A1 and v1 are the cross-sectional area and velocity of the hose, and A2 and v2 are the cross-sectional area and velocity of the water as it passes through one hole in the sprinkler.

We have already found

A1 and v1.v2 = A1v1/A2 = (9.625 × 25.97)/(12 × (0.4/2)² × π) = 2.57 m/s

The velocity of the water as it leaves the hole in the sprinkler is 2.57 m/s.

To know more about speed please refer:

https://brainly.com/question/13943409

#SPJ11

In a boundary layer formation over a flat plate, define and
derive mathematical expressions for displacement thickness δ * and
momentum thickness ‘θ’.

Answers

In the context of a boundary layer formation over a flat plate, the displacement thickness is the distance by which the boundary layer must be displaced in the normal direction to the plate in order to accommodate the presence of the boundary layer and is typically denoted by the symbol δ*.

The momentum thickness θ, on the other hand, is defined as the distance by which the upper and lower boundaries of the boundary layer have to be moved in the direction of the flow to conserve the total momentum flow rate of the boundary layer.

The derivation of mathematical expressions for displacement thickness δ* and momentum thickness ‘θ’ can be described as follows; For an incompressible, laminar, steady-state boundary layer over a flat plate, the momentum equation can be written as;[tex]$$\rho u \frac{\partial u}{\partial x} = \mu \frac{\partial^2 u}{\partial y^2}$$[/tex]

Where

ρ is the density of the fluid,

u is the velocity of the fluid,

x is the distance along the flat plate,

y is the distance normal to the flat plate, and

μ is the dynamic viscosity of the fluid.

To know more about displacement visit:

https://brainly.com/question/11934397

#SPJ11

those portions of the celestial sphere near the celestial poles that are either always above or always below the horizon

*these kind of stars never rise and never set since they remain above/below the horizon

Right Ascension (RA)
Declination
Circumpolar

Answers

Those portions of the celestial sphere near the celestial poles that are either always above or always below the horizon, these kind of stars never rise and never set since they remain above/below the horizon is C. Circumpolar.

The celestial poles are the points on the celestial sphere that are directly above the Earth's North and South Poles. The celestial sphere is an imaginary sphere that encircles the Earth, and is used to describe the positions of objects in the sky, those portions of the celestial sphere near the celestial poles that are either always above or always below the horizon are called circumpolar regions. In these regions, stars never rise or set since they remain above or below the horizon. Circumpolar stars are stars that always remain above or below the horizon and never rise or set, these stars are located near the celestial poles and they appear to rotate around them.

The altitude of these stars depends on the observer's latitude, the closer the observer is to the North or South Pole, the higher the circumpolar stars will be above the horizon. The coordinates used to locate a star on the celestial sphere are right ascension (RA) and declination. RA is similar to longitude on the Earth, and it measures the east-west position of a star on the celestial sphere. Declination is similar to latitude on the Earth, and it measures the north-south position of a star on the celestial sphere. So therefore these coordinates can be used to locate any star on the celestial sphere, including circumpolar stars.

Learn more about celestial poles at:

https://brainly.com/question/30419965

#SPJ11


Kindly Solve 10.14 and 10.15. In 10.15 Find the power
(absorbed) or (released) by inductance at (a) t=0 and (b) t=2 micro
seconds.
454 Chapter 10 AC Response (absorbed or released?) by the inductance at (a) t = (b) t = 2 us. 0 and
454 Chapter 10 AC Response (absorbed or released?) by the inductance at (a) t = (b) t = 2 us. 0 and

Answers

10.14 :The total current drawn from the source is 4∠0° A.

10.15:The total current drawn from the source is 4∠75.96° A.

The power absorbed by the inductance is 64 W at t = 0 and 28.64 W at t = 2μs.

To evaluate the current through the circuit, we can use the superposition theorem. We consider V1 = 24∠0° and V2 = 0.

Therefore, I1 = V1 / (R + jωL) = 24 / (6 + j×2×10^3×0.04) = 4∠0° A.

And, I2 = V2 / (R + jωL) = 0 / (6 + j×2×10^3×0.04) = 0 A.

Thus, the total current drawn from the source is I = I1 + I2 = 4∠0° A.

To find the current through the circuit, we can apply the superposition theorem. We consider V1 = 20∠0° and V2 = 0.

Therefore, I1 = V1 / (R + jωL) = 20 / (5 + j×2×10^3×5×10^-6) = 4∠75.96° A.

And, I2 = V2 / (R + jωL) = 0 / (5 + j×2×10^3×5×10^-6) = 0 A.

Thus, the total current drawn from the source is I = I1 + I2 = 4∠75.96° A.

The power absorbed (or released) by the inductance is given by P = I^2XL, where XL = 2πfL = 2π×1000×40×10^-6 = 2.512 ohms.

Therefore, the power absorbed (or released) by the inductance is:

At t = 0; IL = I∠75.96° = 4∠75.96° A.

Thus, P = I^2XL = 16×2.512×cos(75.96°+90°) = 16×2.512×sin(75.96°) = 64 W (absorbed).

At t = 2μs, V1 = 20sin(2πf×t) = 20sin(2π×1000×2×10^-6) = 28.28 V.

Therefore, I1 = V1 / XL = 28.28 / 2.512 = 11.25∠75.96° A.

Thus, P = I^2XL = 11.25×2.512×cos(75.96°+90°) = 11.25×2.512×sin(75.96°) = 28.64 W (absorbed).

Hence, the power absorbed (or released) by the inductance is:

At t = 0, 64 W (absorbed), and

At t = 2μs, 28.64 W (absorbed).

Learn more about inductance

https://brainly.com/question/29981117

#SPJ11

You are asked to design a resistor using an intrinsic semiconductor bar of length L and a cross-sectional area A. The scattering rate for electrons and holes are both 1/t, and the effective mass for holes is mo* which is two times larger than the effective mass for electrons. The bandgap is G. Assume T=300K. A. Give an expression for the intrinsic electron concentration in terms of the parameters given above. Show all steps. The final expression should be as compact as possible. B. Obtain an expression for the current in the bar in terms of the parameters given if a voltage Vg is applied across the bar. Sketch the bar with the voltage applied and show with arrows indicating the directions of Electric Field and current densities. C. If the hole effective mass, me* is 1xmo, hole and electron mobilities are 0.17 m²/V.s and 0.36 m'/V.s, respectively. Consider G=0.7 ev. Calculate total resistance of the bar. Be careful with units.

Answers

The total resistance of the bar is given by; [tex]R = L / (σ * A)[/tex]

A. Expression for intrinsic electron concentration

The intrinsic carrier concentration for electrons is given by the formula;

[tex]n = 2 [(2πmkT/h²) ^ 3 / 2] * e ^ (−Eg / 2kT)[/tex]

Where;h is Plank's constant K is the Boltzmann constant

Eg is the Band Gap Energy, m is the effective mass of electrons k, T is Boltzmann constant multiplied by temperature T is the absolute temperature of the body, e is the electric charge

The above equation can be written as; [tex]n = AT^ (3/2) * e^ (-Eg/2kT)[/tex]

Where; A = 4 * π * (mk) ^ 3 / (2 * h ^ 3)

B. Expression for the current in the bar

Assuming the applied voltage across the intrinsic semiconductor bar is Vg, then the current in the bar is given by;

[tex]J = (qμn * EFn * Ap + qμp * EFp * Ap)Vg / L[/tex]

Where; q is the charge of an electronμn and μp are the mobilities of electrons and holes respectively

Ap is the cross-sectional area of the bar

EFn is the electric field for electrons

EFp is the electric field for holesVg is the voltage applied

L is the length of the bar C. Calculation of total resistance of the bar

The total resistance of the bar is given by; [tex]R = L / (σ * A)[/tex]

Where ;σ is the conductivity of the bar.[tex]σ = q * (μn * n + μp * p)[/tex]

Where; p is the intrinsic carrier concentration for holes.

To know more about resistance visit-

https://brainly.com/question/33728800

#SPJ11

Other Questions
Q:what is the type of data path for the following micro-operation * Step to ti 12 Micro-operation (R) (R) (A) + (B) A B Ro Rsums and curriculum vitaes, or CVs, are essentially the same, exceptA) CVs are more detailed and include personal information.B) rsums are longer and list all past experiences.C) personal information should never be on a CV, but can be on a rsum.D) rsums use only months and years as dates, CVs use exact dates.E) CVs start with general information and become more detailed, rsums start with detailedinformation that becomes more general what are the most common risk areas in a health care organization that require compliance attention? What steps does the compliance department need to take to address specific risk areas? What risk areas have you had personal experiences with in your career in health care? 3. What is the purpose of using sensors in an industrial system? Explain the difference between the information derived by sensors and that provided by indication devices. Pricing Mini Case: Assessing the Cannibalization Risk Cannibalization occurs when a company releases a new product in a product line or family and some % of the sales of the new entrant are because consumers stop buying the old products in favor of the new entrant. In this exercise, you will be asked to assess the exact size of the cannibalization risk. Then, you will be asked to make a series of strategic decisions based on the analyses. Imagine you are the CMO of "Saber Blades". Saber Blades manufactures high quality, extremely durable sci-fi laser sword products that are extremely popular among young adult consumers who enjoy dressing up like their favorite sci-fi characters in movies, books, and comics (the act of dressing up in this way is known as cosplay). Click the icon to learn more details about each product. Click the icon to view the data from Saber Blades current financials Click the icon to view the data from a rigorous market forecast study. Based on the values presented below, should Saber Blades introduce The Warrior to the market? No , because the change in Total Monthly Contribution value due to introducing The Warrior is $ (Round to the nearest dollar.) alization R * More Info cases a ne com M These costume prop swords feature a stylized aluminum handle and a clear, high density plastic "blade." The blade is fitted internally with a lighting system; this allows people to pick whether their sword glows blue, red, purple, green, or some other color. 2 Currently, there are two different lines of Saber Blades. First, there is "The Apprentice." The Apprentice is the low price option. It features a standard aluminum handle and the color of the blade can be either red, blue, or green (but only one of the colors works on any given sword). The second product is "The Master." The Master is the high price option. It features the choice o highly intricate aluminum handles. In addition, the blade has a colo function, meaning it can be one of any 16 colors with ease. In addition, The Master makes cool sci-fi sounds when swung, and it comes with a stylish leather holster. Sale Vari Con Estir Estic Saber Blades is considering adding a new line, "The Warrior." The Warrior would be a midrange option. The aluminum handle would be very intricate, but the color of the blade would remain fixed as a single color. In addition, The Warrior would make cool sci-fi sounds when swung, but the sound options are limited compared to The Master. No holster would be included. The product is already developed and ready for production, but Saber Blades is worried the new product will simply takes sales away from their already existing products. Print Done Chen click Clear All sses Flade aracte 0 More Info Is ab om S om a Sales Price Variable Cost Contribution per Unit Estimated Unit Sales per Month Estimated Cannibalization Rate sho Existing Product: The Apprentice $50 $33 $17 263 18% NEW Product: The Warrior $140 $122 $18 121 Existing Product: The Master $190 $108 $82 Onthi 74 25% Print Done exact size of the cannibalization risk. Then, you will be asked to make a series of strategic decisions based on the ber Bld movies i More Info - x ly popular am ech pro Blades us mal Existing Product: The Apprentice aber BI $50 Sales Price Variable Cost Contribution per Unit Unit Sales per Month Existing Product: The Master $190 $108 $82 74 tributid $33 $17 263 Print Done with relationship marketing, customers can develop social relationships with their service providers, which makes it less likely that they will switch to a competitor. Please choose a multinational company, and then identify at least one country (other than the US) where the company conducts business.Prepare an analysis paper describing the accounting infrastructure and challenges the company faces in the selected country.The analysis should cover the following topics with a comparison to the US: accounting regulation and standards, professional organization, accounting and audit practices, recording and reporting of financial data. Write the program for the DVD inventory problem that thischapter describes.5.4 Application: Maintaining an InventoryImagine that you have a part-time job at the local movie rentalstore. Realizing plant and grain protein digestion in ruminants occurs primarily in the Organizing the incident response planning process begins with staffing the disaster recovery committee. True or false? The wells family drinks 8. 5 gallons per week. The McDonald family drinks 1. 1 gallons of milk each day. What is the difference,in liters, between the amounts of milk the families drink in one week Let x be a numpy array with 4 rows and 4columns:x = ( [[ 1, 2, 3, 4],[ 5, 6, 7, 8],[ 9, 10, 11, 12],[13, 14, 15, 16]])What is the result of the following operations? Please append wit The ledger of Claudell Company includes the following unadjusted normal balances: Prepaid Rent $2,400, Services Revenue $69,600 and Wages Expense $6,400. Adjustments are required for (a) prepaid rent expired $900; (b) accrued services revenue $2,300; and (c) accrued wages expense $1,400. Enter the necessary adjustments on the following work sheet and complete the work sheet for the given accounts. The incidence of poverty in Canada is highest among which of the following groups?Married couples with childrenSingle-parent families (female head)Single-parent families (male head)Elderly unattached females what is the sweetest-tasting simple carbohydrate in the diet Business EthicsRead Case 14: Whole Foods: 365 Degrees of Commitmentto StakeholdersAnswer the following:a. How has the commitment to Whole Foods' corporate valuescontributed to the Company's succe 4 VSL: The United Kingdom and Ireland sit on either side of the Irish Sea, which is the most radioactively contaminated sea in the world. Imagine that the two countries are considering a collaboration 1) What are the three main purposes of an operating system? 2) We have stressed the need for an operating system to make efficient use of the computing hardware. When is it appropriate for the operating system to forsake this principle and to "waste" resources? Why is such a system not really wasteful? 3) What is the main difficulty that a programmer must overcome in writing an operating system for a real-time environment? 4) Keeping in mind the various definitions of operating system, consider whether the operating system should include applications such as web browsers and mail programs. Argue both that it should and that it should not, and support your answers. 5) How does the distinction between kernel mode and user mode function as a rudimentary form of protection (security) system? 6) Which of the following instructions should be privileged? a. Set value of timer. b. Read the clock. c. Clear memory. d. Issue a trap instruction. e. Turn off internupts. f. Modify entries in device-status table. g. Switch from user to kernel mode. h. Access I/O device. 7) Some early computers protected the operating system by placing it in a memory partition that could not be modified by either the user job or the operating system itself. Describe two difficulties that you think could arise with such a scheme. 8) Some CPUs provide for more than two modes of operation. What are two possible uses of these multiple modes? 9) Timers could be used to compute the current time. Provide a short description of how this could be accomplished. 10) Give two reasons why caches are useful. What problems do they solve? What problems do they cause? If a cache can be made as large as the device for which it is caching (for instance, a cache as large as a disk), why not make it that large and eliminate the device? Which of the following statements is false regarding the use of analytical procedures in auditing PPE?a.substantial variations may be caused by one or few transactionsb.can be used to verify depreciation amountsc.can help identify classification errors when examined with the repairs and maintenanced.account account balances are predictable so they are an effective audit procedure Sam Jenkins is attending a football game at the Castle Hills Stadium for his favorite local team, the SunTown Sizzlers. The stadium is crowded, and it is hot outside. Since this is a high school game, there are tons of children at the stadium, many of whom are running around laughing and playing, unsupervised by their parents. Some older children, probably early teens, seem to have some type of tagging game going on. Sam sees several of the kids going around tagging various people by pushing their hands against a random persons back or shoulder, screaming tag, then running away laughing. Even though its hot outside, Sam cant go without his evening caffeine boost, and he purchases a piping hot coffee from the concession stand. As Sam is walking up the stadium stairs, with his hot coffee in hand to find a seat, one of those teenagers runs up and tags him on the arm causing the piping hot coffee to spill all over Sams arm. The teenager runs away laughing as Sam shrieks while his skin is seared with the hot liquid. Sam ends up with 2nd degree burns that he has treated at an urgent care facility. Sam doesnt have good health insurance and times are tight. Sam comes to you to see if he can seek recovery from the teenager who caused his injuries.1. What kind of case might you suggest that Sam file? (Hint: It is not negligence. Please draw on what you have learned and studied to date in this class to answer these questions.)2. Do you think Sam has a good case? Why or why not?