Writing Suppose A = [a b c d ]has an inverse. In your own words, describe how to switch or change the elements of A to write A⁻¹

Answers

Answer 1

We can use the inverse formula to switch or change the elements of A to write A⁻¹

Suppose A = [a b c d] has an inverse. To switch or change the elements of A to write A⁻¹, one can use the inverse formula.

The formula for the inverse of a matrix A is given as A⁻¹= (1/det(A))adj(A),

where adj(A) is the adjugate or classical adjoint of A.

If a matrix A has an inverse, then it is non-singular or invertible. That means its determinant is not zero. The adjugate of a matrix A is the transpose of the matrix of cofactors of A. A matrix of cofactors is formed by computing the matrix of minors of A and multiplying each element by a factor. The factor is determined by the sign of the element in the matrix of minors.

To know more about inverse formula refer here:

https://brainly.com/question/30098464

#SPJ11


Related Questions

Fred's Donuts is installing new equipment in its bakery. Many employees are fearful they will not be able to operate it. Which one of the following courses of actions is best for Fred to use to overcome this employee resistance

Answers

The complete question is:

Fred's Donuts is installing new equipment in its bakery. Many employees are fearful they will not be able to operate it. Which of the following courses of action is best for Fred to use to overcome this employee resistance?

A) threaten the employees who resist the change

B) present distorted facts to the employees

C) terminate employees who resist the change

D) educate employees and communicate with them

The answer is option D) educate employees and communicate with them.

Threatening employees (option A) is not a productive or ethical approach. It can create a negative and hostile work environment, leading to decreased morale and potential legal consequences.

Presenting distorted facts (option B) is dishonest and can lead to mistrust among employees. Providing accurate and transparent information is crucial for building trust and gaining employee support.

Terminating employees (option C) solely based on their resistance to change is not an effective solution. It is important to engage with employees and understand their concerns before considering any drastic actions such as termination.

Educating employees and communicating with them (option D) is the recommended approach. This involves providing thorough training on how to operate the new equipment, addressing any concerns or fears employees may have, and ensuring open lines of communication throughout the process. By involving employees in the decision-making and change implementation, they are more likely to feel valued and willing to adapt to the new equipment.

Overall, a collaborative and supportive approach that focuses on education, communication, and addressing employee concerns is the most effective way to overcome resistance to change in this scenario.

Learn more about employee resistance: https://brainly.com/question/33204926

#SPJ11

: Three siblings Trust, Hardlife and Innocent share 42 chocolate sweets according to the ratio 3: 6:5, respectively. Their father buys 30 more chocolate sweets and gives 10 to each of the siblings. What is the new ratio of the sibling share of sweets? A. 19:28:35 B. 13:16: 15 C. 4:7:6 D. 10 19 16 4

Answers

The new ratio of the siblings' share of sweets is 19:28:25. Thus, option A is correct..

Initially, the siblings shared the 42 chocolate sweets according to the ratio 3:6:5.

To find the total number of parts in the ratio, we add the individual ratios: 3 + 6 + 5 = 14 parts.

To determine the share of each sibling, we divide the total number of sweets (42) into 14 parts:

Trust's share = (3/14) * 42 = 9 sweets

Hardlife's share = (6/14) * 42 = 18 sweets

Innocent's share = (5/14) * 42 = 15 sweets

Now, their father buys an additional 30 chocolate sweets and gives 10 to each sibling. This means that each sibling's share increases by 10.

Trust's new share = 9 + 10 = 19 sweets

Hardlife's new share = 18 + 10 = 28 sweets

Innocent's new share = 15 + 10 = 25 sweets

The new ratio of the siblings' share of sweets is 19:28:25.

However, none of the given answer options match this ratio. Please double-check the provided answer choices or the given information to ensure accuracy.

Learn more about ratio

https://brainly.com/question/13419413

#SPJ11

Let a, b E Q, with a < b. Using proof by contradiction, prove that there exist c E R \Q such that a ≤ c < b.

Answers

Yes, using proof by contradiction, it can be shown that there exists a real number c such that a ≤ c < b, where a and b are rational numbers.

To prove the statement by contradiction, we assume that there is no real number c such that a ≤ c < b. This means that all the real numbers between a and b are either greater than b or less than a. However, since a and b are rational numbers, they are also real numbers, and the real number line is continuous.

Considering the case where a is less than b, if there are no real numbers between a and b, then there would be a gap in the real number line. But this contradicts the fact that the real number line is continuous, with no gaps or jumps.

Therefore, by the principle of contradiction, our assumption must be false, and there must exist a real number c between a and b. This number c is not a rational number because if it were, it would contradict our assumption. Hence, c belongs to the set of real numbers but not to the set of rational numbers (R \ Q).

Learn more about rational numbers

brainly.com/question/24398433

#SPJ11

If the numerator of a rational number is 15 times the denominator and the numerator is also 14 more than the denominator, what are the numerator and denominator? The numerator is and the denominator is CITT

Answers

The numerator is 15 and the denominator is 1.

Let's solve the given problem:

We are given that the numerator of a rational number is 15 times the denominator and the numerator is also 14 more than the denominator. Let's represent the numerator as "n" and the denominator as "d."

From the given information, we can write two equations:

Equation 1: n = 15d

Equation 2: n = d + 14

To find the numerator and denominator, we need to solve these equations simultaneously.

Substituting Equation 1 into Equation 2, we get:

15d = d + 14

Simplifying the equation:

15d - d = 14

14d = 14

Dividing both sides of the equation by 14:

d = 1

Substituting the value of d back into Equation 1, we can find the numerator:

n = 15(1)

n = 15.

For similar question on rational number.

https://brainly.com/question/19079438  

#SPJ8

Find the center of mass of a thin wire lying along the curve r(t) = ti + tj + (2/3)t^3/2 k 0 ≤ t≤ 2 if the density is a = 1√2+t

(X,Y,Z) =

Answers

The center of mass of the curve is given by:

[tex]\[ [X, Y, Z] = \left[\frac{2\sqrt{6}}{5} + \frac{4}{7}(2^{\frac{3}{2}} - 1), \frac{2\sqrt{6}}{5} + \frac{4}{7}(2^{\frac{3}{2}} - 1), \frac{16\sqrt{3}}{15} + \frac{2}{5}(2^{\frac{3}{2}} - 1)\right] / \left[\frac{2\sqrt{6}}{3} + \frac{2}{3}(2^{\frac{3}{2}} - 1)\right].\][/tex]

Given that,

[tex]\[r(t) = ti + tj + \frac{2}{3}t^{\frac{3}{2}}k,\quad 0 \leq t \leq 2,\]and the density is \(a = \frac{1}{\sqrt{2}} + t\).[/tex]

The center of mass formula is given as follows:

[tex]\[ [X,Y,Z] = \frac{1}{M} \left[\int x \, dm, \int y \, dm, \int z \, dm\right],\][/tex]

where[tex]\(M\)[/tex]is the mass of the curve and \(dm\) is the mass of each small element of the curve.

So, the first step is to find the mass of the curve. The mass of the curve is given by:

[tex]\[ M = \int dm = \int a \, ds,\][/tex]

where [tex]\(ds\)[/tex] is the element of arc length.

Since the curve is a wire, its width is very small. Therefore, we can use the arc length formula to find the length of the wire.

Let [tex]\(r(t) = f(t)i + g(t)j + h(t)k\)[/tex] be the equation of the curve over the interval [tex]\([a,b]\).[/tex] The length of the curve is given by:

[tex]\[ L = \int_a^b ds = \int_a^b \sqrt{\left(\frac{dr}{dt}\right)^2 + \left(\frac{d^2r}{dt^2}\right)^2} \, dt.\][/tex]

Here, [tex]\(\frac{dr}{dt}\), and \(\frac{d^2r}{dt^2}\) can be calculated as:\[\begin{aligned} \frac{dr}{dt} &= i + j + \sqrt{2t}k, \\ \frac{d^2r}{dt^2} &= \frac{1}{2\sqrt{t}}k. \end{aligned}\][/tex]

Using the above formulas, we can calculate the length of the curve as:

[tex]\[ L = \int_0^2 \sqrt{1 + 2t} \, dt = \frac{4\sqrt{3}}{3}.\][/tex]

Thus, the mass of the curve is given by:

[tex]\[ M = \int_0^2 (1/\sqrt{2} + t)\sqrt{1 + 2t} \, dt = \frac{2\sqrt{6}}{3} + \frac{2}{3}(2^{\frac{3}{2}} - 1).\][/tex]

Next, we need to find the integrals of \(x\), \(y\), and \(z\) with respect to mass to find the coordinates of the center of mass.

[tex]\[ X = \int x \, dm = \int_0^2 t(1/\sqrt{2} + t)\sqrt{1 + 2t} \, dt = \frac{2\sqrt{6}}{5} + \frac{4}{7}(2^{\frac{3}{2}} - 1), \]\[ Y = \int y \, dm = \int_0^2 t(1/\sqrt{2} + t)\sqrt{1 + 2t} \, dt = \frac{2\sqrt{6}}{5} + \frac{4}{7}(2^{\frac{3}{2}} - 1), \]\[ Z = \int z \, dm = \int_0^2 \frac{2}{3}t^{\frac{3}{2}}(1/\sqrt{2} + t)\sqrt{1 + 2[/tex]

[tex]t} \, dt = \frac{16\sqrt{3}}{15} + \frac{2}{5}(2^{\frac{3}{2}} - 1).\][/tex]

Learn more about center of mass here :-

https://brainly.com/question/27549055

#SPJ11

Consider the quadratic function.

f(p) = p2 – 8p – 5

What are the values of the coefficients and the constant in the function?

a = –1, b = –8, c = –5
a = 1, b = –5, c = –8
a = 1, b = –8, c = –5
a = –1, b = –5, c = 8

Answers

Answer:

The quadratic function is usually written in the form f(p) = ap^2 + bp + c. The coefficients and the constant in the function are as follows:

a is the coefficient of the squared term (p^2),

b is the coefficient of the p term,

c is the constant term.

Given the function f(p) = p^2 – 8p – 5, we can match each term to its corresponding coefficient or constant:

- a is the coefficient of p^2, which is 1 (since there's no other number multiplying p^2).

- b is the coefficient of p, which is -8.

- c is the constant term, which is -5.

So, the correct values for the coefficients and the constant are:

a = 1, b = –8, c = –5

Answer: You have a 25 percent chance to get this right. I believe you can solve this! So, I will not include the answer.

Step-by-step explanation:

Please, think about the problem before posting. However, I will still give you a hint. To solve it, you first need to know the standard form of a quadratic.

[tex]ax^2+bc+c[/tex]

a, b being coefficients, and c being a constant. Where a is greater than one.

Then you need to know what a constant and coefficient are.

A constant is a fixed value, meaning it does not change.A coefficient is a number that is multiplied by a variable in an algebraic expression.

You do the rest!

9. Consumed by Kaffein (CBK) is a new campus coffee store. It uses 60 bags of whole bean coffee every month, and demand is steady throughout the year. CBK has signed a contract to buy its coffee from a local supplier for a price of $30 per bag and a $100 fixed cost for every delivery independent of order size, CBK incurs an inventory holding cost of 20% per year.
If CBK chooses an order quantity to minimize ordering and holding costs, what is its minimal cost, C(Q*), for that optimal quantity, Q*?
If CBK does choose that optimal order quantity, what will its ordering and holding costs per year be, expressed as a percentage of the annual purchase cost for the coffee beans?

Answers

The minimal cost for the optimal order quantity, Q*, for Consumed by Kaffein (CBK) is $X. The ordering and holding costs per year will be Y% of the annual purchase cost for the coffee beans.

To determine the minimal cost for the optimal order quantity, we need to consider both the ordering and holding costs. The ordering cost consists of a fixed cost of $100 per delivery, independent of the order size. The holding cost is incurred for carrying inventory and is given as 20% per year.

First, we calculate the optimal order quantity, Q*, which minimizes the total cost. This can be done using the economic order quantity (EOQ) formula:

EOQ = √((2DS) / H),

where D is the annual demand (60 bags), S is the cost per order ($100), and H is the holding cost per unit ($30 * 20% = $6 per bag).

Plugging in the values, we get:

EOQ = √((2 * 60 * 100) / 6) ≈ 55.9 bags.

Next, we calculate the minimal cost, C(Q*), for the optimal order quantity. It consists of both the ordering cost and the holding cost. The ordering cost can be calculated by dividing the annual demand (60 bags) by the optimal order quantity (55.9 bags) and multiplying it by the cost per order ($100):

Ordering cost = (60 / 55.9) * $100 ≈ $107.36.

The holding cost can be calculated by multiplying the optimal order quantity (55.9 bags) by the holding cost per unit ($6 per bag):

Holding cost = 55.9 * $6 = $335.40.

The total minimal cost, C(Q*), is the sum of the ordering cost and the holding cost:

C(Q*) = $107.36 + $335.40 = $442.76.

Finally, we calculate the ordering and holding costs per year as a percentage of the annual purchase cost for the coffee beans. The annual purchase cost for the coffee beans is given by the number of bags (60) multiplied by the cost per bag ($30):

Annual purchase cost = 60 * $30 = $1800.

The ordering and holding costs per year can be calculated by dividing the total costs (ordering cost + holding cost) by the annual purchase cost and multiplying by 100:

Ordering and holding costs per year = ($442.76 / $1800) * 100 ≈ 24.6%.

Therefore, the minimal cost for the optimal order quantity, Q*, for CBK is $442.76, and the ordering and holding costs per year will be approximately 24.6% of the annual purchase cost for the coffee beans.

Learn more about minimal cost.
brainly.com/question/14965408

#SPJ11



Two standard number cubes are tossed. State whether the events are mutually exclusive. Then find P(A or B) . A means they are equal; B means their sum is a multiple of 3 .

Answers

The required probability is P(A and B) = 2/36 = 1/18.P(A or B) = P(A) + P(B) - P(A and B) = (1/6) + (1/3) - (1/18) = 5/9

Two events are said to be mutually exclusive if they have no outcomes in common. The sum of probabilities for mutually exclusive events is always equal to 1.

A and B are not mutually exclusive events since the events may occur simultaneously.

The probabilities of A and B are as follows,

P(A) = the probability that they are equal = 6/36 = 1/6 since each number on one dice matches with a particular number on the other dice.

P(B) = the probability that their sum is a multiple of 3.

A sum of 3 and 6 are possible if the 2 numbers that come up on each die are added.

Therefore, the possible ways to obtain a sum of a multiple of 3 are 3 and 6. The following table illustrates the ways in which to obtain a sum of a multiple of 3.  {1,2}, {2,1}, {2,4}, {4,2}, {3,3}, {1,5}, {5,1}, {4,5}, {5,4}, {6,3}, {3,6}, {6,6}

Therefore, P(B) = 12/36 = 1/3 since there are 12 ways to obtain a sum that is a multiple of 3 when 2 number cubes are thrown.

To determine P(A or B), add the probabilities of A and B and subtract the probability of their intersection (A and B).

We can write this as,

P(A or B) = P(A) + P(B) - P(A and B)Let's calculate the probability of A and B,

Both dice must show a 3 since their sum must be a multiple of 3.

Therefore, P(A and B) = 2/36 = 1/18.P(A or B) = P(A) + P(B) - P(A and B) = (1/6) + (1/3) - (1/18) = 5/9

To know more about probabilities refer to:

https://brainly.com/question/29381779

#SPJ11

Suppose A is a NON-diagonalizable matrix of size 3×3, whose eigenvalues ​​are λ1=4 and λ2=6. If it is known that the algebraic multiplicity of λ1=4 is 1, we can ensure that the geometric multiplicity of λ2=6 is

Answers

A matrix A is non-diagonalizable, then there is at least one eigenvalue λ that has a geometric multiplicity strictly less than its algebraic multiplicity. If λ1=4 has algebraic multiplicity 1, then we can ensure that its geometric multiplicity is also 1

The explanation to ensure the geometric multiplicity of λ2=6, we need to find the eigenspace of λ2

Given A is a NON-diagonalizable matrix of size 3 × 3, whose eigenvalues ​​are λ1= 4 and λ2= 6. And, it is known that the algebraic multiplicity of λ1= 4 is 1.

Algebraic multiplicity: The number of times an eigenvalue appears in the matrix A is known as the algebraic multiplicity. Geometric multiplicity: The dimension of the eigenspace is called the geometric multiplicity. Now, we can find the geometric multiplicity of λ2= 6, by finding the dimension of the eigenspace of λ2. So, for this, we have to find the null space of (A - λ2I).[tex]\\$$\text{Let, }A = \begin{bmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ and } \lambda_2 = 6$$So, $$A - \lambda_2 I = \begin{bmatrix}a_{11}-6 & a_{12} & a_{13} \\a_{21} & a_{22}-6 & a_{23} \\a_{31} & a_{32} & a_{33}-6 \end{bmatrix}$$\\[/tex]

So, we get [tex]\\$$(a_{11}-6)x+a_{12}y+a_{13}z = 0$$$$(a_{21})x+(a_{22}-6)y+a_{23}z = 0$$$$(a_{31})x+(a_{32})y+(a_{33}-6)z = 0$$\\[/tex]

The above equations can be written in matrix form as[tex]\\$$(A-\lambda_2 I)v = 0$$\\[/tex]

Now, we can apply the RREF method to find the eigenspace of λ2.For the RREF method,

[tex]$$\begin{bmatrix}a_{11}-6 & a_{12} & a_{13} \\a_{21} & a_{22}-6 & a_{23} \\a_{31} & a_{32} & a_{33}-6 \end{bmatrix} \xrightarrow[R_3 = R_3 - \frac{a_{31}}{a_{11}-6}R_1]{R_2 = R_2 - \frac{a_{21}}{a_{11}-6}R_1}[/tex]

So, the eigenspace for λ2 = 6 is the null space of [tex]\\A - λ2I$$\begin{bmatrix}a_{11}-6 & a_{12} & a_{13} \\a_{21} & a_{22}-6 & a_{23} \\a_{31} & a_{32} & a_{33}-6 \end{bmatrix}v = 0$$\\[/tex]

Now, we can get the geometric multiplicity of λ2=6 by finding the dimension of the eigenspace of λ2, which can be determined by finding the RREF of A - λ2I.The RREF of A - λ2I is:[tex]\\$$\begin{bmatrix}a_{11}-6 & a_{12} & a_{13} \\0 & a_{22}-\frac{6a_{21}}{a_{11}-6} & a_{23}-\frac{6a_{23}}{a_{11}-6} \\0 & 0 & \frac{(a_{11}-6)(a_{33}-\frac{6a_{31}}{a_{11}-6}) - (a_{13})(a_{32}-\frac{6a_{31}}{a_{11}-6})}{(a_{11}-6)(a_{22}-\frac{6a_{21}}{a_{11}-6})} \end{bmatrix}$$\\[/tex]

Since, A is a NON-diagonalizable matrix of size 3 × 3, whose eigenvalues ​​are λ1= 4 and λ2= 6. And it is known that the algebraic multiplicity of λ1= 4 is 1. Thus, [tex]\\$λ_1$ \\[/tex]

has algebraic multiplicity 1, so it has geometric multiplicity 1 as well, but we can't determine the geometric multiplicity of λ2 based on the information given. So, If matrix A is non-diagonalizable, then there is at least one eigenvalue λ that has a geometric multiplicity strictly less than its algebraic multiplicity. If λ1=4 has algebraic multiplicity 1, then we can ensure that its geometric multiplicity is also 1. However, we cannot ensure that the geometric multiplicity of λ2=6 is greater than or equal to 1. Therefore, the geometric multiplicity of λ2=6 is unknown.

To know more about matrix visit:

https://brainly.com/question/29132693

#SPJ11



Solve each matrix equation. If the coefficient matrix has no inverse, write no unique solution.

[1 1 1 2]

[x y]


[8 10]

Answers

The solution of the given matrix equation is [tex]`X = [2/9, 2/3]`.[/tex].

The given matrix equation is as follows:

`[1 1 1 2][x y]= [8 10]`

It can be represented in the following form:

`AX = B`

where `A = [1 1 1 2]`,

`X = [x y]` and `B = [8 10]`

We need to solve for `X`. We will write this in the form of `Ax=b` and represent in the Augmented Matrix as follows:

[1 1 1 2 | 8 10]

Now, let's perform row operations as follows to bring the matrix in Reduced Row Echelon Form:

R2 = R2 - R1[1 1 1 2 | 8 10]`R2 = R2 - R1`[1 1 1 2 | 8 10]`[0 9 7 -6 | 2]`

`R2 = R2/9`[1 1 1 2 | 8 10]`[0 1 7/9 -2/3 | 2/9]`

`R1 = R1 - R2`[1 0 2/9 8/3 | 76/9]`[0 1 7/9 -2/3 | 2/9]`

To learn more about matrix, refer here:

https://brainly.com/question/29000721

#SPJ11

What values of a and b make this equation true?
(4 + V-49) - 2(V (-4) + V-324) = a + bi

a= _.
b=_.

Answers

The values of a and b that make the equation true are a = 4 and b = -45.

Let's simplify the equation first and then determine the values of a and b.

The given equation is: [tex]\[(4 + \sqrt{-49}) - 2(\sqrt{-4^2} + \sqrt{-324}) = a + bi\][/tex]

We notice that the terms inside the square roots result in complex numbers because they involve the square root of negative numbers. Therefore, we'll use complex numbers to simplify the equation.

[tex]\(\sqrt{-49} = \sqrt{49 \cdot -1} = \sqrt{49} \cdot \sqrt{-1} = 7i\)\(\sqrt{(-4)^2} = \sqrt{16 \cdot -1} = \sqrt{16} \cdot \sqrt{-1} = 4i\)\(\sqrt{-324} = \sqrt{324 \cdot -1} = \sqrt{324} \cdot \sqrt{-1} = 18i\)[/tex]

Now, substituting these values back into the equation:

(4 + 7i) - 2(4i + 18i) = a + bi

Simplifying further:

4 + 7i - 8i - 36i = a + bi

4 - i(1 + 8 + 36) = a + bi

4 - 45i = a + bi

Comparing the real and imaginary parts, we can determine the values of a and b:

a = 4

b = -45

Therefore, the values of a and b that make the equation true are a = 4 and b = -45.

For more questions on equation :

https://brainly.com/question/29174899

#SPJ8

In triangle ABC the angle bisectors drawn from vertices A and B intersect at point D. Find m
m

Answers

The measure of angle ADB is equal to the square root of ([tex]AB \times BA[/tex]).

In triangle ABC, let the angle bisectors drawn from vertices A and B intersect at point D. To find the measure of angle ADB, we can use the angle bisector theorem. According to this theorem, the angle bisector divides the opposite side in the ratio of the adjacent sides.

Let AD and BD intersect side BC at points E and F, respectively. Now, we have triangle ADE and triangle BDF.

Using the angle bisector theorem in triangle ADE, we can write:

AE/ED = AB/BD

Similarly, in triangle BDF, we have:

BF/FD = BA/AD

Since both angles ADB and ADF share the same side AD, we can combine the above equations to obtain:

(AE/ED) * (FD/BF) = (AB/BD) * (BA/AD)

By substituting the given angle bisector ratios and rearranging, we get:

(AD/BD) * (AD/BD) = (AB/BD) * (BA/AD)

AD^2 = AB * BA

Note: The solution provided assumes that points A, B, and C are non-collinear and that the triangle is non-degenerate.

For more such questions on angle

https://brainly.com/question/25770607

#SPJ8

need help with this one asap

Answers

if you're solving it for R, it's r = 3s

if you're solving for S, it's s = r/3

How to solve 2 plus 3 times 4 plus 5 which is equal to 45

Answers

To solve the expression 2 + 3 × 4 + 5, we follow the order of operations, also known as the PEMDAS rule (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction):

First, we perform the multiplication: 3 × 4 = 12.

Then, we add the remaining numbers: 2 + 12 + 5.

Finally, we perform the addition: 2 + 12 + 5 = 19.

Therefore, the correct solution to the expression 2 + 3 × 4 + 5 is 19, not 45. It's important to note that the order of operations dictates that multiplication and division should be performed before addition and subtraction. So, in this case, the multiplication (3 × 4) is evaluated first, followed by the addition (2 + 12), and then the final addition (14 + 5).

If you obtained a result of 45, it's possible that there was an error in the calculation or a misunderstanding of the order of operations.

Learn more about expression here

https://brainly.com/question/1859113

#SPJ11

The function (x) = 0.42x + 50 represents the cost (in dollars) of a one-day truck rental when the truck is
driven x miles.
a. What is the truck rental cost when you drive 85 miles?
b. How many miles did you drive when your cost is $65.96?

Answers

a) If the function f(x) = 0.42x + 50 represents the cost (in dollars) of a one-day truck rental when the truck is driven x miles, the truck rental cost when you drive 85 miles is $85.70.

b) When you drive the truck and pay $65.96, the total distance the truck is driven is 38 miles.

What is a function?

A mathematical function is an equation representing the relationship between the independent and dependent variables.

An equation is two or more mathematical expressions equated using the equal symbol (=).

Function:

f(x) = 0.42x + 50

a) The number of miles the truck is driven = 85 miles

= 0.42(85) + 50

= 85.7

= $85.70

b) The total cost for x miles = $65.96

f(x) = 0.42x + 50

65.96 = 0.42x + 50

0.42x = 15.96

x = 38 miles

Learn more about mathematical functions at https://brainly.com/question/25638609.

#SPJ1

In a certain season, a baseball player had a total of 234 hits. He hit three fewer triples than home runs, and he also hit two times as many doubles as home runs. Additionally, he hit 41 times as many singles as triples. Find the numbe of singles, doubles, triples, and home runs hit by the player during the season. The playerhit singles. doubles, triples, and home runs.

Answers

The player hit 205 singles, 16 doubles, 5 triples, and 8 home runs during the season.

To find the number of singles, doubles, triples, and home runs hit by the player during the season, we can set up a system of equations based on the given information.

Let's represent the number of home runs as "H", the number of triples as "T", the number of doubles as "D", and the number of singles as "S".

Based on the given information:
1. The player hit three fewer triples than home runs, so we have T = H - 3.
2. The player hit two times as many doubles as home runs, so we have D = 2H.
3. The player hit 41 times as many singles as triples, so we have S = 41T.

We also know that the total number of hits is 234, so we can write the equation:
H + T + D + S = 234.

Now, let's substitute the values from equations 1, 2, and 3 into the total hits equation:

(H - 3) + H + 2H + 41(H - 3) = 234.

Simplifying this equation:
H - 3 + H + 2H + 41H - 123 = 234,
45H - 126 = 234,
45H = 360,
H = 8.

Now that we have the value of H, we can substitute it back into the other equations to find the values of T, D, and S.

From equation 1: T = H - 3 = 8 - 3 = 5.
From equation 2: D = 2H = 2 * 8 = 16.
From equation 3: S = 41T = 41 * 5 = 205.

Therefore, the player hit 205 singles, 16 doubles, 5 triples, and 8 home runs during the season.

To know more about "singles, doubles, triples "

https://brainly.com/question/15570351

#SPJ11

54. Write formulas for each of the following: 54a. The charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents.

Answers

To determine the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3,

if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents, we can follow the steps below: We can start by subtracting the charge for the first 3 minutes from the total charge for the n minutes.

Since the charge for the first 3 minutes is $1.20, the charge for the remaining n-3 minutes is:$(n-3) \times 0.33Then, we can add the charge for the first 3 minutes to the charge for the remaining n-3 minutes to get the total charge:$(n-3) \times 0.33 + 1.20$

Therefore, the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents is given by:Charge = $(n-3) \times 0.33 + 1.20$

This formula gives the total charge for a call that lasts for n minutes, including the charge for the first 3 minutes. It is valid only for values of n greater than 3.A 250-word answer should not be necessary to explain the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents.

To know more about costs, click here

https://brainly.com/question/17120857

#SPJ11

Let a, b, c and y be the three dimensional vectors Perform the following operations on these vectors: (a) c. À +à ý = a (b) (à. B) a = (c) ((è · c) a) · à = a = 5j + k, b=2i+4j+5k, č=3i-3j, y=8i-6j

Answers

The results of the operations are:

(a) c · (À + à) = 0

(b) (à · b) à = 45i + 90j + 112.5k

(c) ((è · c) a) · à = 225j + 45k.

To perform the given operations on the vectors, let's evaluate each expression:

(a) c · (À + à) = c · (-A + A) = c · 0 = 0

(b) (à · b) à = (2i + 4j + 5k) · (2i + 4j + 5k) (2i + 4j + 5k) = 45i + 90j + 112.5k

(c) ((è · c) a) · à = ((3i - 3j) · (3i - 3j)) (5j + k) · (5j + k) = (9i² - 18ij + 9j²) (25j + 5k) = 225j + 45k

Given the vector values:

a = 0i + 5j + k

b = 2i + 4j + 5k

c = 3i - 3j

y = 8i - 6j

Using these values, we can evaluate each operation.

Learn more about operations here :-

https://brainly.com/question/29288529

#SPJ11

Identify the sample chosen for the study. the number of times 10 out of 20 students on your floor order pizza in a week.

Answers

The sample chosen for the study is the 10 students out of 20 students on your floor. The number of times they order pizza in a week is the variable of interest.

The population is the 20 students on your floor. The number of times all 20 students order pizza in a week is the parameter of interest.

The difference between a sample and a population is that a sample is a subset of the population. A parameter is a numerical summary of a population, while a statistic is a numerical summary of a sample.

In this case, the sample is a subset of the population because only 10 students out of 20 are being surveyed. The parameter of interest is the number of times all 20 students order pizza in a week, which is not known. The statistic of interest is the number of times the 10 students in the sample order pizza in a week, which is known.

learn more about here:

brainly.com/question/870035

#SPJ11

Find the domain of the function. g(x)=√x−4 / x-5 What is the domain of g ? (Type your answer in interval notation.)

Answers

In order to find the domain of the given function, g(x)=√x−4 / x-5, we need to determine all the values of x for which the function is defined. In other words, we need to find the set of all possible input values of the function.

The function g(x)=√x−4 / x-5 is defined only when the denominator x-5 is not equal to zero since division by zero is undefined. Hence, x-5 ≠ 0 or x

≠ 5.For the radicand of the square root to be non-negative, x - 4 ≥ 0 or x ≥ 4.So, the domain of the function is given by the intersection of the two intervals, which is [4, 5) ∪ (5, ∞) in interval notation.We use the symbol [ to indicate that the endpoints are included in the interval and ( to indicate that the endpoints are not included in the interval.

The symbol ∪ is used to represent the union of the two intervals.The interval [4, 5) includes all the numbers greater than or equal to 4 and less than 5, while the interval (5, ∞) includes all the numbers greater than 5. Therefore, the domain of the function g(x)=√x−4 / x-5 is [4, 5) ∪ (5, ∞) in interval notation.

To know more about function visit:
https://brainly.com/question/30721594

#SPJ11

Let A={2,4,6}, B={2,6}, C={4,6}, D={4,6,8]. Select all of the following that are true: - D € C - A € B - A € B - C € A - A € C - B € A - B € A - C € D

Answers

The following statements are true:

D € C

A € B

To determine whether the given statements are true, we need to understand the concept of set inclusion. In set theory, A € B means that A is a subset of B, or in other words, every element of A is also an element of B.

Looking at the sets provided, we can observe the following:

D = {4, 6, 8} and C = {4, 6}. Since every element of D (4 and 6) is also an element of C, we can say that D € C.

A = {2, 4, 6} and B = {2, 6}. Every element of A (2, 4, and 6) is also an element of B, so A € B.

Therefore, the statements "D € C" and "A € B" are true. The remaining statements "A € B", "C € A", "A € C", "B € A", "B € A", and "C € D" are not true based on the given sets.

Learn more about set inclusion

brainly.com/question/1800323

#SPJ11

Use the data in the exhibit to complete a and b. Exhibit: Factors of Production Data Compute and report the value of growth in total factor productivity ((At - At-1)IAt-1) it period from periods 2 through 5. If the value of A is 1. 000 in period 1, also report the of A in each period. Does the value of A rise in each period? If it declines, do you think this decline is bee technological progress works backward? If so, explain your answer. If not, provide ai explanation

Answers

The decline in TFP for period 2 is not because of backward technology.

Given: Periods are from 1 to 5

A is 1.000 for Period 1

It's required to calculate and report the value of growth in total factor productivity and A in each period.

Solution:

Part a: Total Factor Productivity (TFP) for period 2 to period 5

Growth in TFP for a period = ((At - At-1) / At-1) * 100%

At represents TFP for a given period.

At-1 represents TFP for the previous period.

For period 2:

Growth in TFP for period 2 = ((A2 - A1) / A1) * 100% = ((0.600 - 1.000) / 1.000) * 100% = -40%

For period 3:

Growth in TFP for period 3 = ((A3 - A2) / A2) * 100% = ((1.100 - 0.600) / 0.600) * 100% = 83.33%

For period 4:

Growth in TFP for period 4 = ((A4 - A3) / A3) * 100% = ((1.900 - 1.100) / 1.100) * 100% = 72.73%

For period 5:

Growth in TFP for period 5 = ((A5 - A4) / A4) * 100% = ((3.100 - 1.900) / 1.900) * 100% = 63.16%

Therefore, Growth in TFP is -40% for period 2, 83.33% for period 3, 72.73% for period 4, and 63.16% for period 5.

Part b: Value of A for all the periods

The given value of A is 1.000 for period 1.

A for period 2 = 1.000 + (-40/100 * 1.000) = 1.000 - 0.40 = 0.600

A for period 3 = 0.600 + (83.33/100 * 0.600) = 1.100

A for period 4 = 1.100 + (72.73/100 * 1.100) = 1.900

A for period 5 = 1.900 + (63.16/100 * 1.900) = 3.100

Therefore, the value of A for each period is 1.000, 0.600, 1.100, 1.900, and 3.100. As the values of A rise in all the periods, we can say that there is an improvement in technology, which resulted in higher productivity.

Learn more about technology here :-

https://brainly.com/question/33165874

#SPJ11



Peter bought a 1 In ./ 12ft scale model of the Mercury-Redstone rocket.b. If the diameter of the rocket is 70 inches, what is the diameter of the model? Round to the nearest half inch.

Answers

The diameter of the 1 in./12 ft scale model of the Mercury-Redstone rocket is approximately 5.8 inches.

To calculate the diameter of the model, we need to determine the scale factor between the model and the actual rocket. In this case, the scale is given as 1 in./12 ft. This means that for every 12 feet of the actual rocket, the model represents 1 inch.

Given that the diameter of the actual rocket is 70 inches, we can set up a proportion to find the diameter of the model. Let's denote the diameter of the model as "x":

(1 in.) / (12 ft) = x / (70 in.)

To solve this proportion, we can cross-multiply and then divide:

1 in. * 70 in. = 12 ft * x

70 = 12x

x = 70 / 12 ≈ 5.83 inches

Rounding to the nearest half inch, the diameter of the model is approximately 5.8 inches.

To know more about scale models, refer here:

https://brainly.com/question/17581605#

#SPJ11

WORTH 25 POINTS PLS ANSWER
In the diagram, JM¯¯¯¯¯¯¯¯≅PR¯¯¯¯¯¯¯¯, MK¯¯¯¯¯¯¯¯¯¯≅RQ¯¯¯¯¯¯¯¯,and KJ¯¯¯¯¯¯¯¯≅QP¯¯¯¯¯¯¯¯.
Drag a tile to each empty box to complete the sentences correctly.
Using transformations, such as a ____, it can be varified that △JKM is congruent to △PQR if all pairs of corresponding angles are congruent.
In any pair of triangles, if it is known that all pairs of corresponding sides are congruent, then the triangles ___ congruent.

Answers

Two triangles are congruent if all pairs of corresponding sides and angles are congruent. Using transformations, such as rotation, we can verify if two triangles are congruent.

In the given diagram, we know that JM¯¯¯¯¯¯¯¯≅PR¯¯¯¯¯¯¯¯, MK¯¯¯¯¯¯¯¯¯¯≅RQ¯¯¯¯¯¯¯¯, and KJ¯¯¯¯¯¯¯¯≅QP¯¯¯¯¯¯¯¯. To complete the sentences correctly, we need to drag the following tiles:

Using transformations, such as a rotation, it can be verified that △JKM is congruent to △PQR if all pairs of corresponding angles are congruent. In any pair of triangles, if it is known that all pairs of corresponding sides are congruent, then the triangles are congruent.

Using transformations, specifically rotations, we can verify whether two triangles are congruent or not. If all the pairs of corresponding angles are congruent, then the two triangles are said to be congruent.

In a congruent pair of triangles, each side, as well as each angle, matches the corresponding angle or side of the other triangle.

When all the pairs of corresponding sides are congruent in a pair of triangles, then we can conclude that they are congruent.

For more questions on congruent

https://brainly.com/question/29789999

#SPJ8

Use the Laplace transform to solve the given initial value problem. y (4) — 81y = 0; y(0) = 14, y'(0) = 27, y″(0) = 72, y'" (0) y(t): = = 135

Answers

The inverse Laplace transform of -15/(s² + 9) is -15sin(3t),

and the inverse Laplace transform of 15/(s² - 9) is 15sinh(3t).

To solve the given initial value problem using the Laplace transform, we'll apply the Laplace transform to the differential equation and use the initial conditions to find the solution.

Taking the Laplace transform of the differential equation y⁴ - 81y = 0, we have:

s⁴Y(s) - s³y(0) - s²y'(0) - sy''(0) - y'''(0) - 81Y(s) = 0,

where Y(s) is the Laplace transform of y(t).

Substituting the initial conditions y(0) = 14, y'(0) = 27, y''(0) = 72, and y'''(0) = 135, we get:

s⁴Y(s) - 14s³ - 27s² - 72s - 135 - 81Y(s) = 0.

Rearranging the equation, we have:

Y(s) = (14s³ + 27s² + 72s + 135) / (s⁴ + 81).

Now, we need to find the inverse Laplace transform of Y(s) to obtain the solution y(t). This can be done by using partial fraction decomposition and consulting Laplace transform tables or using symbolic algebra software.

Please note that due to the complexity of the inverse Laplace transform, the solution for y(t) cannot be calculated without knowing the specific values of the partial fraction decomposition or using specialized software.

To find the inverse Laplace transform of Y(s), we can perform partial fraction decomposition.

The denominator s⁴ + 81 can be factored as (s² + 9)(s² - 9), which gives us:

Y(s) = (14s³ + 27s² + 72s + 135) / [(s² + 9)(s² - 9)].

We can write the right side of the equation as the sum of two fractions:

Y(s) = A/(s² + 9) + B/(s² - 9),

where A and B are constants that we need to determine.

To find A, we multiply both sides by (s² + 9) and then evaluate the equation at s = 0:

14s³ + 27s² + 72s + 135 = A(s² - 9) + B(s² + 9).

Plugging in s = 0, we get:

135 = -9A + 9B.

Similarly, to find B, we multiply both sides by (s² - 9) and evaluate the equation at s = 0:

14s³ + 27s² + 72s + 135 = A(s² - 9) + B(s² + 9).

Plugging in s = 0, we get:

135 = -9A + 9B.

We now have a system of two equations:

-9A + 9B = 135,

-9A + 9B = 135.

Solving this system of equations, we find A = -15 and B = 15.

Now, we can rewrite Y(s) as:

Y(s) = -15/(s² + 9) + 15/(s² - 9).

Using Laplace transform tables or software, we can find the inverse Laplace transform of each term.

Therefore, the solution y(t) is:

y(t) = -15sin(3t) + 15sinh(3t).

To know more about Laplace transform:

https://brainly.com/question/30759963


#SPJ4

Add and subtract the rational expression, then simplify 24/3q-12/4p

Answers

Add and subtract the rational expression, then simplify 24/3q-12/4p.The simplified form of the expression (24/3q) - (12/4p) is (8p - 3q) / pq.

To add and subtract the rational expressions (24/3q) - (12/4p), we need to have a common denominator for both terms. The common denominator is 3q * 4p = 12pq.

Now, let's rewrite each term with the common denominator:

(24/3q) = (24 * 4p) / (3q * 4p) = (96p) / (12pq)

(12/4p) = (12 * 3q) / (4p * 3q) = (36q) / (12pq)

Now, we can combine the terms:

(96p/12pq) - (36q/12pq) = (96p - 36q) / (12pq)

To simplify the expression further, we can factor out the common factor of 12:

(96p - 36q) / (12pq) = 12(8p - 3q) / (12pq)

Finally, we can cancel out the common factor of 12:

12(8p - 3q) / (12pq) = (8p - 3q) / pq

Learn more about expression here :-

https://brainly.com/question/28170201

#SPJ11

lines x and y intersect to make two pairs of vertical angles, q, s and r, t. fill in the blank space in the given proof to prove

Answers

The reason to prove that ∠q ≅ ∠s include the following: C) Subtraction property of equality.

What is the vertical angles theorem?

In Mathematics and Geometry, the vertical angles theorem states that two (2) opposite vertical angles that are formed whenever two (2) lines intersect each other are always congruent, which simply means being equal to each other.

In Mathematics and Geometry, the subtraction property of equality states that the two sides of an equation would still remain equal even when the same number has been subtracted from both sides of an equality.

Based on the information provided above, we can logically deduce the following equation:

m∠q + m∠r - m∠r = m∠s + m∠r - m∠r

m∠q = m∠s

Read more on subtraction property of equality here: https://brainly.com/question/18404848

#SPJ1

Complete Question:

Lines x and y intersect to make two pairs of vertical angles, q, s and r, t. Fill in the blank space in the given proof to prove ∠q ≅ ∠s.

A) Transitive property B) Addition property of equality C) Subtraction property of equality D) Substitution property

someone help please, this is really confusing

Answers

The depth of the water in the large container cube is  2.6 inches.

How to find the height of a cube?

Tracey have two empty cube shaped containers with sides 5 inches and 7 inches. she fills the smaller container and then pour the water in the larger container.

Therefore, the depth of the water in the larger container can be found as follows:

Hence,

volume of the smaller cube = 5³

volume of the smaller cube =  125 inches³

Therefore,

volume of water poured in the larger cube = lwh

125 = 7 × 7 × h

h = 125 / 49

h = 2.55102040816

h = 2.6 inches

learn more on volume here: brainly.com/question/18854964

#SPJ1

In Euclidean geometry with standard inner product in R3, determine all vectors v that are orthogonal to u=(9,−4,0).

Answers

The set of all possible vectors v that are orthogonal to u = (9, -4, 0) is:{(4, 9, z) | z ∈ R} or {(4, 9, z) | z is any real number}

In Euclidean geometry with standard inner product in R3,

if we want to find all vectors v that are orthogonal to u = (9, -4, 0),

we need to solve the equation u · v = 0, where u · v represents the dot product of u and v, and 0 is the zero vector in R3.

The dot product of u = (9, -4, 0) and v = (x, y, z) can be represented as:u · v = 9x + (-4)y + 0z = 0

Therefore, we get the following equation:9x - 4y = 0 or y = (9/4)x

In order to obtain all the possible vectors v that are orthogonal to u,

we can let x = 4 and then find the corresponding values of y and z by substituting x = 4 into the equation y = (9/4)x,

and then choosing any value for z since the value of z has no impact on whether v is orthogonal to u.

For example, if we choose z = 1, we get:v = (4, 9, 1) is orthogonal to uv = (9, -4, 0) · (4, 9, 1) = 0

Alternatively, if we choose z = 0,

we get:v = (4, 9, 0) is orthogonal to uv = (9, -4, 0) · (4, 9, 0) = 0

Thus, the set of all possible vectors v that are orthogonal to u = (9, -4, 0) is:{(4, 9, z) | z ∈ R} or {(4, 9, z) | z is any real number}

To know more about orthogonal  visit:

https://brainly.com/question/27749918

#SPJ11

Let A and B be 3 by 3 matrices with det(A)=3 and det(B)=−2. Then det(2A T
B −1
)= −12 12 None of the mentioned 3

Answers

The determinant or det(2ATB^(-1)) is = 96.

Given that A and B are 3 by 3 matrices with det(A) = 3 and det(B) = -2, we want to find det(2ATB^(-1)).

Using the formula for the determinant of the product of two matrices, det(AB) = det(A)det(B), we can solve for det(2ATB^(-1)) as follows:

det(2ATB^(-1)) = det(2)det(A)det(B^(-1))det(T)det(B)

Since det(2) = 2^3 = 8, det(A) = 3, and det(B) = -2, we can substitute these values into the formula:

det(2ATB^(-1)) = 8 * 3 * det(B^(-1)) * det(T) * (-2)

To calculate det(B^(-1)), we know that det(B^(-1)) * det(B) = I, where I is the identity matrix:

det(B^(-1)) * det(B) = I

det(B^(-1)) * (-2) = 1

det(B^(-1)) = -1/2

Now, let's substitute this value back into the formula:

det(2ATB^(-1)) = 8 * 3 * (-1/2) * det(T) * (-2)

Since det(T) is the determinant of the transpose of a matrix, it is equal to the determinant of the original matrix:

det(2ATB^(-1)) = 8 * 3 * (-1/2) * det(B) * (-2)

Simplifying further:

det(2ATB^(-1)) = 8 * 3 * (-1/2) * (-2) * (-2)

= 8 * 3 * 1 * 4

= 96

Therefore, det(2ATB^(-1)) = 96.

Learn more about matrices

https://brainly.com/question/30646566

#SPJ11

Other Questions
Do you think that big Pharma should be held accountable for thehigh rate of opiod overdoses/ addiction or should our healthcaresystem develop more stringent policy to help prevent these overdoses? find the ratio for cos What is a multi-attribute utility analysis in negotiations? ANNUAL WORTH ANALYSIS-THEN AND NOW Background and Information Mohamad, owner of an residential furnished apartment's in Dubai, performed an economic analysis 5 years ago when he decided to place an new eefficient central AC unit for each apartments instead of old split units windows type in each room. The estimates used and the annual worth analysis at MARR =12% are summarized below. Two different AC brands were compared. The spreadsheet in below sheet is the one Mohamad used to make the decision. York was the clear choice due to its substantially larger AW value, hence York AC units were installed. During a quick review (year 5 of operation), it was obvious that the maintenance costs and repair savings have not followed (and will not follow) the estimates made 5 years ago. In fact, the maintenance contract cost is going from $300 this year (year 5 ) to $1200 per year next year and will then increase 9% per year for the next 4 years( up to year 10). Also, the electrical power savings for the last 5 years were $31,312 ( year 1) , $25,565 ( year 2), $25,234(year3), $26,903( year4), and $27,345 (year5) as best as Mohamad can determine. He believes savings will decrease by $1,200 per year hereafter. Finally, these 5 -year-old AC units are worth nothing on the market now, so the salvage in is zero, not $3000. Q9 - What is difference in capital recovery amount for the YORK units with these new estimates? A triangular pyramid with a right triangle base with a leg 8 centimeters and hypotenuse 10 centimeters has a volume of 144 cubic centimeters. Find the height. (Bond valuation) You own a 20-year, $1,000 par value bond paying 7 percent interest annually. The market price of the bond is $875, and your required rate of return is 10 percent.Compute the bonds expected rate of return.Determine the value of the bond to you, given your required rate of return.Should you sell the bond or continue to own it? Later in the day Sam looks at the data from their heart rate monitor and notices that their heartrate increased during the time that they sat down to recover from their dizzy spell.Explain in detail the cause of Sam's increase in heart rate during this time and how this works to restore Sam's blood pressure back to normal? A water bath is laboratory equipment made from a container filled with heated water. It is used to incubate samples in water at a constant temperature over time. A piston and cylinder that has a horizontal design is placed in the water bath. The piston and cylinder contains a gas with pressure and volume of 33 bars and 10 m, respectively. The gas expands isothermally as its volume reaches 3 times its original. If the product of pressure and volume is constant, what is the final pressure (in bars)? Report your answer in 2 decimal places. From the previous question, what is the work done in Joule? Report your answer in 2 decimal places. Score 2 SA biker and her bike have a combined mass of 80.0 kg and are traveling at a speed of 3.00 m/s. If the same biker and bike travel twice as fast, their kinetic energy will_by a factor of Increa Sandhill inc had outstanding 6390000 of 12% bonds (interest payable july 31 and jan 31) due in 10 years. on july 1 it issued 8240000 of 10% 15 year bonds (interest payable july 1 and jan 1) at 97. a portion of the proceeds was used to call the 12% bonds (with unamortized discount of 63900) at 101 on aug 1. prepare journal entries 2.Harry pours 650 cubic centimeters of water into cylindrical glass with a diameter of 10centimeters. He then pours the water from the first glass to another cylindrical glass with adiameter of 8 cm. How much higher did the water reach in the second glass than in the firstglass? Round to the nearest tenth of a centimeter.agures of the What is the meaning and purpose of Law?What is statutory and common law?What is the Tort law?What is Intellectual law?What is a contract? Your credit card has a balance of$5600 and an annual interest rate of14%.You decide to pay off the balance over threeyears. If there are no further purchases charged to the card, you must pay$191.35each month, and you will pay a total interest of$1288.60.Assume you decide to pay off the balance over one year rather thanthree.How much more must you pay each month and how much less will you pay in total interest?help I need part 1 AND 2 ASAP What are the 3 components of eukaryotic cells?What is the difference between passive and active transport?What 2 things make up the cytoplasm?What is an organelle?What function do the following organelles have: ribosomes, smooth endoplasmic reticulum, rough endoplasmic reticulum, mitochondria, lysosomes, nucleus The Adelaide Dairy Company (ADC) is an Australian milk-processing company. Its plant near Adelaide currently produces infant milk powder for the domestic market. Re- cently, ADC won its first international customer when a retailer in Singapore placed orders for 60,000 3-kilogram tins of milk powder to be delivered progressively over 6 months.ADCs initial plan (which we refer to as Option A) was to package the milk powder in tins at its plant and ship the tins by sea to Singapore. ADCs production cost, before packaging and logistics, was $3 per kilogram. The existing tin design was cylindrical and measured 21 centimeters in diam- eter and 22 centimeters in height externally. Each tin cost $3 from a local packaging materials supplier and weighed 0.3 ki- logram. Therefore, each tin that was filled with milk powder weighed 3.3 kilograms. These tins would have to be pallet- ized and shrink-wrapped to withstand a sea journey, before being loaded into temperature-controlled shipping contain- ers. The internal dimensions of these containers were as fol- lows: 2.28 meters wide by 2.12 meters high by 11.84 meters long. To stack and fit well within such a container, each pal- letized load must not exceed 1.067 meters in length, 1.067 meters in width, and 1 meter in height. Each wooden pallet (including shrink-wrapping materials) weighed 15 kilograms, cost $25, and was good for one-use only.The loaded containers would be trucked from the processing plant to the Port of Adelaide at a cost of $500 per container. The total shipment weight could not exceed 20,000 kilograms per container because of highway weight restrictions. Insurance costs were 3 percent of the value of the shipment ready to be loaded aboard ship in Adelaide (that is, all of the companys costs up to this point). The ocean freight cost from the Port of Adelaide to any ad- dress in Singapore was $2,500 per container.For Option B, ADCs supplier proposed a new tin design, so that pallet density could be increased. This new 3-kilogram capacity tin was also cylindrical, but measured19.4 centimeters in diameter and 24.5 centimeters in height. Compared with the existing design, 20 more tins of the new design could be packed into the standard pallet un- der a triangular packing arrangement (similar to a honey- comb pattern). However, this redesigned tin would only be procured in smaller quantities, for the international market, and hence cost slightly more at $3.10 each.To reduce wastage of packaging materials, ADC was also evaluating Option C. This involved first shipping milk powder in bulk (using unpalletized stackable drums loaded into shipping containers) from Adelaide to Singapore. Each airtight cylindrical drum, measuring 1 meter in height and 0.75 meter in diameter externally, had a capacity of 200 ki- lograms and weighed 32 kilograms when empty. Although a new drum cost $100, it could be resold for $80 in Sin- gapore to be reused by a transporter of hazardous waste. A qualified contractor could then be hired in Singapore to repackage the milk powder into 3-kilogram tins identical to the ones in Option A. While the repackaging contractor could supply these tins for just $2 each, it would charge a further $0.50 per kilogram to repackage and deliver the milk powder locally to the retailers warehouse.For the purposes of this Case Study, consider that your group is a Transportation Analyst team within LTBLLSC and the written report is being developed to make recommendations to your Manager. Also, the case study provides you with container dimensions; however, you are to research and use real-life capacities for your case; to make things more consistent, I have uploaded a container dimensions file to Fall 2018 New Content. This is not a theoretical exercise, the expectation is that you will demonstrate, with load plans, how you intend to load each container. Your answer should address all questions posed at the end of the case; the most significant question is Q7. Remember, it is better to do the work as early as you can so you can leave time to clarify anything with me preferably prior to the deadline! A resistor, an inductor, and a capacitor are connected in series to an alternating power source of maximum voltage 240 V. The resistance is 75.0 , the inductance is 42.0 mH, and the capacitance is 54.0 pF. At some frequency, the inductive and capacitive reactances are equal, and the impedance is at a minimum. This is called the "resonance frequency of the circuit. Find the resonance frequency of this circuit. In what ways can the HR professional experience competingpressures in their roles? Evaluate the implications of thesepressures using theory and practical examples. Your employer is looking to develop a new patient complaintsprocedure and asks you to draft the policy.Which GDC Principle would you refer to? What are the keystandards to consider when drafting" How might the location of Vietnam have affected the course of the war?Think about:how Vietnam covers a surface area of 128,000 square miles" making it roughly the size of the state of New Mexicohow Vietnam is bordered by Cambodia, China, and Laoshow all of Vietnams major cities are situated along the Pacific coast 0.45. (a) Find the magnitude of the frictional force in newtons. N (b) It takes the player 1.6 s to come to rest. What was his initial velocity (in m/s )? m/s kg respectively. (a) Determine the density of a neutron star. o kg/m 3(b) Determine the weight (in pounds) of a penny (V=360 mm 3) if it were made from this material. (Assume 1lb=4.448 N.) lb [-f2 Points] OSCOLPHYS2016 12.1.WA.002. m/s (b) If a nozzle with a diameter four-fifths the diameter of the hose is attached to the hose, determine the speed of the water leaving the nozzle. m/s