Write each decimal as a percent and each percent as a decimal.

0.46

Answers

Answer 1

To convert a decimal to a percent, you multiply by 100 and add the percent symbol (%), and to convert a percent to a decimal, you divide by 100.

To convert a decimal to a percent, you can multiply the decimal by 100 and add a percent symbol (%).

For example, to convert 0.46 to a percent:
0.46 x 100 = 46%

So, 0.46 can be written as 46%.

To convert a percent to a decimal, you can divide the percent by 100.

For example, to convert 46% to a decimal:
46% ÷ 100 = 0.46

So, 46% can be written as 0.46.

In summary, to convert a decimal to a percent, you multiply by 100 and add the percent symbol (%), and to convert a percent to a decimal, you divide by 100.

To know more about decimal refer here:

https://brainly.com/question/29765582

#SPJ11


Related Questions

Set V=P3 is the vector space of polynomial and it's degree the inner product of it (fig) = {[ f(+)g(t) dz Use the Gram-Schmidt process to the basis {1.1.²"} is < 2, the inner is (flg):

Answers

The Gram-Schmidt process applied to the basis {1, t, t^2} in the vector space of polynomials with degree at most 2, denoted as V = P3, results in the orthogonal basis {1, t, t^2}, where the inner product is defined as f(+)g(t)dz.

The Gram-Schmidt process is a method used to transform a given basis into an orthogonal basis by constructing orthogonal vectors one by one. In this case, the given basis {1, t, t^2} is already linearly independent, so we can proceed with the Gram-Schmidt process.

We start by normalizing the first vector in the basis, which is 1. The normalized vector is obtained by dividing it by its magnitude, which is the square root of its inner product with itself. Since the inner product is f(+)g(t)dz and the degree is at most 2, the square root of the inner product of 1 with itself is √(1+0+0) = 1. Hence, the normalized vector is 1.

Next, we consider the second vector in the basis, which is t. To obtain an orthogonal vector, we subtract the projection of t onto the already orthogonalized vector 1. The projection of t onto 1 is given by the inner product of t with 1 divided by the inner product of 1 with itself, multiplied by 1. Since the inner product of t with 1 is f(+)g(t)dz and the inner product of 1 with itself is 1, the projection of t onto 1 is f(+)g(t)dz. Subtracting this projection from t gives us an orthogonal vector, which is t - f(+)g(t)dz.

Finally, we consider the third vector in the basis, which is t^2. Similarly, we subtract the projections of t^2 onto the already orthogonalized vectors 1 and t. The projection of t^2 onto 1 is f(+)g(t)dz, and the projection of t^2 onto t is (t^2)(+)g(t)dz. Subtracting these projections from t^2 gives us an orthogonal vector, which is t^2 - f(+)g(t)dz - (t^2)(+)g(t)dz.

After performing these steps, we end up with an orthogonal basis {1, t, t^2}, which is obtained by applying the Gram-Schmidt process to the original basis {1, t, t^2} in the vector space of polynomials with degree at most 2, V = P3. The inner product in this vector space is defined as f(+)g(t)dz.

Learn more about : Gram-Schmidt

brainly.com/question/30761089

#SPJ11

a) Complete the table of values for y= 2x³ - 2x + 1
1
-0.5
X
b)
y
A
-3
-5
b) Which is the correct curve for y= 2x³ - 2x + 1
A
X
-2
B
-1
2.5
0
A
-5
C
B
Only 1 attempt allowed.
2
-5
с
·X

Answers

A) Completing the table of values for y = 2x³ - 2x + 1:

When x = 1:

y = 2(1)³ - 2(1) + 1

y = 2 - 2 + 1

y = 1

When x = -0.5:

y = 2(-0.5)³ - 2(-0.5) + 1

y = -0.5 - (-1) + 1

y = -0.5 + 1 + 1

y = 1.5

When x = X (unknown value):

y = 2(X)³ - 2(X) + 1

y = 2X³ - 2X + 1

b) Based on the table of values provided, the correct curve for y = 2x³ - 2x + 1 would be represented by option C, where the values for x and y align with the given table entries.

A: (-3, -5)

B: (-2, 0)

C: (-1, 2)

D: (2.5, 2)

E: (0, 1)

F: (-5, -5)

Therefore, the correct curve is represented by option C.

In a certain state, about 3/5th of the registered voters participated in 2016 election. What fraction of registered voters did not participate?

Answers

Answer:

2/5 (or 2/5th) of the registered voters did not participate in the 2016 election for the state

Step-by-step explanation:

The total probability is 1 (if you add the fraction who did participate and the fraction that didn't, then you get 1), and since you have 2 choices, either you participate or you don't participate in the election, we conclude that the remaining fraction is,

(fraction of Those who didn't participate) = 1 - (fraction of those who did participate)

fraction of Those who didn't participate = 1 - 3/5

fraction of Those who didn't participate = 5/5 - 3/5

fraction of Those who didn't participate = 2/5

Hence, 2/5th of the registered voters did not participate in the 2016 election for the state

What is the probability that the parcel was shipped express and arrived the next day?

Answers

To find the probability that the parcel was shipped and arrived next day:

P(Express and Next day) = P(Express) * P(Next day | Express)

The probability that the parcel was shipped express and arrived the next day can be calculated using the following formula:
P(Express and Next day) = P(Express) * P(Next day | Express)
To find P(Express), you need to know the total number of parcels shipped express and the total number of parcels shipped.
To find P(Next day | Express), you need to know the total number of parcels that arrived the next day given that they were shipped express, and the total number of parcels that were shipped express.
Once you have these values, you can substitute them into the formula to calculate the probability.

Read more about probability here:

https://brainly.com/question/32117953

#SPJ11

Jocelyn estimates that a piece of wood measures 5.5 cm. If it actually measures 5.62 cm, what is the percent error of Jocelyn’s estimate?

Answers

Answer:

The percent error is -2.1352% of Jocelyn's estimate.

1. Let f RR be a continous locally Lipschitz function, and let g: RR be a continous fuction. Justify that the first order differential system x' = f(x) y' = g(x)y has a unique saturated solution for any initial condition (to) = xo, y(to) = yo
Find such solution in the particular case x' = 2x1,y= √ly with initial condi-
tion (0) = 1, y(0) = 3.
2. Show that there exists a unique continous function g: RR satisfying f(t) = 2 + Isf (s)ds, vt € R
Show this function is C and find its analytic expresion

Answers

But I can't generate a one-row answer for your request.Therefore, we cannot determine an analytic expression for such a function.

What is the process for solving a system of first-order differential equations with given initial conditions?

In question 1, we are asked to justify the existence of a unique saturated solution for a first-order differential system, where one equation involves the derivative of the variable and the other equation involves the derivative multiplied by the variable itself.

To prove the existence and uniqueness of such a solution, we can rely on the existence and uniqueness theorem for ordinary differential equations.

By ensuring that the functions involved are continuous and locally Lipschitz, we can establish the existence of a unique solution for each equation separately.

Combining these solutions, we can then conclude that the system has a unique saturated solution for any given initial condition.

As for question 2, we need to show the existence and uniqueness of a continuous function satisfying a specific equation.

However, through the analysis, we discover a contradiction, indicating that there does not exist a unique continuous function satisfying the given equation.

Learn more about analytic expression

brainly.com/question/29099114

#SPJ11

1. The function f defined by y=f(x)=x² +6x-5 has (A) A minimum y value and a negative y-intercept. (B) A maximum y value and a positive y-intercept. (C) A minimum y value and a positive y-intercept. (D) A maximum y value and a negative y-intercept. Under the heading Algebraic Processes one of the topics listed is Algebraic Manipulation.

Answers

The y-intercept is -5, which is a negative value. Hence, the function defined by y = f(x) = x² + 6x - 5 has a negative y-intercept. Choice A is the correct answer.

To find the minimum or maximum value of a quadratic equation, we need to know the vertex, which is given by the formula -b/2a. Let's write the given quadratic equation in the general form ax² + bx + c = 0.

Here, a = 1, b = 6, and c = -5. Therefore, the quadratic equation is x² + 6x - 5 = 0.

Now, using the formula -b/2a = -6/2 = -3, we find the x-coordinate of the vertex.

We substitute x = -3 in the quadratic equation to find the corresponding y-coordinate:

]y = (-3)² + 6(-3) - 5

y = 9 - 18 - 5

y = -14

Hence, the vertex of the parabola is (-3, -14).

Since the coefficient of x² is positive, the parabola opens upwards, indicating that it has a minimum value. Therefore, the function defined by y = f(x) = x² + 6x - 5 has a minimum y-value.

The y-intercept is obtained by substituting x = 0 in the equation:

y = (0)² + 6(0) - 5

y = -5

Therefore, the y-intercept is -5, which is a negative value. As a result, the function described by y = f(x) =  x² + 6x - 5 has a negative y-intercept. Choice A is the correct answer.

Learn more about quadratic equation

https://brainly.com/question/30098550

#SPJ11

Solve the system of equations by the addition method. x-6y=9 -x+ 2y = -5 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. OA. The solution is (Simplify your answer. Type an ordered pair.) OB. There are infinitely many solutions; {(x,y) |x-6y=9) or {(x,y)|-x+2y = -5}. OC. There is no solution; or Ø.

Answers

Main Answer:

OC. There is no solution; or Ø.

Explanation:

To solve the system of equations using the addition method, we need to eliminate one variable by adding or subtracting the equations. Let's consider the given system:

Equation 1: x - 6y = 9

Equation 2: -x + 2y = -5

If we add Equation 1 and Equation 2, the x terms cancel out, leaving -4y = 4. Dividing both sides by -4 gives y = -1.

Substituting the value of y = -1 into Equation 1, we have x - 6(-1) = 9, which simplifies to x + 6 = 9. Subtracting 6 from both sides yields x = 3.

Therefore, we find that x = 3 and y = -1. The solution is the ordered pair (3, -1).

However, if we look closely at the original equations, we can see that the coefficients of x in the two equations are opposite in sign. This implies that the lines represented by the equations are parallel and will never intersect. Hence, there is no common solution for the system of equations.

Therefore, the correct choice is OC. There is no solution; or Ø.

Learn more about solving systems of equations and the different methods used to find solutions, such as the addition method or elimination method.

#SPJ11

The system of equations has a unique solution.

To solve the system of equations, we can use the addition method, also known as the elimination method. The goal is to eliminate one of the variables by adding the equations together.

Given the system of equations:

1) x - 6y = 9

2) -x + 2y = -5

To eliminate the x term, we can add equation 1 and equation 2 together. Adding the left sides gives us 0, and adding the right sides gives us 4y + 4. This simplifies to:

-4y = 4

Dividing both sides of the equation by -4, we find that y = -1.

Substituting this value of y into either equation, let's use equation 1, we have:

x - 6(-1) = 9

x + 6 = 9

x = 9 - 6

x = 3

Therefore, the solution to the system of equations is (3, -1), representing an ordered pair where x = 3 and y = -1.

Learn more about addition method

brainly.com/question/12567041

#SPJ11



Write an equation for each translation. x²+y²=25 ; right 2 units and down 4 units

Answers

The translated equation would be: (x - 2)² + (y - 4)² = 25

To translate the equation x² + y² = 25 right 2 units and down 4 units, we need to adjust the coordinates of the equation.

First, let's break down the translation process. Moving right 2 units means we need to subtract 2 from the x-coordinate of every point on the graph. Moving down 4 units means we need to subtract 4 from the y-coordinate of every point on the graph.

The translated equation would be: (x - 2)² + (y - 4)² = 25

In this equation, the x-coordinate has been shifted 2 units to the right, and the y-coordinate has been shifted 4 units down.

The overall effect is a translation of the original graph to the right and downward by the specified amounts.

Learn more about Graph Equation here:

https://brainly.com/question/30842552

#SPJ11

In a running competition, a bronze, silver and gold medal must be given to the top three girls and top three boys. If 11 boys and 8 girls are competing, how many different ways could the six medals possibly be given out?

Answers

Answer:

Step-by-step explanation:

There are 10 boys competing for 3 medals, so there are 10 choose 3 ways to award the medals to the boys. Similarly, there are 14 choose 3 ways to award the medals to the girls. Therefore, the total number of ways to award the six medals is:(10 choose 3) * (14 choose 3) = 120 * 364 = 43,680 So there are 43,680 different ways to award the six medals.

LetC=[564]and D = -3 0 Find CD if it is defined. Otherwise, click on "Undefined".

Answers

The product CD is undefined

Because the number of columns in matrix C (1 column) does not match the number of rows in matrix D (2 rows). In matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix for the product to be defined.

However, in this case, the dimensions do not satisfy this condition. As a result, the product CD is undefined. Matrix multiplication requires compatible dimensions, and when the dimensions of the matrices do not align properly, the product cannot be calculated. Therefore, in this scenario, we conclude that the matrix product CD is undefined. Since this condition is not met in the given scenario, CD is undefined.

Learn more about matrix multiplication here

https://brainly.com/question/13591897

#SPJ11

Find a particular solution to the differential equation using the Method of Undetermined Coefficients.
d^2y/dx^2 - 7 dy/dx + 8y = x e^x A solution is yp (x) =

Answers

The  particular solution to the given differential equation is

[tex]$ \rm y_p(x) = \left(\frac{3}{5} - \frac{x}{5}\right) e^x$[/tex]

To find a particular solution to the given differential equation using the Method of Undetermined Coefficients, we assume a particular solution of the form:

[tex]\rm yp(x) = (A + Bx) e^x[/tex]

where A and B are constants to be determined.

Now, let's differentiate yp(x) with respect to x:

[tex]$ \rm y_p'(x) = (A + Bx) e^x + Be^x$[/tex]

[tex]$ \rm y_p''(x) = (A + 2B + Bx) e^x + 2Be^x$[/tex]

Substituting these derivatives into the differential equation, we have:

[tex]$ \rm (A + 2B + Bx) e^x + 2Be^x - 7[(A + Bx) e^x + Be^x] + 8(A + Bx) e^x = x e^x$[/tex]

Simplifying the equation, we get:

$(A + 2B - 7A + 8A) e^x + (B - 7B + 8B) x e^x + (2B - 7B) e^x = x e^x$

Simplifying further, we have:

[tex]$ \rm (10A - 6B) e^x + (2B - 7B) x e^x = x e^x$[/tex]

Now, we equate the coefficients of like terms on both sides of the equation:

[tex]$\rm 10A - 6B = 0\ \text{(coefficient of e}^x)}[/tex]

[tex]-5B = 1\ \text{(coefficient of x e}^x)[/tex]

Solving these two equations, we find:

[tex]$ \rm A = \frac{3}{5}$[/tex]

[tex]$B = -\frac{1}{5}$[/tex]

As a result, the specific solution to the given differential equation is:

[tex]$ \rm y_p(x) = \left(\frac{3}{5} - \frac{x}{5}\right) e^x$[/tex]

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11

Consider the following U t ​ =α^2 U xx ​ ,t>0,a

Answers

The given equation,[tex]U_t = α^2 U_xx,[/tex]describes a parabolic partial differential equation.

The equation[tex]U_t = α^2 U_xx[/tex] represents a parabolic partial differential equation (PDE), where U is a function of two variables: time (t) and space (x). The subscripts t and xx denote partial derivatives with respect to time and space, respectively. The parameter[tex]α^2[/tex] represents a constant.

This type of PDE is commonly known as the heat equation. It describes the diffusion of heat in a medium over time. The equation states that the rate of change of the function U with respect to time is proportional to the second derivative of U with respect to space, multiplied by[tex]α^2.[/tex]

The heat equation has various applications in physics and engineering. It is often used to model heat transfer phenomena, such as the temperature distribution in a solid object or the spread of a chemical substance in a fluid. By solving the heat equation, one can determine how the temperature or concentration of the substance changes over time and space.

To solve the heat equation, one typically employs techniques such as separation of variables, Fourier series, or Fourier transforms. These methods allow the derivation of a general solution that satisfies the initial conditions and any prescribed boundary conditions.

Learn more about  equation

brainly.com/question/29657983

#SPJ11

Let W = span {x₁, X₂, X3}, where x₁ = 2, X₂ --0-0 {V1, V2, V3} for W. Construct an orthogonal basis

Answers

Let W be a subspace of vector space V. A set of vectors {u1, u2, ..., un} is known as orthogonal if each vector is perpendicular to each of the other vectors in the set. An orthogonal set of non-zero vectors is known as an orthogonal basis.

To begin with, let us calculate the orthonormal basis of span{v1,v2,v3} using Gram-Schmidt orthogonalization as follows:\[v_{1}=2\]Normalize v1 to form u1 as follows:

\[u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}

=\frac{2}{2}

=1\]Next, we will need to orthogonalize v2 with respect to u1 as follows:\[v_{2}-\operator name{proj}_

{u_{1}} v_{2}\]To calculate proj(u1, v2), we will use the following formula:

\[\operatorname{proj}_{u_{1}} v_{2}

=\frac{u_{1} \cdot v_{2}}{\left\|u_{1}\right\|^{2}} u_{1}\]where, \[u_{1}

=1\]and,\[v_{2}

=\left[\begin{array}{l}{0} \\ {1} \\ {1}\end{array}\right]\]\[\operatorname{proj}_{u_{1}} v_{2}

=\frac{1(0)+1(1)+1(1)}{1^{2}}=\frac{2}{1}\]\

[\operatorname{proj}_{u_{1}} v_{2}=2\]

Therefore,\[v_{2}-\operatorname{proj}_{u_{1}} v_{2}

=\left[\begin{array}{l}{0} \\ {1} \\ {1}\end{array}\right]-\left[\begin{array}{c}{2} \\ {2} \\ {2}\end{array}\right]

=\left[\begin{array}{c}{-2} \\ {-1} \\ {-1}\

To know more about subspace visit:

https://brainly.com/question/26727539

#SPJ11

Help!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers

D. The angles are congruent (same measure) and the side lengths are proportional (consistent ratios) in a dilation with a scale factor not equal to 1. therefore option D is correct.

When a dilation with a scale factor not equal to 1 is performed, the angles and side lengths of the pre-image and the corresponding image have a specific relationship.

The correct answer is D. The angles are congruent, meaning they have the same measure, and the side lengths are proportional, meaning they have a consistent ratio.

In a dilation, the angles of the pre-image and the corresponding image remain the same. They are congruent because the dilation only changes the size of the shape, not the angles.

On the other hand, the side lengths of the pre-image and the corresponding image are proportional. This means that the ratios of corresponding side lengths are equal. For example, if one side of the pre-image is twice as long as another side, the corresponding side in the image will also be twice as long.

So, in summary, the angles are congruent (same measure) and the side lengths are proportional (consistent ratios) in a dilation with a scale factor not equal to 1.

for such more question on congruent

https://brainly.com/question/26085366

#SPJ8

Find y as a function of x if y′′′−12y′′+35y′=24ex y(0)=24,y′(0)=18,y′′(0)=10. y(x)=

Answers

The solution to the differential equation is:y(x) = 26e^x - e^4x + e^7x

We can solve the given differential equation, y‴ − 12y′′ + 35y′ = 24ex by assuming that y = er

Given, y‴ − 12y′′ + 35y′ = 24exy = erx

Let's substitute y into the differential equation:y‴ − 12y′′ + 35y′ = 24ex → r³erx − 12r²erx + 35rerx = 24ex

Now factor erx from the left side to get:r³ - 12r² + 35r = 24erx

Divide both sides by erx:

r³/erx - 12r²/erx + 35r/erx = 24ex/erx→ r³er^-x - 12r²er^-x + 35rer^-x = 24→ r³e^-x - 12r²e^-x + 35re^-x = 24

Now we can solve for r by factoring the left side:r³e^-x - 12r²e^-x + 35re^-x - 24 = 0

This can be factored into:(r - 1)(r - 4)(r - 7)e^-x = 0

So we have:r = 1, 4, 7

We can write the general solution as:

y(x) = C1e^x + C2e^4x + C3e^7x

where C1, C2, and C3 are constants.

Let's use the initial conditions to find these constants:

y(0) = C1 + C2 + C3 = 24y′(0) = C1 + 4C2 + 7C3 = 18y′′(0) = C1 + 16C2 + 49C3 = 10

Now we can solve for C1, C2, and C3.

Using the first equation, we get:C1 + C2 + C3 = 24

C1 = 24 - C2 - C3

Using the second equation, we get:

C1 + 4C2 + 7C3 = 18(24 - C2 - C3) + 4

C2 + 7C3 = 18-3

C2 - 6C3 = -6

C2 + 2C3 = 2

C2 = -2/4 = -1

Now we can find C3 from the first equation:

C1 + C2 + C3 = 24(24 - C2 - C3) - C2 - C3 + C3 = 24

C3 = 1

Substituting C2 and C3 back into C1 = 24 - C2 - C3, we get:

C1 = 24 - (-1) - 1 = 26

So the solution to the differential equation is:y(x) = 26e^x - e^4x + e^7x

Learn more about differential equation at

https://brainly.com/question/32871897

#SPJ11

a car manufacturer is reducing the number of incidents with the transmission by issuing a voluntary recall during week three of the recall the manufacturer fix 391 calls in week 13 the manufacture affect fixed three 361 assume the reduction in the number of calls each week is liner write an equation in function form to show the number of calls in each week by the mechanic

Answers

Answer:

To write the equation in function form for the number of calls in each week by the mechanic, we can use the concept of linear reduction.

Let's assume:

- Week 3 as the starting week (x = 0).

- Week 13 as the ending week (x = 10).

We have two data points:

- (x1, y1) = (0, 391) (week 3, number of calls fixed in week 3)

- (x2, y2) = (10, 361) (week 13, number of calls fixed in week 13)

We can use these two points to determine the equation of a straight line in the form y = mx + b, where m is the slope and b is the y-intercept.

First, calculate the slope (m):

m = (y2 - y1) / (x2 - x1)

= (361 - 391) / (10 - 0)

= -3

Next, substitute the slope (m) and one of the data points (x1, y1) into the equation y = mx + b to find the y-intercept (b):

391 = -3(0) + b

b = 391

Therefore, the equation in function form to show the number of calls in each week by the mechanic is:

y = -3x + 391

Where:

- y represents the number of calls in each week fixed by the mechanic.

- x represents the week number, starting from week 3 (x = 0) and ending at week 13 (x = 10).

A tower that is 35 m tall is to have to support two wires and start out with stability both will be attached to the top of the tower it will be attached to the ground 12 m from the base of each wire wires in the show 5 m to complete each attachment how much wire is needed to make the support of the two wires

Answers

The 34 m of wire that is needed to support the two wires is the overall length.

Given, a tower that is 35 m tall and is to have to support two wires. Both the wires will be attached to the top of the tower and it will be attached to the ground 12 m from the base of each wire. Wires in the show 5 m to complete each attachment. We need to find how much wire is needed to make support the two wires.

Distance of ground from the tower = 12 lengths of wire used for attachment of wire = 5 mWire required to attach the wire to the top of the tower and to ground = 5 + 12 = 17 m

Wire required for both the wires = 2 × 17 = 34 m length of the tower = 35 therefore, the total length of wire required to make the support of the two wires is 34 m.

What we are given?

We are given the height of the tower and are asked to find the total length of wire required to make support the two wires.

What is the formula?

Wire required to attach the wire to the top of the tower and to ground = 5 + 12 = 17 mWire required for both the wires = 2 × 17 = 34 m

What is the solution?

The total length of wire required to make support the two wires is 34 m.

For more questions on length

https://brainly.com/question/28322552

#SPJ8

A pediatrician kept record of boby jacobs temperature for 3 hours on the first hour the temperature was 37. 5degree celcius and on the second hour 37. 5 degree celcius and on the third hour 37. 2 degree celcius what was the average temperature for 3 hours

Answers

To find the average temperature for the three hours, we need to sum up the temperatures for each hour and divide by the total number of hours.The average temperature for the three hours is approximately 37.4 degrees Celsius.

Temperature in the first hour: 37.5 degrees Celsius

Temperature in the second hour: 37.5 degrees Celsius

Temperature in the third hour: 37.2 degrees Celsius

To calculate the average temperature:

Average temperature = (Temperature in the first hour + Temperature in the second hour + Temperature in the third hour) / Total number of hours

Average temperature = (37.5 + 37.5 + 37.2) / 3

Calculating the sum:

Average temperature = 112.2 / 3

Dividing by the total number of hours:

Average temperature ≈ 37.4 degrees Celsius

Therefore, the average temperature for the three hours is approximately 37.4 degrees Celsius.

Learn more about temperature here

https://brainly.com/question/24746268

#SPJ11


Maths
[tex] \sqrt[3]{9} \times \sqrt[3]{3} [/tex]Answer with explanations ​

Answers

The calculated value of the product ∛9 * ∛3 is 3

How to evaluate the products

From the question, we have the following parameters that can be used in our computation:

∛9 * ∛3

Group the products

So, we have

∛9 * ∛3 = ∛(9 * 3)

Evaluate the product of 9 and 3

This gives

∛9 * ∛3 = ∛27

Take the cube root of 27

∛9 * ∛3 = 3

Hence, the value of the product is 3

Read more about expression at

https://brainly.com/question/31819389

#SPJ1

what fraction is equivalent to 1/15
Which of the following fractions are equivalent to 1 15

Answers

The fraction equivalent to 1/15 is 1/16.

To determine the fraction that is equivalent to 1/15, follow these steps:

Step 1: Express 1/15 as a fraction with a denominator that is a multiple of 10, 100, 1000, and so on.

We want to write 1/15 as a fraction with a denominator of 100.

Multiply both the numerator and denominator by 6 to achieve this.

1/15 = 6/100

Step 2: Simplify the fraction to its lowest terms.

To reduce the fraction to lowest terms, divide both the numerator and denominator by their greatest common factor.

The greatest common factor of 6 and 100 is 6.

Dividing both numerator and denominator by 6 gives:

1/15 = 6/100 = (6 ÷ 6) / (100 ÷ 6) = 1/16

Therefore, the fraction equivalent to 1/15 is 1/16.

Learn more about fraction

https://brainly.com/question/10354322

#SPJ11

14. Write each of the following as a fraction without exponents. a. \( 10^{-2} \) b. \( 4^{-3} \) c. \( 2^{-6} \) d. \( 5^{-3} \)

Answers

The simplified form of the expressions; 10⁻², 4⁻³, 2⁻⁶ and 5⁻³ is 1/100, 1/64, 1/64 and 1/125 respectively.

How to convert expression with negative exponents to fraction?

Given the expressions in the question:

a) 10⁻²

b) 4⁻³

c) 2⁻⁶

d) 5⁻³

The negative exponent rule is expressed as:

b⁻ⁿ = 1/bⁿ

a)

10⁻²

Applying the negative exponent rule:

10⁻² = 1/10²

Simplify

1/100

b)

4⁻³

Applying the negative exponent rule:

4⁻³ = 1/4³

Simplify

1/64

c)

2⁻⁶

Applying the negative exponent rule:

2⁻⁶ = 1/2⁶

Simplify

1/64

d)

5⁻³

Applying the negative exponent rule:

5⁻³ = 1/5³

Simplify

1/125

Therefore, the simplified form is 1/125.

Learn more about negative exponent rule here:

https://brainly.com/question/23284668

#SPJ4

We know that the exponent means the number of times the base is multiplied by itself. If the exponent is negative, then it means that the reciprocal of the base will be raised to the positive exponent.

To write each expression as a fraction without exponents, we can use the following method:

If a is any non-zero number and n is any integer, then:

[tex]\( a^{-n} = \frac{1}{a^n} \)[/tex]

Using this method, we can write the given expressions as:

[tex]a) \( 10^{-2} = \frac{1}{10^2} = \frac{1}{100} \)b) \( 4^{-3} = \frac{1}{4^3} = \frac{1}{64} \)c) \( 2^{-6} = \frac{1}{2^6} = \frac{1}{64} \)d) \( 5^{-3} = \frac{1}{5^3} = \frac{1}{125} \)[/tex]

Learn more about exponent from :

https://brainly.com/question/13669161

#SPJ11

FIFTY POINTS!! find the surface area of the composite figure

Answers

Answer:

218 cm²

Step-by-step explanation:

The lateral surface area (LSA) is the area of the sides excluding the top and botton part

LSA formula: 2h(l+b)

For the larger(green) cuboid, h = 4, l = 10, b =5

For the smaller(pink) cuboid, h = 6, l = 2, b =2

Total area = LSA(green) + top part of green + LSA(pink) + top of pink

LSA of green :

2h(l+b) = 2(4)(10+5)

= 8*15

= 120  -----eq(1)

Top part of green:

The area of green cuboid's top- area of pink cuboid's base

= (10*5) - (2*2)

= 50 - 4

= 46  -----eq(2)

LSA of pink:

2h(l+b) = 2(6)(2+2)

= 12*4

= 48  -----eq(3)

Top part of pink:

2*2 = 4  -----eq(3)

Total area:

eq(1) + eq(2) + eq(3) + eq(4)

= 120 + 45 + 48 + 4

= 218 cm²

Use the construction in the proof of the Chinese Remainder Theorem to solve the
following system of congruences:
x ≡ 2 mod 5, x ≡ 6 mod 8, x ≡ 10 mod 13
Be sure to state the values for m, Mi, and yi in the proof’s construction.

Answers

The solution to the system of congruences is x ≡ 118.

How to calculate the value of M, which is the product of all the moduli. In this case, M = 5 * 8 * 13 = 520?

To solve the system of congruences using the construction in the proof of the Chinese Remainder Theorem, we follow these steps:

Identify the moduli (m_i) in the system of congruences. In this case, we have [tex]m_1 = 5, m_2 = 8,[/tex] and [tex]m_3 = 13[/tex].

Compute the value of M, which is the product of all the moduli. In this case, M = [tex]m_1 * m_2 * m_3[/tex] = 5 * 8 * 13 = 520.

For each congruence, calculate the value of [tex]M_i[/tex], which is the product of all the moduli except the current modulus. In this case, we have:

[tex]M_1 = m_2 * m_3 = 8 * 13 = 104\\M_2 = m_1 * m_3 = 5 * 13 = 65\\M_3 = m_1 * m_2 = 5 * 8 = 40\\[/tex]

Find the modular inverses ([tex]y_i[/tex]) of each [tex]M_i[/tex] modulo the corresponding modulus ([tex]m_i[/tex]). The modular inverses satisfy the equation [tex]M_i * y_i[/tex] ≡ 1 (mod [tex]m_i[/tex]). In this case, we have:

[tex]y_1[/tex] ≡ 104 * [tex](104^{(-1)} mod 5)[/tex] ≡ 4 * 4 ≡ 16 ≡ 1 (mod 5)

[tex]y_2[/tex] ≡ 65 * ([tex]65^{(-1)} mod 8[/tex]) ≡ 1 * 1 ≡ 1 (mod 8)

[tex]y_3[/tex]≡ 40 * ([tex]40^{(-1)} mod 13[/tex]) ≡ 2 * 12 ≡ 24 ≡ 11 (mod 13)

Compute the value of x by using the Chinese Remainder Theorem's construction:

x ≡ ([tex]a_1 * M_1 * y_1 + a_2 * M_2 * y_2 + a_3 * M_3 * y_3[/tex]) mod M

  ≡ (2 * 104 * 1 + 6 * 65 * 1 + 10 * 40 * 11) mod 520

  ≡ (208 + 390 + 4400) mod 520

  ≡ 4998 mod 520

  ≡ 118 (mod 520)

Therefore, the solution to the system of congruences is x ≡ 118 (mod 520).

Learn more about congruences

brainly.com/question/32172817

#SPJ11

Write an equation of the circle that passes through the given point and has its center at the origin. (Hint: Use the distance formula to find the radius.)

(3,4)

Answers

The equation of the circle that passes through the point (3, 4) and has its center at the origin is [tex]$x^{2} + y^{2} = 25$[/tex].

Given a point (3, 4) on the circle, to write an equation of the circle that passes through the given point and has its center at the origin, we need to find the radius (r) of the circle using the distance formula.

The distance formula is given as:

Distance between two points:  

[tex]$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$[/tex]

Let the radius of the circle be r.

Now, the coordinates of the center of the circle are (0, 0), which means that the center is the origin of the coordinate plane. We have one point (3, 4) on the circle. So, we can find the radius of the circle using the distance formula as:

[tex]$$r = \sqrt{(0 - 3)^{2} + (0 - 4)^{2}}  = \sqrt{9 + 16} = \sqrt{25} = 5[/tex]

Therefore, the radius of the circle is 5.

Now, the standard equation of a circle with radius r and center (0, 0) is:

[tex]$$x^{2} + y^{2} = r^{2}$$[/tex]

Substitute the value of the radius in the above equation, we get the equation of the circle that passes through the given point and has its center at the origin as:

[tex]$$x^{2} + y^{2} = 5^{2} = 25$$[/tex]

To learn more about radius, refer here:

https://brainly.com/question/9854642

#SPJ11



Find the number of roots for each equation.

5 x⁴-7 x⁶+2 x³+8 x²+4 x-11=0

Answers

The equation can have a maximum of 2 positive real roots.

To determine the number of roots for the equation 5x⁴ - 7x⁶ + 2x³ + 8x² + 4x - 11 = 0, we can analyze the degree of the polynomial equation and its behavior.

The given equation is a polynomial of degree 6, as the highest exponent is 6 (x⁶). In general, a polynomial equation of degree n can have at most n roots. To analyze the behavior of the polynomial and determine the number of roots, we can utilize Descartes' Rule of Signs and the Fundamental Theorem of Algebra.

Descartes' Rule of Signs:

By applying Descartes' Rule of Signs, we can determine the maximum number of positive and negative real roots.Counting the sign changes in the polynomial:The polynomial 5x⁴ - 7x⁶ + 2x³ + 8x² + 4x - 11 = 0 has two sign changes: from positive to negative when going from the term 5x⁴ to -7x⁶, and from negative to positive when going from 2x³ to 8x².

Therefore, based on Descartes' Rule of Signs, the equation can have a maximum of 2 positive real roots.

Fundamental Theorem of Algebra:

The Fundamental Theorem of Algebra states that a polynomial equation of degree n has exactly n complex roots, including both real and non-real roots. It implies that the equation 5x⁴ - 7x⁶ + 2x³ + 8x² + 4x - 11 = 0 can have up to 6 complex roots.Combining the information from Descartes' Rule of Signs and the Fundamental Theorem of Algebra, we can conclude the possible number of roots for the given equation:

The equation can have a maximum of 2 positive real roots.

Learn more about real roots from the given link!

https://brainly.com/question/29162745

#SPJ11

f(x)=-4x^2-6x+1 find all the real zeros of the quadratic function

Answers

Answer:

The real zeros of the quadratic function f(x) = -4x^2 - 6x + 1 are approximately -0.15 and -1.35.

Step-by-step explanation:

To find the real zeros of the quadratic function f(x) = -4x^2 - 6x + 1, we need to find the values of x that make f(x) equal to zero. We can do this by using the quadratic formula:

x = [-b ± sqrt(b^2 - 4ac)] / 2a

where a, b, and c are the coefficients of the quadratic equation ax^2 + bx + c.

In this case, a = -4, b = -6, and c = 1. Substituting these values into the quadratic formula, we get:

x = [-(-6) ± sqrt((-6)^2 - 4(-4)(1))] / 2(-4)

x = [6 ± sqrt(52)] / (-8)

x = [6 ± 2sqrt(13)] / (-8)

These are the two solutions for the quadratic equation, which we can simplify as follows:

x = (3 ± sqrt(13)) / (-4)

Therefore, the real zeros of the quadratic function f(x) = -4x^2 - 6x + 1 are approximately -0.15 and -1.35.

2 5 7 8 4
1 3 5 9 11
13 2 4 6 8 10 12 10 12 1
0 6 4 2 7
find the Pixel with maximum value. the above afflied Kernel on the 5x5 mateix and diagram to also draw verify your a circuit answer. from
Note: You are provided with MUX and magnitude comparator. Use Their blocks directly. No need their internal. circuit diagram.

Answers

The pixel with the maximum value in the given matrix is located at coordinates (3, 2) with a value of 13.

To find the pixel with the maximum value, we need to apply the given kernel on the 5x5 matrix. The kernel is a 3x4 matrix:

2 5 7 8

4 1 3 5

9 11 13 2

We start by placing the kernel on the top left corner of the matrix and calculate the element-wise product of the kernel and the corresponding sub-matrix. Then, we sum up the resulting values to determine the output for that position. We repeat this process for each valid position in the matrix.

After performing the calculations, we obtain the following result:

Output matrix:

60 89 136

49 77 111

104 78 62

The pixel with the maximum value in this output matrix is located at coordinates (3, 2) with a value of 13.

Learn more about matrix

brainly.com/question/29132693

#SPJ11

Pretest: Unit 3
Question 15 of 70
Which object is a point?
A.
B..
C.
D.

Answers

Answer:

B

Step-by-step explanation:

B is a point, the other choices have two points.

y = 3x + 5 y = ax + b What values for a and b make the system inconsistent? What values for a and b make the system consistent and dependent? Explain.

Answers

Answer:

inconsistent: a=3, b≠5dependent: a=3, b=5

Step-by-step explanation:

Given the following system of equations, you want to know values of 'a' and 'b' that (i) make the system inconsistent, and (ii) make the system consistent and dependent.

y = 3x +5y = ax +b

(i) Inconsistent

The system is inconsistent when it describes lines that are parallel and have no point of intersection. A solution to one of the equations cannot be a solution to the other.

Parallel lines have the same slope, but different y-intercepts. The system will be inconsistent when a=3 and b≠5.

(ii) Consistent, dependent

The system is consistent when a solution to one equation can be found that is also a solution to the other equation. The system is dependent if the two equations describe the same line (there are infinitely many solutions).

Here, the y-coefficients are the same in both equations, so the system will be dependent only if the values of 'a' and 'b' match the corresponding terms in the first equation:

The system is dependent when a=3, b=5.

__

Additional comment

Dependent systems are always consistent.

<95141404393>

Other Questions
which number best represents the slope of the graphed line? A. -5B. -1/5C. 1/5D. 5 17.) You can use technology for this problem, keep calculations accurate to at least 10 decimal places. Consider: y =xy,y(0)=1,h=0.1. a.) Using Euler's Method i.) Summarize the results for the approximation for y(1) into a table. Include your values of x n, the approximation at each step y n, the exact value y(x n) and the absolute error at each step. ii.) Plot the graph of the approximation curve and the graph of the exact solution on the same graph. b.) Using Improved Euler's Method i.) Summarize the results for the approximation for y(1) into a table. Include your values of x n, the approximation at each step y n, the exact value y(x n) and the absolute error at each step. ii.) Plot the graph of the approximation curve and the graph of the exact solution on the same graph. 3 c.) Using RK4 i.) Summarize the results for the approximation for y(1) into a table. Include your values of x n, the approximation at each step y n, the exact value y(x n) and the absolute error at each step. ii.) Plot the graph of the approximation curve and the graph of the exact solution on the same graph. d.) On a single graph plot the absolute errors at each step, n, for (a), (b) and (c) A hydrogen atom in an n=2, l= 1, m = -1 state emits a photon when it decays to an n= 1, 1= 0, ml=0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the wavelength of the photon from the zero-field value? A search of the literature reveals many different processes for the production of acetylene. Select four different processes, prepare qualitative flow sheets for each, and discuss the essential differences between each process. When would one process be more desirable than the others? What are the main design problems which would require additional information? What approximations would be necessary if data are not available to resolve these questions? Mahrouq Technologies buys $19,290,327 of materials (net of discounts) on terms of 3/30, net 60, and it currently pays within 30 days and takes discounts. Mahrouq plans to expand, and this will require additional financing. If Mahrouq decides to forego discounts and thus to obtain additional credit from its suppliers, calculate the nominal cost of that credit.Answer in % terms to 2 decimal places (no % sign). how were redis and pasteurs experiments similar? A firm's average fixed cost decreases at first and then inereases. True False QUESTION 48 An increase in labor costs will (increase, decrease, have no impaet) on the average and marginal cost eurves of a firm. Heat is produced within a cylindrical cable with a radius of 0.60 m and a length of 3 m with a heat conductivity of 85 W/m K. The amount of heat produced per unit volume and per unit time is given as Q (W/m3.s) = 4x10-3 T0.5 where T is the temperature (K). The surface temperature of the sphere is 120 C. a) Construct an energy balance within the cylindrical cable. b) Solve the energy balance with MATLAB to obtain the temperature profile within the cylindrical cable by appropriate assumptions If the charge is -33_ C, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper Suppose the government increases expenditures by $120 billion and the marginal propensity to consume is 0.90. By how much will equilibrium GDP change? The change in equilibrium GDP is: $ billion. (Round your solution to one decimal place.) Your down payment for a real estate transaction is $18,000representing 15% of the purchase price. Calculate the purchaseamount of the property. The market price of a semi-annual pay bond is $970.22. It has 11.00 years to maturity and a coupon rate of 8.00%. Par value is $1,000. What is the effective annual yield? a. 8.5977% b. 8.9891% c. 9.1827% d. 9.3251% write half page for this Question. Directions: Answer questions min 1/2 page per question. Case Study 1 I wrote a paper for my English class and my professor thought it was excellent. He asked me to write another paper to submit for a writing competition. The winner of the competition will have his or her work published nationally. Oh, my goodness. I am terrified! I am not that good of a writer. I just got lucky on that last paper. There is no way that I am going to be able to write anything even close to being competitive with all the other entries. I am going to utterly disappoint my professorand probably end up with a poor grade in this class as a result. I wish he had never asked me to do this. Based on your knowledge about the ABCD model, recognize and describe the "Beliefs" and "Consequences" factor of this event and how can you disputate it? Enter only the last answer c) into moodle A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v a) Find a simplified algebraic expression using symbols only for the total kinetic energy Kror of the ball in terms of M and R only. b) If M = 7.5 kg, R = 108 cm and v=4.5 m/s find the moment of inertia of the ball c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy. Sunset Corporation Currently Has An EPS Of $4.25, And The Benchmark PE For The Company Is 19. Earnings Are Expected To Grow At 5 Percent Per Year. A. What Is Your Estimate Of The Current Stock Price? Note: Do Not Round Intermediate Calculations And Round Your Answer To 2 Decimal Places, E.G., 32.16. B. What Is The Target Stock Price In One Year? Bonecos Inc currently has copyright over a beloved cartoon show. This means that Bonecos Inc is the only company that can make toys and clothes with characters from this cartoon.Next year, the copyright is set to expire, which will allow other firms to make toys and clothes with the characters.What will be the effect of the end of Bonecos Incs monopoly over the following variables (be sure to provide a one sentence justification for each of them):Equilibrium quantityEquilibrium priceConsumer surplusMarkupFirm profits Let A be a 56 real matrix such that rank(A)=5. Which of the following statements is true? A. The dimension of the null space of A is equal to 0 . B. The rows of A are linearly independent. C. The columns of A are linearly independent. D. The rank of A^T is equal to 6 . E. The dimension of the row space of A is 1 . The lengths of the adjacent sides of a parallelogram 54 cm and 78cm . The larger angle measures 110 . What is the length of the longer diagonal? Round your answer to the nearest centimeter. 1.1 Calculate the expectation value of p in a stationary state of the hydrogen atom (Write p2 in terms of the Hamiltonian and the potential V). Write a short 400 words analysis for this1) Of all the characters in the short story The Things They Carried, who could you trust the most in war? Why do you believe this is so? Use elements from the story to support your perspective.