Compare and contrast Euclidean and spherical geometries. Be sure to include a discussion of planes and lines in both geometries.

Answers

Answer 1

The main difference between Euclidean and spherical geometries is that Euclidean geometry deals with flat planes and straight lines, while spherical geometry deals with curved planes (the surface of a sphere) and curved lines (great circles).

Euclidean and spherical geometries are two different types of geometries. Let's compare and contrast them, specifically looking at planes and lines in both geometries.
In Euclidean geometry, planes are flat, two-dimensional surfaces that extend infinitely in all directions. They are defined by three non-collinear points. Lines in Euclidean geometry are also straight and extend infinitely in both directions. They are defined by two points.
On the other hand, in spherical geometry, planes are not flat but curved. They are represented by the surface of a sphere. Spherical planes do not extend infinitely and are bounded by the surface of the sphere. Lines in spherical geometry are also curved and are called great circles.

Great circles are formed by the intersection of a plane passing through the center of the sphere with the surface of the sphere. Unlike lines in Euclidean geometry, great circles do not extend infinitely but rather form closed loops on the surface of the sphere.

Read more about  Euclidean geometry here:

https://brainly.com/question/31120908

#SPJ11


Related Questions



The contingency table below shows the number of nursing students who took preparatory class before taking their board exams and the number of students who passed the board exams on their first attempt.

b. What is the probability that a nursing student did not pass the board exams given that he or she did not take the preparatory class?

Answers

The probability that a nursing student did not pass the board exams given that they did not take the preparatory class is 5/16 or approximately 0.3125.

To find the probability that a nursing student did not pass the board exams given that they did not take the preparatory class, we need to use the given information from the contingency table.

The total number of students who did not take the preparatory class is the sum of the "non-preparatory classes" in both the passed and not passed categories, which is 11 + 5 = 16.

The number of students who did not pass the board exams and did not take the preparatory class is given as 5.

Therefore, the probability that a nursing student did not pass the board exams given that they did not take the preparatory class can be calculated as:

Probability = Number of students not passed and not taking a preparatory class / Total number of students not taking a preparatory class

Probability = 5 / 16

So, the probability that a nursing student did not pass the board exams given that they did not take the preparatory class is 5/16 or approximately 0.3125.

Learn more about probability at:

https://brainly.com/question/30390037

#SPJ4

The contingency table mentioned in the question is attached here:



Multiply. (2+√7)(1+3 √7)

Answers

The product of (2 + √7)(1 + 3√7) is 23 + 7√7.To multiply the expressions (2 + √7)(1 + 3√7), we can use the distributive property and multiply each term separately.

(2 + √7)(1 + 3√7) = 2(1) + 2(3√7) + √7(1) + √7(3√7)

Now, simplify each term:

2(1) = 2

2(3√7) = 6√7

√7(1) = √7

√7(3√7) = 3(√7)^2 = 3(7) = 21

Putting it all together:

2 + 6√7 + √7 + 21

Combining like terms:

2 + √7 + 6√7 + 21

Simplifying further:

23 + 7√7

Therefore, the product of (2 + √7)(1 + 3√7) is 23 + 7√7.

To learn more about  PRODUCT click here:

brainly.com/question/18369543

#SPJ11



Find the mean, median, and mode for each set of values. 8,9,11,12,13,15,16,18,18,18,27

Answers

Mean = 15

Median = 15

Mode = 18

To find the mean, median, and mode of the given set of values: 8, 9, 11, 12, 13, 15, 16, 18, 18, 18, 27.

Mean:

The mean is calculated by summing up all the values in the set and dividing by the total number of values.

Sum of the values = 8 + 9 + 11 + 12 + 13 + 15 + 16 + 18 + 18 + 18 + 27 = 165

Total number of values = 11

Mean = Sum of values / Total number of values = 165 / 11 = 15

Therefore, the mean of the given set is 15.

Median:

The median is the middle value in a sorted list of numbers. To find the median, we need to arrange the values in ascending order first.

Arranged in ascending order: 8, 9, 11, 12, 13, 15, 16, 18, 18, 18, 27

Since there are 11 values, the middle value is at position (n + 1) / 2 = (11 + 1) / 2 = 6th position.

Thus, the median of the given set is 15.

Mode:

The mode is the value that appears most frequently in the set.

In the given set, the value 18 appears three times, more than any other value. Therefore, the mode of the set is 18.

To summarize:

Mean = 15

Median = 15

Mode = 18

Learn more about Mean from

https://brainly.com/question/1136789

#SPJ11





a. Use a calculator to find the value of each expression: cos40°, cos 400° , and cos-320°.

Answers

The values are approximately:

cos(40°) ≈ 0.766

cos(400°) ≈ -0.766

cos(-320°) ≈ -0.766

Certainly! In trigonometry, the cosine function (cos) calculates the ratio of the adjacent side to the hypotenuse of a right triangle. The values obtained from the calculator represent the cosine values for the given angles.

For the angle 40°, the cosine value is approximately 0.7660444431. This means that the adjacent side of a right triangle is approximately 0.766 times the length of the hypotenuse.

For the angle 400°, we can use the concept of periodicity in trigonometric functions. Since the cosine function repeats every 360°, an angle of 400° is equivalent to an angle of 40°. Therefore, the cosine value is approximately the same, -0.7660444431, as it was for 40°.

For the angle -320°, negative angles are obtained by rotating clockwise instead of counterclockwise. In this case, we can use the fact that the cosine function is an even function, which means that cos(-θ) = cos(θ). So the cosine value for -320° is the same as the cosine value for 320°, which is approximately -0.7660444431.

To summarize, the cosine values for the given angles are approximately 0.766 for both 40° and -320°, and approximately -0.766 for 400°.

Learn more about   value from

https://brainly.com/question/24078844

#SPJ11

For a population with a mean equal to 200 and a standard deviation equal to 25, calculate the standard error of the mean for the following sample sizes. a) 10 b) 40 c) 70 a) The standard error of the mean for a sample size of 10 is Round to two decimal places as needed.) b) The standard error of the mean for a sample size of 40 is (Round to two decimal places as needed.) c The standard error of the mean for a sample size of 70 is (Round to two decimal places as needed.)

Answers

The standard error of the mean decreases as the sample size increases. For a sample size of 10, SEM =  7.91.  For a sample size of 40, SEM =  3.95.

The standard error of the mean (SEM) can be calculated using the formula:

SEM = standard deviation / √sample size

Given a population with a mean of 200 and a standard deviation of 25, we can calculate the standard error of the mean for the provided sample sizes:

a) For a sample size of 10:

SEM = 25 / √10 ≈ 7.91 (rounded to two decimal places)

b) For a sample size of 40:

SEM = 25 / √40 ≈ 3.95 (rounded to two decimal places)

c) For a sample size of 70:

SEM = 25 / √70 ≈ 2.99 (rounded to two decimal places)

To calculate the standard error of the mean, we divide the standard deviation by the square root of the sample size. As the sample size increases, the standard error decreases. This indicates that larger sample sizes provide more precise estimates of the population mean.

The standard error of the mean represents the variability or uncertainty in the sample mean as an estimate of the population mean. It indicates how much the sample mean is likely to differ from the population mean. Smaller standard errors indicate more reliable estimates, while larger standard errors suggest greater uncertainty in the estimate.

Learn more about mean here:

https://brainly.com/question/30765693

#SPJ11

A university spent $2 million to install solar panels atop a parking garage. These panels will have a capacity of 300 kilowatts (kW) and have a life expectancy of 20 years. Suppose that the discount rate is 20%, that electricity can be purchased at $0.10 per kilowatt-hour (kWh), and that the marginal cost of electricity production using the solar panels is zero. Hint: It may be easier to think of the present value of operating the solar panels for 1 hour per year first. Approximately how many hours per year will the solar panels need to operate to enable this project to break even
17,797.25
13,690.19
10,952.15
6,845.10

If the solar panels can operate only for 12,321 hours a year at maximum, the project break even. Continue to assume that the solar panels can operate only for 12,321 hours a year at maximum. In order for the project to be worthwhile (i.e., at least break even), the university would need a grant of at least

Answers

The solar panels installed on the university parking garage require approximately 10,952 hours of operation per year to break even, based on the given parameters and a maximum operational capacity of 12,321 hours per year.


To calculate the number of hours per year the solar panels need to operate to break even, we need to consider the present value of operating the solar panels for 1 hour per year.
The initial investment cost for installing the solar panels is $2 million. We’ll calculate the present value of this cost over 20 years using a discount rate of 20%.
PV = Initial Cost / (1 + Discount Rate)^Years
PV = $2,000,000 / (1 + 0.20)^20
PV = $2,000,000 / (1.20)^20
PV = $2,000,000 / 6.191736
PV = $323,035.53
The present value of operating the solar panels for 1 hour per year is $323,035.53.
Now, we’ll calculate the revenue generated by operating the solar panels for 1 hour per year. The capacity of the solar panels is 300 kW, and the electricity can be purchased at $0.10 per kWh. Therefore, the revenue generated per hour is:
Revenue per hour = Capacity (kW) * Price per kWh
Revenue per hour = 300 kW * $0.10/kWh
Revenue per hour = $30
To break even, the revenue generated per hour should be equal to the present value of the installation cost:
Revenue per hour = PV
$30 = $323,035.53
Now, we can calculate the number of hours per year the solar panels need to operate to break even:
Number of hours per year = PV / Revenue per hour
Number of hours per year = $323,035.53 / $30
Number of hours per year ≈ 10,767.85
Since the solar panels can operate only for a maximum of 12,321 hours per year, the project will break even at approximately 10,768 hours per year.
Among the given options, the closest number to 10,768 is 10,952.15, so the answer is 10,952.15.

Learn more about Discount  here: brainly.com/question/31911669
#SPJ11




b. Which expression in part (a) represents sin (1/60)°?

Answers

The expression that represents sin (1/60)° is (c) sin (30°/60°). Sine is a periodic function, which means that it repeats itself every 360°. So, sin (1/60)° is the same as sin (360°/60°) = sin 6°.

We can also write sin 6° as sin (30°/60°). This is because sin 6° is the sine of an angle that is 6° less than 30°. In other words, the terminal side of the angle that measures sin 6° is the same as the terminal side of the angle that measures 30°, but rotated 6° counterclockwise.

Therefore, the expression that represents sin (1/60)° is (c) sin (30°/60°).

Angle A measures 30°.

Angle B measures 6°.

The terminal sides of Angle A and Angle B are the same.

To learn more about terminal side click here : brainly.com/question/29084964

#SPJ11



What is the expression in factored form?

a. x²+14 x+40 .

Answers

The expression in factored form will be (x + 4)(x + 10) .

Given,

x²+14 x+40

Now,

To obtain the factored form of the quadratic equation .

Factorize the quadratic expression ,

x²+14 x+40 = 0

Factorizing,

x² + 10x + 4x + 40 = 0

x(x + 10) + 4(x + 10) = 0

Factored form :

(x + 4)(x + 10) = 0

Thus the values of x ,

x+4 = 0

x = -4

x+ 10 = 0

x = -10

Know more about factored form,

https://brainly.com/question/30241602

#SPJ4

A commercial jet hits an air pocket and drops 201 feet. after climbing 132 feet, it drops another 106 feet. what is the overall vertical change?

Answers

The overall vertical change of the commercial jet is -175 feet.

How the vertical change is determined:

The overall vertical change of the commercial jet can be determined by subtraction operation.

Subtraction operation is one of the four basic mathematical operations, including addition, multiplication, and division.

Subtraction involves the minuend, subtrahend, and the difference.

The initial drop of the commerical jet = 201 feet

The ascent of the commerical jet = 132 feet

The final drop of the commercial jet = 106 feet

The overall vertical change = -175 feet (132 - 201 - 106)

Thus, overall, using subtraction operation, the comercial jet changed its vertical position by -175 feet.

Learn more about subtraction operations at https://brainly.com/question/28467694.

#SPJ4



Solve each equation using any method. When necessary, round real solutions to the nearest hundredth. 2x²-1=5 x .

Answers

The solutions to the equation, 2x²-1=5x are approximately x ≈2.68 and x ≈ -0.18

The given quadratic equation is,

2x²- 1 =  5x

To solve this equation bring all the terms to one side, so we get:

2x² - 5x - 1 = 0

Now we can use the quadratic formula to find the solutions for x:

x = (-b ± √(b² - 4ac)) / 2a

In this case, a = 2, b = -5, and c = -1, so we get:

x = (-(-5) ± √((-5)² - 4(2)(-1))) / 2(2)

x = (5 ± √(33)) / 4

x = (5 ± 5.74) / 4

Rounding to the nearest hundredth, we get:

x ≈2.68 and x ≈ -0.18

Hence,

The solutions to the equation are approximately x ≈2.68 and x ≈ -0.18

To learn more about quadratic equation visit:

https://brainly.com/question/30098550

#SPJ4



Simplify each radical expression. Use absolute value symbols when needed. ⁴√0.0016

Answers

⁴√(0.0016) ≈ 1.1832 × 10^(-3/4)

This is the simplified radical expression for ⁴√0.0016.

To simplify the fourth root of 0.0016, we can express 0.0016 as a power of 10 and then take the fourth root.

0.0016 = 1.6 × 10^(-3)

Now, let's simplify the fourth root:

⁴√(1.6 × 10^(-3))

Since the exponent of 10 is divisible by 4, we can take out the fourth root of 10^(-3):

⁴√(1.6) × ⁴√(10^(-3))

The fourth root of 1.6 can be approximated as 1.1832. Now, let's simplify the fourth root of 10^(-3):

⁴√(10^(-3)) = 10^(-3/4)

The exponent 3/4 indicates taking the fourth root of the cube root of 10. Therefore:

⁴√(0.0016) ≈ 1.1832 × 10^(-3/4)

This is the simplified radical expression for ⁴√0.0016.

Learn more about  expression from

brainly.com/question/1859113

#SPJ11

(Score for Question 2: of 10 points) 2. Penelope made a reflective sticker for her scooter in the shape of a triangle. Two of the three side lengths were 6 cm and 8 cm. Stride, Inc. All rights reserved. No reproduction without written consent of Stride, Inc. (a) Could the third side of the reflective sticker be 12 cm long? Explain your reasoning. If this third side is possible, draw the triangle. (b) Could the third side of the reflective sticker be 2 cm long? Explain your reasoning. If this third side is possible, draw the triangle. Answer!​

Answers

The triangle inequality is not satisfied. It is not possible for the third side of the reflective sticker to be 2 cm long.

(a) To determine if the third side of the reflective sticker could be 12 cm long, we can apply the triangle inequality theorem. According to the theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Let's check if the triangle inequality holds for the given side lengths:

6 cm + 8 cm > 12 cm

14 cm > 12 cm

Since the sum of the two given side lengths (6 cm and 8 cm) is greater than the potential third side length (12 cm), the triangle inequality is satisfied. Therefore, it is possible for the third side of the reflective sticker to be 12 cm long.

To draw the triangle, start by drawing a line segment of length 6 cm. From one endpoint of the 6 cm segment, draw another line segment of length 8 cm. Finally, connect the other endpoints of the two line segments with a line segment of length 12 cm. This will form the triangle with side lengths of 6 cm, 8 cm, and 12 cm.

(b) To determine if the third side of the reflective sticker could be 2 cm long, we again apply the triangle inequality theorem.

Let's check if the triangle inequality holds for the given side lengths:

6 cm + 8 cm > 2 cm

14 cm > 2 cm

In this case, the sum of the two given side lengths (6 cm and 8 cm) is not greater than the potential third side length (2 cm).

Hence, we do not need to draw a triangle for the case where the third side is 2 cm long, as it does not form a valid triangle.

for more questions on triangle

https://brainly.com/question/17335144

#SPJ8

Suppose U(x,y)=x
1/2
y
1/2
and P
x

x+P
y

y=I a. Solve for x

(P
x

,P
y

,I) and y

(P
x

,P
y

,I). b. What are the values of x

(P
x

,P
y

,I) and y

(P
x

,P
y

,I) if I=$24,P
x

=$4 and,P
y

=$2?

Answers

(a) The solutions for x* and y* are given by equations (6) and (7), respectively. (b) When I = $24, Pₓ = $4, and Pᵧ = $2, the optimal values of x* and y* are x* = 16 and y* = 20, respectively.

(a) To solve for x* and y* in terms of Pₓ, Pᵧ, and I, we need to find the utility-maximizing bundle that satisfies the budget constraint.

The utility function is given as U(x, y) = x^(1/2) * y^(1/2).

The budget constraint is expressed as Pₓ * x + Pᵧ * y = I.

To maximize utility, we can use the Lagrange multiplier method. We form the Lagrangian function L(x, y, λ) = U(x, y) - λ(Pₓ * x + Pᵧ * y - I).

Taking the partial derivatives of L with respect to x, y, and λ and setting them equal to zero, we get:

∂L/∂x = (1/2) *[tex]x^(-1/2) * y^(1/2)[/tex]- λPₓ = 0   ... (1)

∂L/∂y = (1/2) *[tex]x^(1/2) * y^(-1/2)[/tex] - λPᵧ = 0   ... (2)

∂L/∂λ = Pₓ * x + Pᵧ * y - I = 0               ... (3)

Solving equations (1) and (2) simultaneously, we find:

[tex]x^(-1/2) * y^(1/2)[/tex]= 2λPₓ   ... (4)

[tex]x^(1/2) * y^(-1/2)[/tex]= 2λPᵧ   ... (5)

Dividing equation (4) by equation (5), we have:

[tex](x^(-1/2) * y^(1/2)) / (x^(1/2) * y^(-1/2))[/tex] = (2λPₓ) / (2λPᵧ)

y/x = Pₓ/Pᵧ

Substituting this into equation (3), we get:

Pₓ * x + (Pₓ/Pᵧ) * x - I = 0

x * (Pₓ + Pₓ/Pᵧ) = I

x * (1 + 1/Pᵧ) = I

x = I / (1 + 1/Pᵧ)        ... (6)

Similarly, substituting y/x = Pₓ/Pᵧ into equation (3), we get:

Pᵧ * y + (Pᵧ/Pₓ) * y - I = 0

y * (Pᵧ + Pᵧ/Pₓ) = I

y * (1 + 1/Pₓ) = I

y = I / (1 + 1/Pₓ)        ... (7)

Therefore, the solutions for x* and y* are given by equations (6) and (7), respectively.

(b) Given I = $24, Pₓ = $4, and Pᵧ = $2, we can substitute these values into equations (6) and (7) to find the values of x* and y*.

x* = 24 / (1 + 1/2) = 16

y* = 24 / (1 + 1/4) = 20

So, when I = $24, Pₓ = $4, and Pᵧ = $2, the optimal values of x* and y* are x* = 16 and y* = 20, respectively.

Learn more about partial derivatives here:

https://brainly.com/question/32387059

#SPJ11

Suppose U(x,y)=x  1/2  y  1/2  and P  x ​  x+P  y ​  y=I a. Solve for x  ∗  (P  x ​  ,P  y ​  ,I) and y  ∗  (P  x ​  ,P  y ​  ,I). b. What are the values of x  ∗  (P  x ​  ,P  y ​  ,I) and y  ∗  (P  x ​  ,P  y ​  ,I) if I=$24,P  x ​  =$4 and,P  y ​  =$2?



What is the sum of the two infinite series ∑^[infinity]ₙ=₁ (2/3)ⁿ⁻¹ and ∑^[infinity] ₙ=₁ (2/3)ⁿ

Answers

The sum of the two infinite series ∑ₙ=₁∞ (2/3)ⁿ⁻¹ and ∑ₙ=₁∞ (2/3)ⁿ is 3 + 2 = 5.

To find the sum of the two infinite series, let's evaluate each series separately.

Series 1: ∑ₙ=₁∞ (2/3)ⁿ⁻¹

To determine the sum of this series, we can use the formula for the sum of an infinite geometric series:

S₁ = a₁ / (1 - r)

where:

S₁ = sum of the series

a₁ = first term of the series

r = common ratio of the series

In this case, the first term (a₁) is (2/3)⁰ = 1, and the common ratio (r) is 2/3.

Plugging these values into the formula, we have:

S₁ = 1 / (1 - 2/3)

   = 1 / (1/3)

   = 3

So, the sum of the first series is 3.

Series 2: ∑ₙ=₁∞ (2/3)ⁿ

Similarly, we can use the formula for the sum of an infinite geometric series:

S₂ = a₂ / (1 - r)

In this case, the first term (a₂) is (2/3)¹ = 2/3, and the common ratio (r) is 2/3.

Plugging these values into the formula, we have:

S₂ = (2/3) / (1 - 2/3)

   = (2/3) / (1/3)

   = 2

So, the sum of the second series is 2.

Therefore, the sum of the two infinite series ∑ₙ=₁∞ (2/3)ⁿ⁻¹ and ∑ₙ=₁∞ (2/3)ⁿ is 3 + 2 = 5.

Learn more about Series here:

https://brainly.com/question/32669622

#SPJ4



Mark and Josefina wrote an equation of a line with slope -5 that passes through the point (-2,4) . Is either of them correct? Explain your reasoning.

Answers

Both Mark and Josefina obtained the same y-intercept value of -6, which means that their equations are equivalent and correct. Therefore, both Mark and Josefina are correct in writing the equation of the line .

Both Mark and Josefina could be correct in their equations, or one of them could be correct while the other is not. To determine the accuracy of their equations, we need to analyze the information provided and apply the slope-intercept form of a linear equation, which is y = mx + b, where m represents the slope and b represents the y-intercept.

In summary, we need to evaluate the equations written by Mark and Josefina, which have a slope of -5 and pass through the point (-2, 4), to determine if either or both of them are correct.

Now let's explain further:

To find the equation of a line with a given slope and passing through a given point, we can substitute the values into the slope-intercept form of a linear equation.

Mark's equation: y = -5x + b

Josefina's equation: y = -5x + c

In both equations, the slope is correctly given as -5. However, to determine the accuracy of their equations, we need to find the y-intercepts, represented by b and c, respectively.

Given that the line passes through the point (-2, 4), we can substitute these coordinates into the equations:

For Mark's equation: 4 = -5(-2) + b

Simplifying, we get: 4 = 10 + b

Subtracting 10 from both sides, we find: b = -6

For Josefina's equation: 4 = -5(-2) + c

Simplifying, we get: 4 = 10 + c

Subtracting 10 from both sides, we find: c = -6

Both Mark and Josefina obtained the same y-intercept value of -6, which means that their equations are equivalent and correct. Therefore, both Mark and Josefina are correct in writing the equation of the line with a slope of -5 that passes through the point (-2, 4) as y = -5x - 6.

Learn more about determine here

brainly.com/question/30795016

#SPJ11

What is the formula for the surface area of a right circular cylinder, S= 2πr + 2πr² , solved for h ?

(A) h = s/4πr . (B) h = s/2πr² . (C) h = s/(2πr) -r . (D) h = -S/2πr .

Answers

The formula for the surface area of a right circular cylinder is S = 2πr + 2πr². To solve for h, we can divide both sides of the equation by 2πr, which gives us h = S/2πr².

The surface area of a right circular cylinder is the total area of the top and the two bases, plus the lateral surface area. The lateral surface area is the curved surface area, and it is equal to 2πrh, where r is the radius of the base and h is the height of the cylinder.

The total surface area of the cylinder is therefore S = 2πr² + 2πrh. We can solve for h by dividing both sides of this equation by 2πr, which gives us h = S/2πr².

Here is a step-by-step solution:

Start with the formula for the surface area of a right circular cylinder: S = 2πr + 2πr².

Divide both sides of the equation by 2πr: h = S/2πr².

The answer is (B).

Learn more about cylinder here: brainly.com/question/10048360

#SPJ11

lines p and q intersect at point (1,3) in the standard (x,y) coordinate plane. lines p and r intersect at (2,5)

Answers

In the standard (x, y) coordinate plane, lines p and q intersect at the point (1, 3), while lines p and r intersect at the point (2, 5).

In the given scenario, lines p and q intersect at the point (1, 3) and lines p and r intersect at the point (2, 5). Each point of intersection represents a solution that satisfies both equations of the respective lines.

The equations of lines p and q can be determined using the point-slope form or any other form of linear equation representation. Similarly, the equations of lines p and r can be determined to find their intersection point.

The coordinates (1, 3) and (2, 5) indicate the precise locations where the lines p and q, and p and r intersect, respectively, on the coordinate plane.

Learn more about Coordinate plane here :

brainly.com/question/13611766

#SPJ11



A problem on a test asked students to solve a fifth-degree polynomial equation with rational coefficients. Adam found the following roots: -11.5, \sqrt{2}, \frac{2 i+6}{2},-\sqrt{2} and 3-i . His teacher wrote that four of these roots are correct, and one is incorrect. Which root is incorrect?

(F) -11.5 (G)√2 (H) \frac{2 l+6}{2} (I) 3-i

Answers

The teacher states that four of these roots are correct, while one is incorrect. Out of the given roots, the incorrect root is -11.5.

We are given that Adam found five roots for the fifth-degree polynomial equation with rational coefficients: -11.5, √2, (2i + 6)/2, -√2, and 3-i. The teacher states that four of these roots are correct, while one is incorrect.

To determine the incorrect root, we can analyze the given options: -11.5, √2, (2i + 6)/2, and 3-i.

Among these options, the only one that is not a valid root is -11.5. This is because the problem specifies that the polynomial equation has rational coefficients, meaning that all the roots must also be rational or irrational numbers that can be expressed as the square root of a rational number.

Therefore, the incorrect root is -11.5 (option F).

Learn more about  rational coefficients: brainly.com/question/19157484

#SPJ11

Another one! Please help!

Answers

-22.25 is the answer

its the correct answer for sure and pls give me brainliest cuz i have to rank up....



Find the diameter and radius of a circle with the given circumference. Round to the nearest hundredth. C=43 \mathrm{~cm}

Answers

The diameter and radius of a circle with a circumference of 43 cm rounded to the nearest hundredth are as follows diameter: 13.68 cm and radius: 6.84 cm

To find the diameter and radius, we can use the formulas:

Circumference (C) = 2πr

Diameter (D) = 2r

Given the circumference of 43 cm, we can substitute it into the circumference formula:

43 = 2πr

To find the radius, we rearrange the formula:

r = 43 / (2π)

Evaluating this expression, we get:

r ≈ 6.84 cm

Next, we can find the diameter by using the diameter formula:

D = 2r

Substituting the value of r, we have:

D ≈ 2 * 6.84 = 13.68 cm

Therefore, the diameter of the circle is approximately 13.68 cm, and the radius is approximately 6.84 cm when the circumference is 43 cm.

Learn more about circles and their properties here:

https://brainly.com/question/29266465

#SPJ4



Solve each system by substitution. Check your answers.

y = x² - 3x - 20 y = -x - 5

Answers

By solving the system of equations using substitution, we find the solutions to be (5, -10) and (-3, -2). These solutions satisfy both equations in the system.

To solve the system by substitution, we substitute the expression for y from one equation into the other equation.

From the second equation, we have y = -x - 5. We substitute this expression for y into the first equation:

x² - 3x - 20 = -x - 5

Next, we solve the resulting quadratic equation for x. Rearranging terms, we get:

x² - 2x - 15 = 0

Factoring the quadratic equation, we have:

(x - 5)(x + 3) = 0

Setting each factor equal to zero, we find two possible values for x: x = 5 and x = -3.

Equation 1: y = x² - 3x - 20
Equation 2: y = -x - 5

Step 1: Substitute Equation 2 into Equation 1.
In Equation 1, replace y with -x - 5:
x² - 3x - 20 = -x - 5

Step 2: Solve the resulting quadratic equation.
Rearrange the equation and simplify:
x² - 3x + x - 20 + 5 = 0
x² - 2x - 15 = 0

Step 3: Factor the quadratic equation.
The factored form of x² - 2x - 15 = 0 is:
(x - 5)(x + 3) = 0

Step 4: Set each factor equal to zero and solve for x.
x - 5 = 0 or x + 3 = 0
x = 5 or x = -3

Step 5: Substitute the values of x back into either equation to find the corresponding values of y.
For x = 5:
Using Equation 2: y = -x - 5
y = -(5) - 5
y = -10

For x = -3:
Using Equation 2: y = -x - 5
y = -(-3) - 5
y = -2

The solutions to the system of equations are:
(x, y) = (5, -10) and (x, y) = (-3, -2).

Learn more about Equation click here :brainly.com/question/13763238

#SPJ11

1. You decide to save $9,000 at the end of each year for the next 17 years. If your savings earn an annual interest rate of 2.0%, how much will you have saved up by the end of 17 years? Round to the nearest dollar.

2. You decide to save $9,000 at the end of each year for the next 17 years. If your savings earn an annual interest rate of 2.0%, how much will you have saved up by the end of 17 years? Round to the nearest dollar.

3. An investment is expected to earn you $3,000 each quarter for the next 15 years. If the appropriate discount rate is 7%, how much is this investment worth today? Round to the nearest dollar.

4. If you deposit $8,000 each year for the next 17 years into an account paying 2.1%, how much in interest will you earn over that time period? Answer in dollars rounded to a whole number.

Answers

You will have saved approximately $192,739 by the end of 17 years. The investment is worth approximately $72,123 today. You will earn approximately $136,000 in interest over the 17-year period.

1. To calculate the savings accumulated over 17 years, we can use the formula for the future value of an annuity:

FV = PMT * [(1 + r)^n - 1] / r

Where:

FV = Future value (unknown)

PMT = Annual savings ($9,000)

r = Annual interest rate (2.0% or 0.02)

n = Number of years (17)

Substituting the given values into the formula:

FV ≈ $9,000 * [(1 + 0.02)^17 - 1] / 0.02

FV ≈ $192,739

Therefore, you will have saved approximately $192,739 by the end of 17 years.

3. To calculate the present value of the investment, we can use the formula for the present value of an annuity:

PV = PMT * [(1 - (1 + r)^(-n)) / r]

Where:

PV = Present value (unknown)

PMT = Quarterly payment ($3,000)

r = Quarterly discount rate (7% or 0.07/4)

n = Number of quarters (15 * 4)

Substituting the given values into the formula:

PV ≈ $3,000 * [(1 - (1 + 0.07/4)^(-60)) / (0.07/4)]

PV ≈ $72,123

Therefore, the investment is worth approximately $72,123 today.

4. To calculate the total interest earned over 17 years, we can multiply the annual deposit by the number of years and subtract the total amount deposited:

Total interest = (Annual deposit * Number of years) - Total amount deposited

Total interest = ($8,000 * 17) - ($8,000 * 17)

Total interest = $136,000

Therefore, you will earn approximately $136,000 in interest over the 17-year period.

Learn more about interest here:

brainly.com/question/7571656

#SPJ11



Expand each binomial. (5a+2b)³

Answers

The binomial expansion of (5a+2b)³ is 125a³+150a²b+60ab²+8b³.

To expand the binomial (5a + 2b)³, we can use the binomial expansion formula or the Pascal's triangle method.

Let's use the binomial expansion formula:

(5a + 2b)³ = (³C₀)(5a)³(2b)⁰ + (³C₁)(5a)²(2b)¹ + (³C₂)(5a)¹(2b)² + (³C₃)(5a)⁰(2b)³

Simplifying each term:

= (1)(125a³)(1) + (3)(25a²)(2b) + (3)(5a)(4b²) + (1)(1)(8b³)

=125a³+150a²b+60ab²+8b³

Hence, the binomial expansion of expression (5a+2b)³ is 125a³+150a²b+60ab²+8b³.

To learn more on Binomial theorem click:

https://brainly.com/question/30095070

#SPJ4



A polygon has an area of 144 square meters.

b. How does each side length change if the area is tripled?

Answers

Each side's length of the polygon will change by √3 times.

Here we do not know whether the polygon is a regular or an irregular one.

Hence we get the formula for the area of a polygon to be

Area = a² X n X cot(180/n)/4

where a = length of each side

n = no. of sides

Here Area is given by 144 m²

Hence we get

a²ncot(180/n)/4 = 144

or, a²ncot(180/n) = 144 X 4 = 576

[tex]or, a^2 = \frac{576}{ncot(180/n)}[/tex]

Now if area is tripled we get the polygon with the new side A to be

A²ncot(180/n) = 576 X 3

[tex]or, A^2 = 3 \frac{576}{ncot(180/n)}[/tex]

or, A² = 3a²

or A = √3 a

Hence each side's length will change by √3 times.

To learn more about Area of Polygon visit

https://brainly.com/question/12291395

#SPJ4

for how many integers nn between 11 and 5050, inclusive, is \dfrac{\left(n^{2}-1\right)!}{\left(n!^{n}\right)} (n! n ) (n 2 −1)! ​ an integer?

Answers

Answer:

Step-by-step explanation:

To determine the number of integers 'n' between 11 and 5050, inclusive, for which the expression (n^2 - 1)! / (n!^n) is an integer, we can analyze the prime factors of the given expression.

Let's consider the prime factorization of the expression:

(n^2 - 1)! = (n - 1)! * n! * (n + 1)! * ... * (n^2 - 1)!

Since we have n! in the denominator, we need to make sure that all the prime factors in n! are canceled out by the prime factors in (n^2 - 1)!. This will ensure that the expression is an integer.

For any integer 'n' greater than or equal to 4, the prime factorization of n! will contain at least one instance of a prime number greater than n. This means that the prime factors in n! cannot be fully canceled out by the prime factors in (n^2 - 1)!, resulting in a non-integer value for the expression.

Therefore, we need to check the values of 'n' from 11 to 5050 individually to find the integers for which the expression is an integer.

Upon checking the values, we find that the integers for which the expression is an integer are n = 11, 12, 13, ..., 5050. There are a total of 5040 integers in this range that satisfy the given condition.

Hence, there are 5040 integers 'n' between 11 and 5050, inclusive, for which the expression (n^2 - 1)! / (n!^n) is an integer.

Learn more about integers

brainly.com/question/33503847

#SPJ11



Draw a square A B C D with opposite vertices at A(2,-4) and C(10,4) .


b. Show that AD || BC and AB || DC

Answers

AD is parallel to BC and AB is parallel to DC.

AD is parallel to BC and AB is parallel to DC, we need to demonstrate that the slopes of the corresponding sides are equal.

Given the coordinates of the square's vertices, A(2, -4) and C(10, 4), we can determine the slope of the line passing through these points using the slope formula:

slope = (change in y) / (change in x)

For the line passing through A and C, the slope is:

slopeAC = (4 - (-4)) / (10 - 2) = 8 / 8 = 1

Similarly, we can find the slopes for the other sides of the square:

For the line passing through A and B:

slopeAB = (-4 - (-4)) / (2 - 10) = 0 / (-8) = 0

For the line passing through D and C:

slopeDC = (4 - 4) / (10 - 2) = 0 / 8 = 0

We can see that the slope of AD (0) is equal to the slope of BC (0), and the slope of AB (0) is equal to the slope of DC (0). When two lines have equal slopes, they are parallel.

Therefore, we have shown that AD is parallel to BC and AB is parallel to DC in the square ABCD.

To learn more about square

brainly.com/question/28776767

#SPJ11

Find the length of the height of the cone.
GIVE RIGHT ANSWER AND I WILL GIVE BRAINLIEST!

Answers

The cone has been cut up into a right triangle, so we can use Pythagorean Theorem.

a^2 + b^2 = c^2
a^2 + 8^2 = 17^2
a^2 + 64 = 289
a^2 = 225
a = 15

The height of the cone is 15.

At a football game there were 1207 people watching at the next game there were 958 people how many people in all were at the two games

Answers

There were a total number of  2,165 people at the two football games.

To find the total number of people at the two games, we add the number of people from each game. The first game had 1,207 people, and the second game had 958 people.

Total number of people = Number of people at Game 1 + Number of people at Game 2

Total number of people = 1,207 + 958

Total number of people = 2,165

Therefore, there were a total of 2,165 people at the two football games.

To calculate the total number of people at the two games, we simply add the number of people at Game 1 and the number of people at Game 2. The first game had 1,207 people, and the second game had 958 people. Adding these two values gives us a total of 2,165 people present at the two football games.

LEARN MORE ABOUT number here: brainly.com/question/3589540

#SPJ11



Find the measure. Round to the nearest tenth if necessary.

The volume of a cone is 196π cubic inches and the height is 12 inches. What is the diameter?

Answers

The cone has a diameter of 14 inch and a volume and height of 196[tex]\pi[/tex]cubic inches and 12 inches, respectively.

The formula for a cone's volume can be used to get its diameter which is as follows:

[tex]V = (1/3)\pi r^2h[/tex]

V is the volume, r is the radius, and h is the height.

In this particular case, we are informed that the height is 12 inches and the capacity is 196 cubic inches. These values can be substituted in the formula:

[tex]196\pi = (1/3)\pi r^2(12)[/tex]

To simplify the problem, we can multiply both sides by 3 and divide both sides by π:

[tex]588 = r^2(12).[/tex]

Next, we can isolate [tex]r^2[/tex] by dividing both sides by 12: 

[tex]49 = r^2[/tex]

By taking the square root of both, we can get the radius.
[tex]r = \sqrt{49[/tex]
r = 7

We know that,

The diameter is twice the radius, So the diameter is:
d = 2r = 2(7) = 14 inches

Therefore, the diameter of the cone is 14 inches.

To know more about cone refer here:

https://brainly.com/question/10670510

#SPJ11



Simplify each trigonometric expression.

sinθcosθ/tanθ

Answers

The simplified expression is Cos² θ.

Given that is a trigonometric expression, sinθ·cosθ/tanθ, we need to simplify it,

So,

sinθ·cosθ/tanθ

We know tanθ = Sin θ / Cos θ, put the value in the expression,

= [Sin θ · Cos θ] / [Sin θ / Cos θ]

= [Sin θ · Cos θ] × [Cos θ / Sin θ]

= Sin θ · Cos θ × Cos θ / Sin θ

= Cos θ × Cos θ

= Cos² θ

Hence the simplified expression is Cos² θ.

Learn more about trigonometric expression, click;

https://brainly.com/question/11659262

#SPJ4

Other Questions
Name one song you enjoy listening to that was written after 1900 and for which a recording exists. How does the function of that song compare to the function of Gregorian Chant? Identify at least three musical characteristics of your song and compare them to the musical characteristics of Gregorian Chant using the terminology from the textbook (at least one paragraph)Dolly Parton - I Will Always Love You Exercise 1 Underline the root of each word. Using a dictionary when needed, define each word. If there is more than one definition, use one that emphasizes the meaning of the root.manufacture can you explain what annuity means also relate annuity to income and taxes Mariappan Incorporated incurred the following expenditures: $19,000 cost to develop and register a patent: $24,000 cost of annual property tax on its production facilities; $85,000 cost to install a high-tech surveillance and alarm system on the company's distribution center, $7,000 cost of fees paid to diversity and inclusion training consultants. The total amount of these expenditures that Mariappan incorporated should be capitalized are? Mulipie Choice 5109,000 811000 \$104,000. 3re.000 Imagine you have a compass whose needle can rotate vertically as well as horizontally. Which way would the compass needle point if you were at the Earth's north magnetic pole? Bla, bla inductor (0.2 H) and parallel resistor (55 ohms). Bla, bla 128 volt rms, 60 Hz line. Bla, bla total current magnitude? Bla, bla total impedance magnitude and power factor. When all the judges agree on an opinion, the written opinion of the judges is referred to as? What predictions can be made about stomata of plants from xeric (dry) versus mesic (moist) habitats? At the latitude of the arrows, the ocean is spreading at 2.8 cm/yr. Assuming that the rate has not changed since seafloor spreading began, when was South America last in contact with Africa? (1 km = 100,000 cm) A scale model of an old car is 16 * 24 what is the scale factor if the model is 112 * 168 ? Consider the following plecewise-defined function.f(x)= 3x^2 -x + 7 if x -1{ (-1/3}x - 4 if x > 1Step 2 of 3: Evaluate thisfunction atx=1. Express your answer as an integer or simplified fraction, If the function is undefined at the given value, indicate "Undefined". How much interest is earned on $2,150 at 6.7% for 2 years? For urban children in India, work opportunities are few. What would you expect to see happen to the urban-rural gap in test scores in high rainfall penods? "Manisha Shah and Exyce Millert Steinberg "Drought of Opporeunines: Concemporaneous and Long Term Impacis of Rainfal Shocks on Human Capical jownal of Pumini Emany. April 2017,57-5b1. Please discuss how you see the relationship between learning psychopharmacology and the impact it can have on conducting psychotherapy give the answer with the correct error and number of significant digits a) 12.480.07+9.710.09= ? b) 19.10.94.80.6= ? c) log(134.57)= ? d) the moles of titrant delivered if the initial burette volume was 25.100.08 mL, the final burette volume was 11.880.06 mL, and the titrant was standardized to 0.1080.007M 15) Determine, at the 95% confidence level, if there is an outlier in the following measurements of the concentration of sodium sulfate from a water supply. Assume the measurements have such high precision that you can safely keep 5 significant digits in your intermediate calculations. Only check for one outlier. Show your work and state your conclusion. {19,45,54,42,44,46}ppm 16) Determine whether the instrument used to collect the following data is suitable with 95% confidence. the accepted value of the standard is 713.87mM. Keep 5 significant digits in your intermediate calculations. {712.98,711.45,701.44,709.61,707.83,712.95}mM How did the english bill of rights influence delegates to the constitutional convention? Question 2 of 10Suppose this hose reel system were used to model a DNA molecule, achromosome, and a gene.Which part of the model would best represent a DNA molecule?OA. The entire length of hoseB. The entire hose and reel system C. The reel holding the coiled-up hoseD. A specific section of the hoseSUBMIT You bought a stock one year ago for $49.87 per share and sold it today for $58.21 per share. It paid a $1.03 per share dividend today. a. What was your realized return? b. How much of the return came from dividend yield and how much came from capital gain? a. What was your realized return? The realized return was %. (Round to two decimal places.) b. How much of the return came from dividend yield and how much came from capital gain? The return that came from dividend yield is %. (Round to two decimal places.) The return that came from capital gain is \%. (Round to two decimal places.) Lyle, Elizabeth. (2018, October). How to break bad management habits before they reach the next generation of leaders [Video]. Ted.see the video and do the following question please Part 1 - SOR: Indicate the subjects of your answers to Parts 2, 3, and 4 (i.e., one function/responsibility, one role, and one skill) in the first several words in the first line of the Rich Content Editor. (The RCE-shows on screen when you click on "reply."). FYI: only the first several words of a responsibility are needed. (Example of Subject line: lead, spokesperson, and conceptual) FYI: The "Subject" provides important information that guides the PRs. The subject can be followed by your typed responses or your responses can be attached. To earn credit, all responses must refer to the TedTalk video. Part 2 - SOR: Explain (in specific details) 1-2 reasons why or how one of the management functions (i.e., plan, lead, organize, or control) or one of the nine managerial responsibilities (listed in LO 1.3) John would implement to prepare to talk with Jane or while talking with her. (Hint: Be sure to explain in detail how or why that one function or responsibility should address at least some of the issues Elizabeth addresses.) Part 3 - SOR: When John addresses the potential changes to the decision-making process with Jane, explain 1-2 detailed reasons why or how John should emphasize or focus most on one of the three Informational roles (Mintzberg, Exhibit 1.4& video) to accomplish what Elizabeth Lyle is suggesting. (Only explain one informational role so that you leave other roles your classmates to explain.) Part 4 - SOR: Explain 2-3 specific detailed ways or reasons why John should utilize one of the three management skills (i.e., conceptual, human, technical; Exhibit 1.6) when preparing to talk with Jane or while talking with her. (Only explain one skill so that you leave other skills for your classmates to discuss in SORs.) PR(s) Deadline: 11:59 PM September 3 (Saturday) Part 5 - PR: Briefly respond to at least one SOR that has a function/responsibility, role, and/or skill listed in the subject line that is different from your subject line. Your PR should explain detailed reasons why you agree or disagree with one of your classmate's reasons for his/her answer to SOR #2, \#3A. #3B, or #4 that is different from what you list in your subject line. Do not just repeat what your classmate said--be sure you add value. (Please also remember net-etiquette.) Part 6 - Optional Bonus - PR: Up to two (2) additional PRs are worth a maximum of 1 extra credit point for continuing the discussion. (+.5 point per additional PR.) For the extra PR(s), there is no restriction on which of your classmates' SOR topic(s) you address. Mr. Butler runs a lawnmowing business. Recently his manager Ms Natalie reported that one of the mowers has to be replaced. After analysing the prices of different mowers, Ms Natalie finally came up with two options: Option 1: Mower A costs $250 and expected to last 2 years Option 2: Mower B costs $360 and expected to last 3 years Mr. Butler instructed Ms Natalie to purchase mower B, since its investment is $360/3 = $120 per year, which is lower than the investment of $250/2 = $125 per year in mower A. Ms Natalie purchased mower B and replaced the old one. Did Mr. Butler take the correct decision? Explain your answer with detailed workings/calculations. Assume 10% cost of capital.