Answer:
See explanation
Step-by-step explanation:
The question is incomplete, as the vertices of the triangle are not given.
A general explanation is as follows;
To calculate distance between two points, we use:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
Take for instance;
[tex]A = (1,4)[/tex]
[tex]B = (3,-2)[/tex]
Distance AB is:
[tex]AB = \sqrt{(1 - 3)^2 + (4 - -2)^2}[/tex]
[tex]AB = \sqrt{(- 2)^2 + (4 +2)^2}[/tex]
[tex]AB = \sqrt{(- 2)^2 + (6)^2}[/tex]
Evaluate the exponents
[tex]AB = \sqrt{4 + 36}[/tex]
[tex]AB = \sqrt{40}[/tex]
[tex]AB = 6.32[/tex]
Answer:
for edmentum
Step-by-step explanation:
Vlad has found a magic box. If he opens it now he will only get $15. But every month the amount in the box increases by $15. If Vlad is very patient, in how many months can he get $450?
I need help ASAP
The triangles are similar. If QR = 9, QP = 6, and TU = 19, find TS. Round to the nearest tenth.
A) 16
B) 12.7
C) 2.8
D) 28.5
Answer:
TS = 12.7
Step-by-step explanation:
From the question given above, the following data were obtained:
QR = 9
QP = 6
TU = 19
TS =?
Since the triangles are SIMILAR, then,
QR / TU = QP / TS
With the above equation, we can obtain the value of TS as follow:
QR = 9
QP = 6
TU = 19
TS =?
QR / TU = QP / TS
9 / 19 = 6 / TS
Cross multiply
9 × TS = 19 × 6
9 × TS = 114
Divide both side by 9
TS = 114 / 9
TS = 12.7
HELPP
-1-3(5m+8) ≥-85
i need help :D
Answer:
- 1 - 3(5m + 8) ≥ -85
-1 - 15m - 24 ≥ -85
-15m ≥ -85 + 1 + 24
-15m ≥ 25 - 85
-15m ≥ -60
(-1)(-15)m ≤ -60(-1)
15m ≤ 60
m ≤ 4
What table represents g(x) = -2•f when f(x) = x + 4
Answer:
-2 is the answer.
Step-by-step explanation:
#CarryOnLearning
In 1980, the average cost of a pack of cigarettes was $0.88. In 2000, the average cost was $5.31 per pack.
What is the average rate of change of the cost of a pack of cigarettes? What is another name for the average rate of change?
Round your answer to the nearest cent.
Answer:
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
Step-by-step explanation:
The average rate of change of the cost of a pack ([tex]r[/tex]), in monetary units per year, is equal to the change in the average cost of a pack ([tex]\Delta c[/tex]), in monetary units, divided by the change in time ([tex]\Delta t[/tex]), in years. Then, the average rate of change is:
[tex]r = \frac{\$\,5.31-\$\,0.88}{2000-1980}[/tex]
[tex]r = \$\,0.22\,\frac{1}{yr}[/tex]
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
what is true for f (x) = 4 times 2x
Answer:
f(x) = 8x
Explanation:
4 x 2 =8
Help please!
• 7/25
•7/24
•24/25
•24/7
Answer:
24/25
Step-by-step explanation:
The sin value is the y coordinate of the exact value point.
24/25 is the y coordinate so 24/25 is the answer.
Answer:
24/25 is the correct answer
Solve. SHOW ALL YOUR WORK
2.51 * .2
77/ 1.2
Answer:
0.502
64.1666
Step-by-step explanation:
Detained explanation of the product operation and division operation is attached below.
2.51 * 0.2 = 0.502
(after multiplying) the number of decimal places of the town values is added and counted from the right in the product to place the data Comal point appropriately.
77/1.2 ; values were multiplied by 10 in other to obtain inter values for the denominator.
What is the product of
(5^-4)(5^-3)
Answer:
option one is the correct answer
Answer:
1/625
Step-by-step explanation:
Suppose that you are thinking about buying a car and have narrowed down your choices to two options.
The new-car option: The new car costs $25,000 and can be financed with a four-year loan at 6.12%.
The used-car option: A three-year old model of the same car costs $17,000 and can be financed with a three-year loan at 7.72%.
=||)
[1-(2-4) 11
What is the difference in monthly payments between financing the new car and financing the used car? Use PMT
The difference in monthly payments between financing the new car and financing the used car is $
(Round to the nearest cent as needed.)
Answer:
sjsjsuduhr r ki snsbtsuwi 3 38yv4r djvs
Is 237405 divisible by 11 Correct Answer = Brainliest
Answer:
Yes.
Step-by-step explanation:
.
Please answer for me ! And if you do answer Tysm please show your work also! ❤️
There are two numbers. The sum of 4 times the first number and 3 times the second number is 34 the difference between 2 times the first number and 3 times the second number is 12 . Find the two numbers
Answer:
10/9
23/3
Step-by-step explanation:
4x + 3y = 34
2x - 3y = 12
2x = 12 + 3y
2×(12 + 3y) + 3y = 34
24 + 6y + 3y = 34
24 + 9y = 34
9y = 10
y = 10/9
3×10/9 + 4x = 34
10/3 + 4x = 34
4x = (102 - 10)/3 = 92/3
x = (92/3)/4 = (92/3)/(4/1) = 92/(4×3) = 23/3
The solution of this equation has an error. Which of the following steps has the error? 18 − (3x + 5) = 8
Step 1: 18 − 3x + 5 = 8
Step 2: -3x + 23 = 8
Step 3: -3x = -15
Step 4: x = 5
Step 1 Step 2 Step 3 Step 4. ?
Answer:
Step 1
Because the number in front of the bracket is 1 and it is also affected by the negative sign(-),5 is supposed to be negative not positive because (negative by positive is negative)
And since the first step has an error in it,the remaining steps would also be wrong.
2.6.5 A plant physiologist grew birch seedlings in the green-house and measured the ATP content of their roots. (See Example 1.1.3.) The results (nmol ATP/mg tissue) were as follows for four seedlings that had been handled identically.39 1.45 1.19 1.05 1.07 Calculate the mean and the S
Answer:
[tex](a)\ \bar x = 1.19[/tex]
[tex](b)\ \sigma_x = 0.18[/tex]
Step-by-step explanation:
Given
[tex]n = 4[/tex]
[tex]x: 1.45\ 1.19\ 1.05\ 1.07[/tex]
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{1.45 + 1.19 + 1.05 + 1.07}{4}[/tex]
[tex]\bar x = \frac{4.76}{4}[/tex]
[tex]\bar x = 1.19[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma_x = \sqrt{\frac{\sum(x - \bar x)^2}{n - 1}}[/tex]
So, we have:
[tex]\sigma_x = \sqrt{\frac{(1.45 -1.19)^2 + (1.19 -1.19)^2 + (1.05 -1.19)^2 + (1.07 -1.19)^2}{4 - 1}}[/tex]
[tex]\sigma_x = \sqrt{\frac{(0.1016}{3}}[/tex]
[tex]\sigma_x = \sqrt{0.033867}[/tex]
[tex]\sigma_x = 0.18[/tex]
PLEASE HELP ME! I am so confused
Answer:
x = 5.5
Step-by-step explanation:
Based on the Mid-segment theorem of a triangle, we would have the following:
EF = 2(AB)
AB = 7
EF = 2x + 3
Plug in the values
2x + 3 = 2(7)
Solve for x
2x + 3 = 14
Subtract 3 from each side
2x + 3 - 3 = 14 - 3
2x = 11
2x/2 = 11/2
x = 5.5
the first term of an arithmetic sequence is -5, and the tenth term is 13. find the common difference
Answer:
2
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
Equivalent question: Find the slope of line going through points (1,-5) and (10,13).
Line points up vertically and subtract. Then put 2nd difference on top of first difference.
(1,-5)
(10,13)
---------'subtracting
-9, -18
So the slope of the line gong through point's (1,-5) and (10,13) is -18/-9=2.
The common difference of an arithmetic sequence whose first term is -5 and whose tenth term is 13 is 2.
Help please!!!!! I’m using Plato
Answer:
[tex]\frac{y^{6} }{ x^{2} }[/tex]
Step-by-step explanation:
[tex]y^{6} x^{-2}[/tex]
Answer and Step-by-step explanation:
When there is a set of values within parenthesis, and an exponents on the values and on the parenthesis, you multiply the outer exponent with the inner exponent.
When a value has a negative exponent, the value that has the negative exponent will become a fraction and go to the denominator of the fraction (or go immediately to the denominator), or if it is already a fraction, goes to the denominator. If the value that has the negative exponent is in the denominator, the value will go to the numerator. In both instances, the negative exponent will then change to positive.
First, we need to simplify the expression inside the parenthesis.
[tex]y^{\frac{3}{2} } x^{-\frac{1}{2} } --> \frac{y^{\frac{3}{2} } }{x^{\frac{1}{2}} }[/tex]
Now we multiply the 4 to the exponents.
[tex]\frac{y^{\frac{3}{2} *\frac{x4}{1} } }{x^{\frac{1}{2}}*\frac{4}{1} } = \frac{y^{\frac{12}{2}} }{x^{\frac{4}{2}}} = \frac{y^6}{x^2}[/tex]
[tex]\frac{y^6}{x^2}[/tex] is the answer.
#teamtrees #PAW (Plant And Water)
The sum of 4 consecutive integers is 122. What is the third number in this sequence?
Answer:
31
Step-by-step explanation:
Let the smallest integer be x.
Since the 4 integers are consecutive (they come right after the other),
2nd integer= x +1
3rd integer= x +1 +1= x +2
4th integer= x +2 +1= x +3
Sum of the integers= 122
x +x +1 +x +2 +x +3= 122
4x +6= 122
4x= 122 -6
4x= 116
x= 116 ÷4
x= 29
3rd number
= 29 +2
= 31
I need help with this.
Answer:
A and b Are in quadrant 2. F and D are in quadrant 1. F is in quadrant 3 and C is in quadrant 4
Step-by-step explanation:
each quadrant is in the boxes and the question is asking what is each coordinate is in what quadrant
Analyze the figure below and complete the instructions that follow.
Answer:
C. 468 mm²
Step-by-step explanation:
Surface area of the composite solid = 2(LW + LH + WH)
Length (L) = 12 mm
Width (W) = 6 mm
Height (H) = 2 + 7 = 9 mm
Plug in the values into the formula
Surface area = 2(12*6 + 12*9 + 6*9)
Surface area = 2(72 + 108 + 54)
Surface area = 2(234)
= 468 mm²
Help and explain explain !!!!!!!!!!
Answer:
[tex]x=-1\text{ or }x=11[/tex]
Step-by-step explanation:
For [tex]a=|b|[/tex], we have two cases:
[tex]\begin{cases}a=b,\\a=-b\end{cases}[/tex]
Therefore, for [tex]18=|15-3x|[/tex], we have the following cases:
[tex]\begin{cases}18=15-3x,\\18=-(15-3x)\end{cases}[/tex]
Solving, we have:
[tex]\begin{cases}18=15-3x, -3x=3, x=\boxed{-1},\\18=-(15-3x), 18=-15+3x, 33=3x, x=\boxed{11}\end{cases}[/tex].
Therefore,
[tex]\implies \boxed{x=-1\text{ or }x=11}[/tex]
what is the value of c? enter your answer in the box. round only your final answer to the nearest whole number.
Answer:
c ≈ 21
Step-by-step explanation:
By applying cosine rule in the given triangle ABC,
c² = a² + b² - 2abcos(C)
c² = (17)² + (10)² - 2(17)(10)cos(98.8°)
c² = 289 + 100 - 340(-0.1530)
c² = 441.015
c = 21
c ≈ 21
vention 1 of 10
These box plots show daily low temperatures for a sample of days in two
different towns
TWINA
M
41
41
Town 1
1620
MI
D
10
152025 M3540
Degrees (0)
Which statement is the most appropriate comparison of the centers?
O A. The median temperature for both towns is 20"
B. The mean for town A, 30", is greater than the mean for town 8,25"
C. The median temperature for both towns is 30'
D. The median for town A, 30', is greater than the median for town B,
25
PREVIOUS
9 M
Lindsay is checking out books at the library, and she is primarily interested in mysteries and nonfiction. She has narrowed her selection down to ten mysteries and twelve Nonfiction books. If she randomly chooses four books fro her selections, what’s the probability that they will all be nonfiction?
twelve nonfiction books. If she randomly chooses four books
answer to 4 decimal places, if necessary.
Answer
Answer:
0.0677 = 6.77% probability that they will all be nonfiction
Step-by-step explanation:
The books are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
10 + 12 = 22 books.
She chooses 4 books, which means that [tex]n = 4[/tex]
12 nonfiction, which meas that [tex]k = 12[/tex]
What’s the probability that they will all be nonfiction?
This is P(X = 4). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 4) = h(4,22,4,12) = \frac{C_{12,4}*C_{10,0}}{C_{22,4}} = 0.0677[/tex]
0.0677 = 6.77% probability that they will all be nonfiction
Lim x>0 (x(e^3x - 1)/(2 - 2cosx))
Evaluating the limand directly at x = 0 yields the indeterminate form 0/0. If L'Hopital's rule is known to you, you can compute the limit by applying it twice:
[tex]\displaystyle\lim_{x\to0}\frac{x\left(e^{3x}-1\right)}{2-2\cos(x)} = \lim_{x\to0}\frac{3xe^{3x}+e^{3x}-1}{2\sin(x)} \\\\\\ = \lim_{x\to0}\frac{9xe^{3x}+6e^{3x}}{2\cos(x)} = \frac62=\boxed{3}[/tex]
Follow the process of completing the square
to solve 2x2 + 8x - 12 = 0.
After adding B2 to both sides of the equation in step 4, what is the constant on the right side of the equation?
2x^2 + 8x - 12 = 0..divide by 2
x^2 + 4x - 6 = 0
x^2 + 4x = 6...add 4 to both sides of the equation
x^2 + 4x + 4 = 6 + 4
(x + 2)^2 = 10....<== ur constant is 10
x + 2 = (+-)sqrt 10
x = -2 (+ - ) sqrt 10
x = -2 + sqrt 10
x = -2 - sqrt 10
debbie will be attending a concert at grand ole opry in nashville, tennessee. if the average number of songs performed there in a 10 day period is 167. approximately how many songs are performed there in a years time
Given:
The average number of songs performed there in a 10 day period is 167.
To find:
The number of songs performed there in a year time.
Solution:
We have,
Number of songs performed in 10 days = 167
Number of songs performed in 1 day = [tex]\dfrac{167}{10}[/tex]
= [tex]1.67[/tex]
We know that 1 year is equal to 365 days. So,
Number of songs performed in 365 day = [tex]1.67\times 365[/tex]
Number of songs performed in 1 year = [tex]609.55[/tex]
[tex]\approx 610[/tex]
Therefore, the number of songs performed there in a year time is about 610.
a church distributed 1950 boxes of food during a disaster. The food was distributed lasted 30 days. How many boxes of food were distributed on average each day?
Answer:
Average of 65 boxes each day
Step-by-step explanation:
1950÷30=65
if sinA=√3-1/2√2,then prove that cos2A=√3/2 prove that
Answer:
[tex]\boxed{\sf cos2A =\dfrac{\sqrt3}{2}}[/tex]
Step-by-step explanation:
Here we are given that the value of sinA is √3-1/2√2 , and we need to prove that the value of cos2A is √3/2 .
Given :-
• [tex]\sf\implies sinA =\dfrac{\sqrt3-1}{2\sqrt2}[/tex]
To Prove :-
•[tex]\sf\implies cos2A =\dfrac{\sqrt3}{2} [/tex]
Proof :-
We know that ,
[tex]\sf\implies cos2A = 1 - 2sin^2A [/tex]
Therefore , here substituting the value of sinA , we have ,
[tex]\sf\implies cos2A = 1 - 2\bigg( \dfrac{\sqrt3-1}{2\sqrt2}\bigg)^2 [/tex]
Simplify the whole square ,
[tex]\sf\implies cos2A = 1 -2\times \dfrac{ 3 +1-2\sqrt3}{8} [/tex]
Add the numbers in numerator ,
[tex]\sf\implies cos2A = 1-2\times \dfrac{4-2\sqrt3}{8} [/tex]
Multiply it by 2 ,
[tex]\sf\implies cos2A = 1 - \dfrac{ 4-2\sqrt3}{4} [/tex]
Take out 2 common from the numerator ,
[tex]\sf\implies cos2A = 1-\dfrac{2(2-\sqrt3)}{4} [/tex]
Simplify ,
[tex]\sf\implies cos2A = 1 -\dfrac{ 2-\sqrt3}{2}[/tex]
Subtract the numbers ,
[tex]\sf\implies cos2A = \dfrac{ 2-2+\sqrt3}{2} [/tex]
Simplify,
[tex]\sf\implies \boxed{\pink{\sf cos2A =\dfrac{\sqrt3}{2}} } [/tex]
Hence Proved !