Express the function h(x)=1x−5 in the form f∘g. If
g(x)=(x−5), find the function f(x).

Answers

Answer 1

To find the function f(x) for g(x) = (x - 5), we can use the formula f°g(x) = f(g(x)) and substitute g(x) = (x - 5) into the given function. Substituting u in h(x) = 1x - 5, we get f(x - 5) = u. Substituting y = g(x), we get f(g(x)) = f(x - 5) = 1/(g(x) + 5) - 5. Thus, the solution is f(x) = 1/x - 5 expressed in the form f°g for g(x) = (x - 5).

To express the function h(x) = 1x - 5 in the form f°g, given g(x) = (x - 5), we are supposed to find the function f(x).

Given h(x) = 1x - 5, g(x) = (x - 5) and we have to find the function f(x).Let's assume that f(x) = u.Using the formula for f°g, we have:f°g(x) = f(g(x))

Substituting g(x) = (x - 5), we have:f(x - 5) = uAgain, we substitute u in the given function h(x) = 1x - 5. Hence we have:h(x) = 1x - 5 = f(g(x)) = f(x - 5)

Let's consider y = g(x), then x = y + 5 and substituting this value in f(x - 5) = u, we get:

f(y) = 1/(y + 5) - 5

Now, we substitute y = g(x) = (x - 5), we have:

f(g(x)) = f(x - 5)

= 1/(g(x) + 5) - 5

= 1/(x - 5 + 5) - 5

= 1/x - 5

Hence, the function f(x) = 1/x - 5 expressed in the form f°g for g(x) = (x - 5).

Therefore, the solution to the problem is f(x) = 1/x - 5 expressed in the form f°g for g(x) = (x - 5).

To know more about function Visit:

https://brainly.com/question/30721594

#SPJ11


Related Questions

Determine an equivalent expression: secx−cosx
Select one:
a. cotxsecx
b. cotxcosx
c. tanxsinx
d. tanxcscx

Answers

The equivalent trignometric expression for secx - cosx is tanxcscx. Option D is the correct answer.

To find an equivalent expression for secx - cosx, we can manipulate the given expression using trigonometric identities.

Step 1: Start with the expression secx - cosx.

Step 2: Rewrite secx as 1/cosx.

Step 3: Substitute this into the expression, giving 1/cosx - cosx.

Step 4: To combine these terms, we need a common denominator. Multiply the numerator and denominator of 1/cosx by cosx, resulting in (1 - cos²x)/cosx.

Step 5: Apply the Pythagorean identity sin²x + cos²x = 1 to simplify the numerator, giving sin²x/cosx.

Step 6: Rewrite sin²x as 1 - cos²x using the Pythagorean identity.

Step 7: Simplify further to obtain (1 - cos²x)/cosx = (1/cosx) - cosx.

Step 8: The final equivalent expression is tanxcscx, as tanx = sinx/cosx and cscx = 1/sinx.

Learn more about the equivalent trigonometric expression at

https://brainly.com/question/88524

#SPJ4

Find the area between f(x)=x2−9 and the x-axis from x=0 to x=7. 

Answers

The area between the function f(x) = x² - 9 and the x-axis from x = 0 to x = 7 is 150 square units.

To find the area between the given function and the x-axis, we can use the concept of definite integration. The function f(x) = x² - 9 represents a parabola that opens upwards and intersects the x-axis at two points, x = -3 and x = 3. However, we are only concerned with the portion of the function between x = 0 and x = 7.

First, we need to find the integral of the function f(x) over the interval [0, 7]. The integral of f(x) with respect to x can be calculated as follows:

∫(0 to 7) (x² - 9) dx = [1/3 * x³ - 9x] evaluated from 0 to 7

= [(1/3 * 7³ - 9 * 7)] - [(1/3 * 0³ - 9 * 0)]

= [(1/3 * 343 - 63)] - 0

= (343/3 - 63) square units

= (343 - 189) square units

= 154 square units.

Learn more about Area

brainly.com/question/4474113

#SPJ11

A pair of equations is shown below:
y=7x-5
y=3x+3
Part A: Explain how you will solve the pair of equations by substitution or elimination. Show all the steps and write the solution. (7 points)
Part B: Check your work. Verify your solution and show your work. (2 points)
Part C: If the two equations are graphed, what does your solution mean?

Answers

Part A:

To solve the pair of equations y = 7x - 5 and y = 3x + 3, we can use the method of substitution or elimination. Here, we will demonstrate the solution using the substitution method.

Step 1: Start with the given equations:

y = 7x - 5 ---(Equation 1)

y = 3x + 3 ---(Equation 2)

Step 2: Set the two equations equal to each other since they both represent y:

7x - 5 = 3x + 3

Step 3: Simplify and solve for x:

7x - 3x = 3 + 5

4x = 8

x = 2

Step 4: Substitute the value of x into one of the original equations to find y:

y = 7(2) - 5

y = 14 - 5

y = 9

Therefore, the solution to the pair of equations is x = 2 and y = 9.

Part B:

To verify the solution, we substitute the values of x = 2 and y = 9 into both equations:

For Equation 1: y = 7x - 5

9 = 7(2) - 5

9 = 14 - 5

9 = 9

For Equation 2: y = 3x + 3

9 = 3(2) + 3

9 = 6 + 3

9 = 9

In both cases, the left side of the equation matches the right side, confirming that the values x = 2 and y = 9 are the correct solution to the pair of equations.

Part C:

If the two equations are graphed, the solution (x = 2, y = 9) represents the point of intersection of the two lines. This means that the lines y = 7x - 5 and y = 3x + 3 intersect at the point (2, 9). The solution indicates that this is the unique point where both equations hold true simultaneously.

for similar questions on  substitution.

https://brainly.com/question/26094713

#SPJ8

The amount of money needed to send all adults in the United States to college for four years. Estimate yearly tuition to be about $18,000. Assume there are about 250 million adults in the United States. trillion

Answers

The estimated amount of money needed to send all adults in the United States to college for four years can be calculated by multiplying the number of adults by the yearly tuition and the duration of the program. With an assumed yearly tuition of $18,000 and approximately 250 million adults in the United States, the estimate would be in the trillions of dollars.

To calculate the estimated amount, we multiply the yearly tuition of $18,000 by the number of adults in the United States, which is approximately 250 million. Then, we multiply this result by the duration of the program, which is four years. This gives us the total amount of money needed to send all adults to college for four years.

Using the given information, the estimated amount would be:

$18,000 (tuition per year) * 250,000,000 (number of adults) * 4 (duration) = $18,000,000,000,000 (trillions of dollars).

Therefore, the estimated amount needed to send all adults in the United States to college for four years is in the trillions of dollars.

Learn more about number here: brainly.com/question/10547079

#SPJ11

Find the derivative of the function w, below. It may be to your advantage to simplify first.
w= y^5−2y^2+11y/y
dw/dy =

Answers

The derivative with respect to y is:

dw/dy = 4y³ - 2

How to find the derivative?

Here we need to use the rule for derivatives of powers, if:

f(x) = a*yⁿ

Then the derivative is:

df/dx = n*a*yⁿ⁻¹

Here we have a rational function:

w = (y⁵ - 2y² + 11y)/y

Taking the quotient we can simplify the function:

w = y⁴ - 2y + 11

Now we can use the rule descripted above, we will get the derivative:

dw/dy = 4y³ - 2

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ1

Information is given about a polynomial function f(x) whose coefficients are real numbers. Find the remaining zeros of f. Degree 6; zeros: 3,4+7i,−8−3i,0 The remaining zeros of f are (Use a comma to separate answers as needed. Type your answer in the form a+bi.)

Answers

The remaining zeros of f. Degree 6; zeros: 3,4+7i,−8−3i,0 The remaining zeros of f are  the remaining zeros of f(x) are 4-7i and 0.

Since the given polynomial function, f(x), has a degree of 6, and the zeros provided are 3, 4+7i, -8-3i, and 0, we know that there are two remaining zeros. Let's find them:

1. We know that if a polynomial has complex zeros, the complex conjugates are also zeros. Thus, if 4+7i is a zero, then 4-7i must be a zero as well.

2. The zero 0 is also given.

Therefore, the remaining zeros of f(x) are 4-7i and 0.

In summary, the remaining zeros of f(x) are 4-7i and 0.

To know more about Degree refer here:

https://brainly.com/question/364572#

#SPJ11

An object begins to move along the y axis and its position is given by the equation y=9t
2
−6t−3, with y in meters and t in seconds. (Express your answers in vector form.) (a) What is the position of the object when it changes its direction? m (b) What is the object's velocity when it returns to its original position at t=0 ? m/s

Answers

(a) Calculation of position vector when the object changes its direction:The equation given is:y = 9t² - 6t - 3So, position vector is given by:r = i yWe know that, the object changes its direction when velocity becomes zeroi.e., v = 0∴a = dv/dt = 0.

We have to find the position vector when object changes its direction So, v = 0 at that instant Therefore, acceleration can be calculated as follows:

a = dv/dt

= d²y/dt²

= 18t - 6

Now,

18t - 6 = 0t

= 1/3

Using t = 1/3 in position equation, we can get the position vector. So,

y = 9(1/3)² - 6(1/3) - 3y

= -3/2

Therefore, position vector is:r = i (-3/2)Answer: The position vector of the object when it changes its direction is r = i (-3/2)(b) Calculation of object's velocity when it returns to its original position at t = 0:We know that, the object returns to its original position when t = 0.So, position vector at t = 0 is:

y = 9t² - 6t - 3t

= 0

So, the position vector is:y = 0Therefore, position vector is:r = i yNow, velocity vector can be obtained by differentiating the position vector w.r.t time:

t = 0

r = i

y = i (-3)Differentiating w.r.t time:

v = dr/dt

= i dy/dtv

= i [d/dt (9t² - 6t - 3)]v

= i [18t - 6]At t

= 0,

v = i(-6)

∴Velocity vector = v = i (-6)Answer: The object's velocity when it returns to its original position at t = 0 is -6i m/s.

For more information on vector visit:

brainly.com/question/24256726

#SPJ11

A rancher wants to fence in an area of 1000000 square feet in a rectangular field and then divide it in half with a fence down the middle, parallel to one side. What is the shortest length of fence that the rancher can use? Length of fence = ___ feet. (1 point) Find two numbers differing by 42 whose product is as small as possible. Enter your two numbers as a comma separated list, e.g. 2, 3. The two numbers are ___ feet

Answers

The shortest length of fence the rancher can use to enclose rectangular field into two equal halves is 20,000 feet. The two numbers differing by 42 whose product is as small as possible are 483 and 525 feet.

To find the shortest length of fence needed, we need to determine the dimensions of the rectangular field. Let's assume the length of the field is L and the width is W. Since the area of the field is 1,000,000 square feet, we have the equation L * W = 1,000,000. To minimize the length of the fence, we want to minimize the perimeter of the field.

The perimeter is given by P = 2L + 2W. To divide the field in half with a fence down the middle, parallel to one side, we need to place the fence along the length of the field. This means one side of the divided field will have a width of W/2. Substituting W/2 for W in the perimeter equation, we get P = 2L + W.

To minimize the perimeter, we need to minimize the sum of L and W. Since the product of two numbers is smallest when they are closest to each other, we can find two numbers differing by 42 by dividing 1,000,000 by its square root (√1,000,000), which is approximately 1000. By adding and subtracting 42 to the approximate square root, we get two numbers: 958 and 1042.

These numbers represent the length and width of the rectangular field. Therefore, the shortest length of fence the rancher can use is the perimeter of the field, which is P = 2(958) + 1042 = 1916 + 1042 = 2958 feet. Since the fence will be placed down the middle, parallel to the length, we divide this length in half, resulting in a fence length of 2958/2 = 1479 feet.

Learn more about product here:
https://brainly.com/question/15615126

#SPJ11

Nancy invested $5,000 into a five-year compounded GIC. The interest rate on the GIC is 2% per annum. What would the amount of interest be in year 5 ? $106.12 $520.40 $108.24 $100.00

Answers

the amount of interest in year 5 would be approximately $520.40.

To calculate the amount of interest in year 5 for Nancy's investment, we can use the formula for compound interest:

A = [tex]P(1 + r/n)^{(nt)[/tex]

Where:

A is the final amount

P is the principal (initial investment)

r is the interest rate (per annum)

n is the number of compounding periods per year

t is the number of years

In this case, Nancy invested $5,000, the interest rate is 2% per annum, the compounding is done annually (n = 1), and the investment is for 5 years (t = 5).

Substituting the given values into the formula, we have:

A = 5000(1 + 0.02/1)⁵

A = 5000(1.02)⁵

A = 5000(1.10408)

A ≈ $5,520.40

To find the amount of interest, we subtract the initial investment from the final amount:

Interest = Final Amount - Initial Investment

Interest = $5,520.40 - $5,000

Interest ≈ $520.40

Therefore, the amount of interest in year 5 would be approximately $520.40.

The correct answer is $520.40.

Learn more about compound interest here

https://brainly.com/question/14295570

#SPJ4

(8) Convert the polar coordinates of (−3,60°) to rectangular coordinates. (9) Convert the polar equation r=secθ to a rectangular equation and identify its graph

Answers

The polar coordinates (-3, 60°) can be converted to rectangular coordinates as approximately (-1.5, -2.6). The polar equation r = sec(θ) can be expressed as the rectangular equation y = sin(θ) with a constant value of x = 1. Its graph is a sine curve parallel to the y-axis, shifted 1 unit to the right along the x-axis.

(8) To convert the polar coordinates of (-3, 60°) to rectangular coordinates, we use the following formulas:

x = r * cos(θ)

y = r * sin(θ)

Substituting the values:

x = -3 * cos(60°)

y = -3 * sin(60°)

Using the trigonometric values of cosine and sine for 60°:

x = -3 * (1/2)

y = -3 * (√3/2)

Simplifying further:

x = -3/2

y = -3√3/2

Therefore, the rectangular coordinates of (-3, 60°) are approximately (x, y) = (-1.5, -2.6).

(9) To convert the polar equation r = sec(θ) to a rectangular equation, we use the relationship:

x = r * cos(θ)

y = r * sin(θ)

Substituting the given equation:

x = sec(θ) * cos(θ)

y = sec(θ) * sin(θ)

Using the identity sec(θ) = 1/cos(θ):

x = (1/cos(θ)) * cos(θ)

y = (1/cos(θ)) * sin(θ)

Simplifying further:

x = 1

y = sin(θ)

Therefore, the rectangular equation for the polar equation r = sec(θ) is y = sin(θ), with a constant value of x = 1. The graph of this equation is a simple sine curve parallel to the y-axis, offset by a distance of 1 unit along the x-axis.

To know more about rectangular coordinates refer here:

https://brainly.com/question/31904915#

#SPJ11

Solve for x log2​(x+5)=3−log2​(x+3) If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".

Answers

x=11 or x=-1 We can solve the equation log2(x+5)=3−log2(x+3) by combining the logarithms on the left-hand side. We use the rule that log2(a)−log2(b)=log2(a/b) to get:

log2(x+5)−log2(x+3)=log2((x+5)/(x+3))

The equation is now log2((x+5)/(x+3))=3. We can solve for x by converting the logarithm to exponential form:

(x+5)/(x+3)=2^3=8

Cross-multiplying gives us x+5=8(x+3)=8x+24. Solving for x gives us x=11 or x=-1.

The equation log2(x+5)=3−log2(x+3) can be solved by combining the logarithms on the left-hand side and converting the logarithm to exponential form. The solution is x=11 or x=-1.

The logarithm is a mathematical operation that takes a number and returns the power to which another number must be raised to equal the first number. In this problem, we are given the equation log2(x+5)=3−log2(x+3). This equation can be solved by combining the logarithms on the left-hand side and converting the logarithm to exponential form.

The rule log2(a)−log2(b)=log2(a/b) tells us that the difference of two logarithms is equal to the logarithm of the quotient of the two numbers. So, the equation log2(x+5)−log2(x+3)=3 can be written as log2((x+5)/(x+3))=3.

Converting the logarithm to exponential form gives us (x+5)/(x+3)=2^3=8. Cross-multiplying gives us x+5=8(x+3)=8x+24. Solving for x gives us x=11 or x=-1.

Learn more about exponential form here:

brainly.com/question/29166310

#SPJ11

Variables x and y are related by the equation y=-3-8√√x-2.
Letx denote the exact value or values of x for which y = -19.
Let x denote the exact value or values of x for which y = -35.
What is the value of x₁ + x₂?

Answers

The calculated value of x₁ + x₂ if y = -3 - 8√(x - 2) is 24

How to calculate the value of x₁ + x₂?

From the question, we have the following parameters that can be used in our computation:

y = -3 - 8√(x - 2)

Add 3 to both sides

So, we have

- 8√(x - 2) = y + 3

Divide both sides by -8

√(x - 2) = -(y + 3)/8

Square both sides

(x - 2) = (y + 3)²/64

So, we have

x = 2 + (y + 3)²/64

When y = -19, we have

x = 2 + (-19 + 3)²/64 = 6

When y = -35, we have

x = 2 + (-35 + 3)²/64 = 18

So, we have

x₁ + x₂ = 6 + 18

Evaluate

x₁ + x₂ = 24

Hence, the value of x₁ + x₂ is 24

Read more about expression at

https://brainly.com/question/31819389

#SPJ1

Use vector notation to describe the points that lie in the given configuration. (Let t be an element of the Reals.) the line passing through (-1, -1, -1) and (8, -1, 7) I(t) =

Answers

This vector equation represents all the points that lie on the line passing through (-1, -1, -1) and (8, -1, 7) for any value of t. As t varies over the real numbers, the points P(t) trace the line in three-dimensional space.

The line passing through the points (-1, -1, -1) and (8, -1, 7) can be described using vector notation. Let's denote the position vector of a point on the line as P(t), where t is a real number that represents a parameter along the line. The vector equation for the line can be written as: P(t) = (-1, -1, -1) + t[(8, -1, 7) - (-1, -1, -1)].

Simplifying the equation: P(t) = (-1, -1, -1) + t(9, 0, 8) = (-1 + 9t, -1, -1 + 8t). This vector equation represents all the points that lie on the line passing through (-1, -1, -1) and (8, -1, 7) for any value of t. As t varies over the real numbers, the points P(t) trace the line in three-dimensional space.

To learn more about equation  click here: brainly.com/question/29657983

#SPJ11

What is the sum of the first 20 terms of an arithmetic series if a=15 and t _12=−84?
Select one:
a. −141
c. −1260
d. −120

Answers

The sum of the first 20 terms of the arithmetic series is -1410.

The correct option is (a) -1410.

To find the sum of the first 20 terms of an arithmetic series, we can use the formula:

[tex]S_n = (n/2) * (a + t_n)[/tex]

where [tex]S_n[/tex] represents the sum of the first n terms, a is the first term and [tex]t_n[/tex] is the nth term.

Given that a = 15 and [tex]t_{12}[/tex] = -84, we can find the common difference (d) using the formula:

[tex]t_n = a + (n-1)d[/tex]

-84 = 15 + (12-1)d

-84 = 15 + 11d

-99 = 11d

d = -9

Now, we can find the 20th term ([tex]t_{20}[/tex]) using the same formula:

[tex]t_{20} = a + (20-1)d\\t_{20} = 15 + 19(-9)\\t_{20} = 15 - 171\\t_{20} = -156\\[/tex]

Finally, we can substitute these values into the sum formula to find the sum of the first 20 terms:

[tex]S_{20} = (20/2) * (15 + (-156))\\S_{20} = 10 * (-141)\\S_{20} = -1410[/tex]

Therefore, the sum of the first 20 terms of the arithmetic series is -1410.

The correct option is (a) -1410.

Learn more about arithmetic series at:

https://brainly.com/question/30442577

#SPJ4

Complete question:

What is the sum of the first 20 terms of an arithmetic series if a=15 and t _12=−84?

Select one:

a. −1410

b. 940

c. −1260

d. −120

According to a study, 90 % of adult smokers started smoking before 21 years old. 14 smokers 21 years old or older are randomly selected, and the number of smokers who started smoking before 21 is recorded.

Round all of your final answers to four decimal places.

1. The probability that at least 5 of them started smoking before 21 years of age is
2. The probability that at most 11 of them started smoking before 21 years of age is
3. The probability that exactly 13 of them started smoking before 21 years of age is

Answers

The probability that at least 5 of them started smoking before 21 years of age is 0.9997.2. The probability that at most 11 of them started smoking before 21 years of age is 0.9982.3. The probability that exactly 13 of them started smoking before 21 years of age is 0.000006.

(1) The probability that at least 5 of them started smoking before 21 years of age isThe probability of at least 5 smokers out of 14 to start smoking before 21 is the probability of 5 or more smokers out of 14 smokers who started smoking before 21.  Using the complement rule to find this probability: 1-P(X≤4) =1-0.0003

=0.9997Therefore, the probability that at least 5 of them started smoking before 21 years of age is 0.9997.

(2) The probability that at most 11 of them started smoking before 21 years of age isThe probability of at most 11 smokers out of 14 to start smoking before 21 is the probability of 11 or fewer smokers out of 14 smokers who started smoking before 21. Using the cumulative distribution function of the binomial distribution, we have:P(X ≤ 11) = binomcdf(14,0.9,11)

=0.9982

Therefore, the probability that at most 11 of them started smoking before 21 years of age is 0.9982.(3) The probability that exactly 13 of them started smoking before 21 years of age isThe probability of exactly 13 smokers out of 14 to start smoking before 21 is:P(X = 13)

= binompdf(14,0.9,13)

=0.000006Therefore, the probability that exactly 13 of them started smoking before 21 years of age is 0.000006.

To know more about probability, visit:

https://brainly.com/question/32117953

#SPJ11

In the diagram, mZACB=62.
Find mZACE.

Answers

The measure of angle ACE is 28 degrees

How to determine the angle

To determine the measure of the angle, we need to know the following;

Corresponding angles are equalAdjacent angles are equalComplementary angles are pair of angles that sum up to 90 degreesAngles on a straight line is equal to 180 degrees

From the information shown in the diagram, we have that;

<ACB + ACD = 90

substitute the angle, we have;

62 + ACD = 90

collect the like terms, we get;

ACD = 90 - 62

ACD = 28 degrees

But we can see that;

<ACE and ACD are corresponding angles

Thus, <ACE = 28 degrees

Learn more about angles at: https://brainly.com/question/25716982

#SPJ1

Find the standard matrix of the linear operator M:R^2→R^2
that first reflects every vector about the line y=x, then rotates each vector about the origin through an angle −(π/3)
and then finally dilates all the vectors with a factor of 3/2

.

Answers

The standard matrix of the linear operator M: R²→R² that reflects every vector about the line y=x, rotates each vector about the origin through an angle -(π/3), and dilates all vectors with a factor of 3/2 is:

M = [-(√3/4) -(3/4)]

[-(3/4) (√3/4)]

To find the standard matrix of the linear operator M that performs the given transformations, we can multiply the matrices corresponding to each transformation.

Reflection about the line y=x:

The reflection matrix for this transformation is:

R = [0 1]

    [1 0]

Rotation about the origin by angle -(π/3):

The rotation matrix for this transformation is:

θ = -(π/3)

Rot = [cos(θ) -sin(θ)]

         [sin(θ) cos(θ)]

Substituting the value of θ, we have:

Rot = [cos(-(π/3)) -sin(-(π/3))]

[sin(-(π/3)) cos(-(π/3))]

Dilation with a factor of 3/2:

The dilation matrix for this transformation is:

D = [3/2 0]

      [0 3/2]

To find the standard matrix of the linear operator M, we multiply these matrices in the order: D * Rot * R:

M = D * Rot * R

Substituting the matrices, we have:

M = [3/2 0] * [cos(-(π/3)) -sin(-(π/3))] * [0 1]

[0 3/2] [sin(-(π/3)) cos(-(π/3))] [1 0]

Performing the matrix multiplication, we get:

M = [3/2cos(-(π/3)) -3/2sin(-(π/3))] * [0 1]

     [0 3/2sin(-(π/3)) 3/2cos(-(π/3))] [1 0]

Simplifying further, we have:

M = [-(3/4) -(√3/4)] * [0 1]

      [(√3/4) -(3/4)] [1 0]

M = [-(√3/4) -(3/4)]

      [-(3/4) (√3/4)]

Therefore, the standard matrix of the linear operator M: R²→R² that reflects every vector about the line y=x, rotates each vector about the origin through an angle -(π/3), and dilates all vectors with a factor of 3/2 is:

M = [-(√3/4) -(3/4)]

      [-(3/4) (√3/4)]

Learn more about Linear Operator  at

brainly.com/question/33191364

#SPJ4

The expected value of the sampling distribution of the sample mean is equal to:

a. the standard deviation of the sampling population.

b. the median of the sampling population.

c. the mean of the sampling population.

d. the population size.

e. none of the above

Answers

The expected value of the sampling distribution of the sample mean is equal to the mean of the sampling population.

The correct option is c.

The mean of the sampling population. A sampling distribution is a probability distribution of a statistic acquired from a random sample of size n from a population. The statistical variable in question is the mean of the sample.

According to the central limit theorem, if we take numerous independent random samples of the same size n from a population, the sampling distribution of the sample means is normal and the expected value of this distribution is the mean of the population. It means that the mean of the sample is an unbiased estimate of the population mean.

To know more about value visit :

https://brainly.com/question/30145972

#SPJ11


8a^2-10a+3

factor, write prime if prime

Answers

The quadratic expression 8a^2 - 10a + 3 is already in its simplest form and cannot be factored further.

To factor the quadratic expression 8a^2 - 10a + 3, we can look for two binomials in the form (ma + n)(pa + q) that multiply together to give the original expression.

The factors of 8a^2 are (2a)(4a), and the factors of 3 are (1)(3). We need to find values for m, n, p, and q such that:

(ma + n)(pa + q) = 8a^2 - 10a + 3

Expanding the product, we have:

(ma)(pa) + (ma)(q) + (na)(pa) + (na)(q) = 8a^2 - 10a + 3

This gives us the following equations:

mpa^2 + mqa + npa^2 + nq = 8a^2 - 10a + 3

Simplifying further, we have:

(m + n)pa^2 + (mq + np)a + nq = 8a^2 - 10a + 3

To factor the expression, we need to find values for m, n, p, and q such that the coefficients on the left side match the coefficients on the right side.

Comparing the coefficients of the quadratic terms (a^2), we have:

m + n = 8

Comparing the coefficients of the linear terms (a), we have:

mq + np = -10

Comparing the constant terms, we have:

nq = 3

We can solve this system of equations to find the values of m, n, p, and q. However, in this case, the quadratic expression cannot be factored with integer coefficients.

Therefore, the quadratic expression 8a^2 - 10a + 3 is already in its simplest form and cannot be factored further.

To know  more about quadratic refer here:

https://brainly.com/question/22364785#

#SPJ11

Evaluate the lim x→5¯ (1/(x-5) - |1/(x-5)I. Enter I for [infinity], -I for -[infinity], or DNE if the limit does not exist (i.e., there is no finite limit and neither [infinity] nor -[infinity] is the limit). Limit = ____

Answers

The limit of the given expression as x approaches 5 from the left side is positive infinity (∞). When we subtract the two terms, the limit of the given expression as x approaches 5¯ does not exist (DNE).

To evaluate the limit, let's analyze the two terms separately. The first term is 1/(x-5), which is undefined when x equals 5 since it results in division by zero. However, as x approaches 5 from the left side (x → 5¯), the values of (x-5) become negative but very close to zero, resulting in the first term approaching negative infinity (-∞).

The second term is |1/(x-5)|, which represents the absolute value of 1/(x-5). Absolute value always returns a non-negative value. As x approaches 5 from the left side, the denominator (x-5) becomes negative but very close to zero, making 1/(x-5) a large negative value. The absolute value of a large negative value is a positive value, which approaches positive infinity (∞) as x → 5¯.

When we subtract the two terms, we have (1/(x-5) - |1/(x-5)|). As x approaches 5¯, the first term approaches negative infinity (-∞), and the second term approaches positive infinity (∞). Subtracting these values results in the limit being undefined since we have a combination of -∞ and ∞, which does not converge to a finite value. Therefore, the limit of the given expression as x approaches 5¯ does not exist (DNE).

Learn more about undefined here

brainly.com/question/29117746

#SPJ11

what is the measure of one angle in a regular 24-gon?

Answers

Answer:165degrees

Step-by-step explanation

Use formula N-2 × 180 N is the number of sides

24-2=22

22x180=3960 total

for each angle divide total by 24=165 degrees

Your friend Helen claims that all MEM's colors (red, orange, blue, green, yellow, and dark brown) are equally likely to appear in a package of M\&M's. In order to test this, you collect a sample of size n=55. Your sample contains 14 red, 6 orange, 10 blue, 5 green, 10 yellow, and 10 dark brown. If you were to perform a goodness of fit test, what would be the degrees of freedom?

Answers

The degrees of freedom would be 5.

Degrees of freedom for goodness of fit test In statistics, degrees of freedom are the number of independent values or quantities that can be changed without changing the other values or quantities.The degrees of freedom formula for the goodness of fit test is: (k-1)

Where:k is the number of categories.

In the given scenario, we are given a sample size (n) of 55 that contains six colors (red, orange, blue, green, yellow, and dark brown). The sample contains 14 red, 6 orange, 10 blue, 5 green, 10 yellow, and 10 dark brown.

Thus, the number of categories (k) is 6.

Therefore, the degrees of freedom for the goodness of fit test can be calculated as follows:(k-1) = (6-1) = 5

Hence, the degrees of freedom would be 5.

Know more about degrees of freedom here,

https://brainly.com/question/15689447

#SPJ11

Evaluate the following definite integral 0∫3​ √(−9−x2)​dx.

Answers

The value of the definite integral ∫₀³ √(-9-x²) dx is approximately 11.780.

To evaluate the given definite integral, we can begin by noticing that the integrand involves the square root of a quadratic expression, namely -9-x². This indicates that the graph of the function lies within the imaginary domain for values of x within the interval [0,3]. Consequently, the integral represents the area between the x-axis and the imaginary portion of the graph.

To compute the integral, we can make use of a trigonometric substitution. Letting x = √9sinθ, we substitute dx with 3cosθdθ and simplify the integrand to √9cos²θ. We then rewrite cos²θ as 1 - sin²θ and further simplify to 3cosθ√(1 - sin²θ).

Next, we can integrate the simplified expression. The integral of 3cosθ√(1 - sin²θ) is straightforward using the trigonometric identity sin²θ + cos²θ = 1. The result simplifies to (3/2)θ + (3/2)sinθcosθ + C, where C represents the constant of integration.

Finally, we substitute back the value of θ corresponding to the limits of integration, which in this case are 0 and π/3. Evaluating the expression, we find that the definite integral is approximately 11.780.

Learn more about definite integral here:

https://brainly.com/question/32963975

#SPJ11

It is known that 10% of the microchips produced by a company are defective. Suppose that you randomly choose 8 microchips to test. What is the probability that at most 2 of the microchips tested are defective? Select one: a. 0.1488 b. 0.4304 c. 0.0381 d. 0.9619 e. 0.8512

Answers

The probability that at most 2 microchips are defective is 0.96228 (approx) or 96.23%.

We know that a company produces microchips where 10% of the microchips produced are defective.

Let X be the number of defective microchips in 8 randomly chosen microchips.

The total number of microchips tested is 8 which is n, so X has a binomial distribution with n = 8 and p = 0.1.

Then, the probability that at most 2 microchips are defective is;

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

By using the formula for Binomial probability we can write it as follows;

P(X ≤ 2) =  (⁸C₀)(0.1)⁰(0.9)⁸ + (⁸C₁`)(0.1)¹(0.9)⁷ + (⁸C₂)(0.1)²(0.9)⁶

=  (1)(1)(0.43047) + (8)(0.1)(0.4783) + (28)(0.01)(0.5314)

= 0.43047 + 0.38264 + 0.149192

= 0.96228

Therefore, the probability that at most 2 microchips are defective is 0.96228 (approx) or 96.23%.

To learn about probability here:

https://brainly.com/question/251701

#SPJ11

Find the requested partial derivative. (∂w/∂z) x,y at (x,y,z,w)=(1,2,9,230) if w=x2+y2+z2+8xyz A. 42 B. 30 C. 26 D. 34

Answers

The requested partial derivative (∂w/∂z) at (x,y,z,w)=(1,2,9,230) is 34 (option d).

To find the partial derivative (∂w/∂z) at (x,y,z,w)=(1,2,9,230) for the function w = x² + y² + z² + 8xyz, we differentiate the function with respect to z while treating x and y as constants.

Taking the partial derivative, we differentiate each term separately. The derivative of z² with respect to z is 2z, and the derivative of 8xyz with respect to z is 8xy since z is the only variable changing.

Substituting the given values (x,y,z) = (1,2,9) into the partial derivative expression, we get:

∂w/∂z = 2z + 8xy = 2(9) + 8(1)(2) = 18 + 16 = 34.

Therefore, the requested partial derivative (∂w/∂z) at (x,y,z,w)=(1,2,9,230) is 34. The correct answer is option D.

To know more about partial derivative:

https://brainly.com/question/29652032


#SPJ4

2. A histogram for a data set has a smallest value of 10 and a greatest value of 50 . Its bin width is 8 . What is the number of classes in this histogram? a. 4 b. 5 c. \( 5.5 \) d. 6

Answers

The number of classes in this histogram is 5.

The correct answer to the question is option B) 5.

Number of classes in this histogram is 5.

Explanation: The range of the histogram is calculated by the difference between the smallest and greatest value of the data set.

Range = 50 - 10

= 40.

The formula for the bin width is given by

Bin width = Range / Number of classes.

We have bin width, range and we have to find number of classes.

From above formula,

Number of classes = Range / Bin width

Number of classes = 40 / 8

Number of classes = 5

Hence, the number of classes in this histogram is 5.

Conclusion: The number of classes in this histogram is 5.

To know more about histogram visit

https://brainly.com/question/16819077

#SPJ11

In a _______ , _______, not all members of a population have an equal probability of being included?

In an _______, _______, all members of the population have an equal probability of being included.

Some associations are stronger than others, what describes the strength of the association?

A) Effect Size B) Bivariate correlations C) Correlational Samples D) None of the Above

Curvilinear association is one in which the correlation coefficient is zero (or close to zero) and the relationship between two variables isn't a straight line? True/ False

Answers

In a nonprobability sampling, not all members of a population have an equal probability of being included.

In a probability sampling, all members of the population have an equal probability of being included.

The strength of the association is described by the effect size.

Curvilinear association is one in which the correlation coefficient is zero (or close to zero) and the relationship between two variables isn't a straight line. False.

In nonprobability sampling, the selection of individuals from the population is not based on random sampling principles. This means that not all members of the population have an equal probability of being included in the sample.

In probability sampling, every member of the population has an equal and known chance of being selected for the sample. Random sampling methods, such as simple random sampling, stratified random sampling, and cluster sampling, are commonly used to achieve this. In probability sampling, the sample is representative of the population, and statistical inferences can be made.

The strength of the association between two variables is typically measured by the effect size. Effect size quantifies the magnitude or magnitude of the relationship between variables and provides an indication of the practical or substantive significance of the association.

Curvilinear association refers to a relationship between two variables that cannot be adequately described by a straight line. In such cases, the correlation coefficient between the variables may be zero or close to zero, indicating no linear relationship.

Nonprobability sampling involves selecting individuals without an equal probability of inclusion, while probability sampling ensures that all members of the population have an equal chance of being included. The strength of the association between variables is described by the effect size, and a curvilinear association indicates a non-straight line relationship between variables.

To know more about probability, visit;
https://brainly.com/question/23417919
#SPJ11


If A is an Antisymmetric matrix. Prove that -A^2 is a Symmetric
and Semi define positive matrix. (Matrix B is semi define positive
for each vector z

Answers

The events A and B are not mutually exclusive; not mutually exclusive (option b).

Explanation:

1st Part: Two events are mutually exclusive if they cannot occur at the same time. In contrast, events are not mutually exclusive if they can occur simultaneously.

2nd Part:

Event A consists of rolling a sum of 8 or rolling a sum that is an even number with a pair of six-sided dice. There are multiple outcomes that satisfy this event, such as (2, 6), (3, 5), (4, 4), (5, 3), and (6, 2). Notice that (4, 4) is an outcome that satisfies both conditions, as it represents rolling a sum of 8 and rolling a sum that is an even number. Therefore, Event A allows for the possibility of outcomes that satisfy both conditions simultaneously.

Event B involves drawing a 3 or drawing an even card from a standard deck of 52 playing cards. There are multiple outcomes that satisfy this event as well. For example, drawing the 3 of hearts satisfies the first condition, while drawing any of the even-numbered cards (2, 4, 6, 8, 10, Jack, Queen, King) satisfies the second condition. It is possible to draw a card that satisfies both conditions, such as the 2 of hearts. Therefore, Event B also allows for the possibility of outcomes that satisfy both conditions simultaneously.

Since both Event A and Event B have outcomes that can satisfy both conditions simultaneously, they are not mutually exclusive. Additionally, since they both have outcomes that satisfy their respective conditions individually, they are also not mutually exclusive in that regard. Therefore, the correct answer is option b: not mutually exclusive; not mutually exclusive.

Learn more about probability here

brainly.com/question/13604758

#SPJ11


Test the claim that true number of smart TV sets in Turkey is
at least 3.
Assume that:
Alpha: 0.05
Sigma: 0.8
n: 100
Xbar: 2.84

- Provide step by step solution following Hypothesis Testing
procedures

Answers

We can conclude that there is not enough evidence to support the claim that the true number of smart TV sets in Turkey is at least 3.

Hypothesis testing is a technique used to test a hypothesis regarding a population parameter. The hypothesis is tested using a sample of data. The hypothesis test is a statistical method for testing the significance of a claim that is made about a population parameter. The hypothesis testing involves the following steps:

Step 1: State the hypotheses.Hypothesis testing begins with stating the null and alternative hypotheses. In this case, the null hypothesis is the claim that the true number of smart TV sets in Turkey is less than 3. The alternative hypothesis is the claim that the true number of smart TV sets in Turkey is at least 3. The null hypothesis is represented by H0 and the alternative hypothesis is represented by Ha.H0: µ < 3Ha: µ ≥ 3

Step 2: Set the level of significance.The level of significance is a measure of the risk of rejecting the null hypothesis when it is true. In this case, the level of significance is α = 0.05.

Step 3: Identify the test statistic.The test statistic is used to determine the probability of observing the sample data if the null hypothesis is true. The test statistic for this hypothesis test is the z-score, which is calculated as follows:z = (Xbar - µ) / (σ / sqrt(n))where Xbar is the sample mean, µ is the population mean, σ is the population standard deviation, and n is the sample size. Substituting the given values into the formula, we get:z = (2.84 - 3) / (0.8 / sqrt(100))z = -1.5

Step 4: Determine the critical value.The critical value is the value that separates the rejection region from the non-rejection region. The critical value for a two-tailed test at α = 0.05 is ±1.96. Since this is a one-tailed test, we only need to use the positive critical value, which is 1.645.

Step 5: Make a decision.To make a decision, we compare the test statistic to the critical value. If the test statistic falls in the rejection region, we reject the null hypothesis. If the test statistic falls in the non-rejection region, we fail to reject the null hypothesis. In this case, the test statistic is z = -1.5, which falls in the non-rejection region. Therefore, we fail to reject the null hypothesis.

Step 6: State a conclusion.Since we failed to reject the null hypothesis, we can conclude that there is not enough evidence to support the claim that the true number of smart TV sets in Turkey is at least 3. The p-value can be calculated to provide further evidence. The p-value is the probability of obtaining a test statistic as extreme or more extreme than the one observed, assuming the null hypothesis is true.

The p-value for this test is P(z < -1.5) = 0.0668. Since the p-value is greater than the level of significance, we fail to reject the null hypothesis. Therefore, we can conclude that there is not enough evidence to support the claim that the true number of smart TV sets in Turkey is at least 3.

Learn more about Hypothesis here,https://brainly.com/question/606806

#SPJ11

Capital Accumulation as a Source of Growth - Work It Out Question Country A and country B both have the production function. Y=F(K,L)=K
1/2
L
1/2
c. Assume that neither country experiences population growth or technological progress and that 6 percent of capital depreciates each year. Assume further that country A saves 10 percent of output each year and country B saves 16 percent of output each year. Using your answer from part b and the steady-state condition that investment equals depreciation, find the steady-state level of capital per worker (k

), income per worker (y

), and consumption per worker ( c

) for each country. For Country A For Country B k

for Country A: k

for Country B: y

for Country A: y

for Country B: c

for Country A: c

for Country B:

Answers

The production function of both country A and B. It's assumed that neither country experiences population growth or technological progress and that 6 percent of capital depreciates each year.

It's further assumed that country A saves 10 percent of output each year and country B saves 16 percent of output each year.Using the steady-state condition that investment equals depreciation, the steady-state level of capital per worker (k*), income per worker (y*), and consumption per worker (c*) for each country are calculated.

The formula for steady-state output per worker is y* = (sF(k*) - δk*) / L where s is the savings rate, δ is the depreciation rate, and L is the labor force size. For Country A Steady-state investment per worker will b Steady-state consumption per worker Steady-state output per worker For Country B: Steady-state investment per worker consumption per worker

To know more about function visit :

https://brainly.com/question/30721594

#SPJ11

Other Questions
Explain what the layout of Corporate Governance was at PurduePharma, who controlled most of the boards of director issues andhow will were they at controlling risk management. Please go intodetail "do we build a house forever? do we make a home forever? do brothers divide an inheritance forever? do disputes prevail in the land forever? do rivers rise in flood forever? dragonflies drift downstream on a river, their faces staring at the sun, then, suddenly, there is nothing. The sleeper and the dead, how alike they are!" suppose the fed increases the interest rate it pays on excess reserves held at the fed. what would happen to the level of e (the excess reserve/deposit ratio)?A. The level of e would not change. B. The level of e would fall. C. The level of e would rise. D. The effect on the level of e would be ambiguous. Using a double-angle or half-angle formula to simplify the given expressions. (a) If cos^2 (30)sin^2(30)=cos(A), then A= degrees (b) If cos^2(3x)sin^2(3x)=cos(B), then B= Solve 5sin(2x)2cos(x)=0 for all solutions 0x Han-6208 company manufactures 29,000 units of part T-25 each year. The company'scost per unit for part T-25 is:8 01:28:38$Direct materials3.70Direct labor12.00Variable manufacturing2.30overheadFixed manufacturing9.00overheadTotal cost per partS27.00 An outside supplier has offered to sell 29,000 units of part T-25 each year to Han-6208 for $23 per unit. If Han-6208 accepts this offer, it can rent out the facilities now beingused to manufacture part T-25 to another company at an annual rental of $79,000. However, Han-6208 has calculated that two-thirds of the fixed manufacturing overhead being applied to part T-25 will continue even if the part is bought from the outsidesupplier.What is the financial advantage of accepting the outside supplier's offer? Whatchallenges do you think face the tax practice goingforward? FILL THE BLANK.The situation in which preferences depend on whether one is facing an immediate decision or a future one is called ____________ Which of the following is most likely a scenario of the semi-strong form of market efficiency? (a) The previous month's top return stocks loss in the following month. (b) The fundamental analysis is profitable in the long-run. (c) Market prices reveal news of public companies immediately. (d) Many investors are tempted to make quick returns from insider trading. A portfolio report shows that, during the past five years, the time weighted return (TWR) and internal rate of return (IRR) are 5.5% and 13.5%. Which of the following statements is most likely the cause of this result? [3] (a) A large capital input just before strong performance. (b) A large capital input just before poor performance. (c) The return was too volatile. (d) None of the above. Catan Company produces a part that is used in the manufacture of one of its products. The unit manufacturing costs of this part, assuming a production level of 6,300 units, are as follows:Direct materials $4,40Direct labor $4.10Variable manufacturing overhead $3.30Fixed manufacturing overhead $1.00Total cost $12.80The fixed overhead costs are unavoidable.Assuming Catan Company can purchase 6,300 units of the part from X-Wing Company for $14.50 each, and the facilities currently used to make the part could be rented out to another manufacturer for $27,000 a year, what should Catan Company do? (Round intermediary and final calculations to the nearest cent)A. Buy the part and save $1.59 per unit. B. Buy the part and save $1.70 per unit. C. Make the part and save $6.40 per unit D. Make the part and save $13.50 per unit. name the following binary molecular compounds according to the prefix system The December 31, 2009, balance sheet of Annas Tennis Shop, Inc., showed current assets of $2,235 and current liabilities of $1,441. The December 31, 2010, balance sheet showed current assets of $2,294 and current liabilities of $1,049. What was the companys 2010 change in net working capital, or NWC? Find the derivative in each case. You need not simplify your answer. a. f(t)= (3t+ 1/34t) (t^2 + 24t) A spinning table has radius 2.50 m and moment of inertia 1900 kgm^2 about a vertical axle through its center, and it can turn with negligible friction. Two persons, one directly in from of the other. (consider that the persons are standing at opposite ends of a line that passes through the center of rotation) apply each a force of 8.0 N tangentially to the edge of the table for 10.0 s. A. If the table is initially at rest, what is its angular speed after this 10.0 s interval? \{10 points\} rad/s^2 B. How much work is done on the table by EACH person? Valor absoluto de 0.001 is the anode positive or negative in a voltaic cell Differential between dismissal and wrongful dismissal? What isimplied as "wrongful hiring" with respect to human rightslegislation? Marty McFly has been flung into the future and found himself in a tiff with Biff. During the hoverboard chase scene, Marty jumps on a hoverboard, grabs onto a car to gain increasing speed, releases from the car after a time, and attempt to traverse a pond to escape Biff. Marty starts from rest and grabs onto an accelerating rocket car, accelerating on his hoverboard at a rate of 15.5 m/s 2 in the forward direction until releasing from the car 2.5 seconds later. He then uses this new-found speed to attempt to traverse a pond, floating forward on the hoverboard, which has started experiencing a 6.55 m/s 2 backward acceleration due to air drag. He eventually comes to a stop. (a) What is Marty's maximum speed during his ride? 1 (b) How long does it take for Marty to come to a stop after releasing from the accelerating car? (c) What total distance has Marty traveled from the moment the chase started until the moment he came to a stop? Will he be able to traverse the 200 m pond? the nurse understands that which medications are considered typical antipsychotics Guglielmo Marconi envisioned wireless telegraphy only as point-to-point communication and not as a one-to-many mass medium.- True- False what percent of offshore wind resources are in deep water and whereis the greatest potential for future growth?