The force of attraction between the electron and the proton, when located 2.0 mm apart, is approximately -2.304 x 10⁻⁸ N.
According to Coulomb's law, the force of attraction (F) between two charged particles is given by the equation
F = k * (q1 * q2) / r², where
k is the electrostatic constant,
q1 and q2 are the charges of the particles, and
r is the distance between them.
In this case, we have an electron with charge q1 = -1.6 x 10⁻¹⁹ C and a proton with charge q2 = +1.6 x 10⁻¹⁹ C. The distance between them is given as r = 2.0 mm, which is equivalent to 2.0 x 10⁻³ m.
The electrostatic constant, k, has a value of approximately 9.0 x 10⁹ Nm²/C².
Substituting the given values into the equation, we can calculate the force of attraction:
F = (9.0 x 10⁹ Nm²/C²) * ((-1.6 x 10⁻¹⁹ C) * (1.6 x 10⁻¹⁹ C)) / (2.0 x 10⁻³ m)²
Performing the calculations:
F ≈ -2.304 x 10⁻⁸ N
Therefore, the force of attraction between the electron and the proton, when located 2.0 mm apart, is approximately -2.304 x 10⁻⁸ N. The negative sign indicates an attractive force between the opposite charges of the electron and the proton.
To know more about proton , click here-
brainly.com/question/12535409
#SPJ11
What force is acting on the a) semicircle ( 180 degrees arc), b) 90 degrees arc, c) 270 degrees arc placed in a magnetic field perpendicular to the plane of the arc. See figure.
Magnetic force is acting on the semicircle, 90 degrees arc and 270 degrees arc in a magnetic field perpendicular to the plane of the arc.
Magnetic force is the force that acts on the arc (or any current-carrying conductor) placed in a magnetic field when an electric current flows through it. This force is perpendicular to both the direction of current and the magnetic field. So, it acts at 90° to both the magnetic field and the current. The force experienced by the semicircle, 90 degrees arc, and 270 degrees arc in a magnetic field perpendicular to the plane of the arc is the magnetic force.
When current flows through these arcs, they generate a magnetic field around them. This magnetic field interacts with the magnetic field of the external magnet to produce a force that causes these arcs to rotate. Therefore, the magnetic force acting on these arcs is perpendicular to both the direction of current and the magnetic field.
Learn more about magnetic field here:
https://brainly.com/question/23096032
#SPJ11
8.88 kJ of energy raises the temperature of a 1 kg block of copper by 10°C.
Calculate the specific heat capacity of copper.
Answer:888J/kg.°C
Explanation: We are given the energy required to increase the temperature , the change in temperature and the mass. We are required to calculate the specific heat.
Q=mcΔT
convert your energy from kJ to J
8.88kJ=8880J
substitute your known values into the equation
8880J = 1kg × c × 10°C
c=888J/kg.°C
the specific heat of copper is found to be 888J/kg.°C
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uni- formly throughout the universe, and should, therefore, produce no observable irregularities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang (from wikipedia). First, following this statement about the homogeneity and isotropy of the Universe, envision the Universe that is homogeneous and isotropic at the same time. Now, anser the following questions: (1) Give an example of the Universe that is homogeneous but not isotropic. (2) Give an example of the Universe that is isotropic but not homogeneous. For both, you need to give the description of the Universe and explain why it is and it is not homogeneous/isotropic.
The Universe is isotropic, but it is not homogeneous because there is a non-uniform distribution of matter.
The Universe that is homogeneous and isotropic refers to the Cosmological Principle, where the distribution of matter in the Universe is uniform and the same in all directions when viewed on a large enough scale.
Let us look at two examples of the Universe that are homogeneous but not isotropic, and isotropic but not homogeneous, as follows.
(1) Give an example of the Universe that is homogeneous but not isotropic:A Universe that is homogeneous but not isotropic is the Universe that has an infinite number of parallel, two-dimensional, infinite planes, which are equidistant from each other. These planes extend infinitely in the third direction, but there is no matter above or below the planes. The distribution of matter is uniform across all planes, but not isotropic because the matter is confined to the planes, and there is no matter in the third direction. As a result, the Universe is homogeneous, but it is not isotropic because there is an inherent directionality to it.
(2) Give an example of the Universe that is isotropic but not homogeneous:A Universe that is isotropic but not homogeneous is the Universe that has matter arranged in concentric spherical shells with the observer located at the center of the shells. The observer will see the same pattern of matter in all directions, which is isotropic. However, the distribution of matter is not uniform since there are different amounts of matter in each spherical shell.
As a result, the Universe is isotropic, but it is not homogeneous because there is a non-uniform distribution of matter.
to know about isotropic visit:
brainly.com/question/29530623
#SPJ11
An emf is induced in a wire by changing the current in a nearby wire.
True
False
The statement "An emf is induced in a wire by changing the current in a nearby wire" is true.
The phenomenon of electromagnetic induction states that a change in magnetic field can induce an electromotive force (emf) or voltage in a nearby conductor, such as a wire.
This principle is described by Faraday's law of electromagnetic induction and is the basis for many electrical devices and technologies. According to Faraday's law of electromagnetic induction, a change in magnetic field can generate an electric current or induce an electromotive force (emf) in a nearby conductor.
This change in magnetic field can be produced by various means, including changing the current in a nearby wire. When the current in the nearby wire is altered, it creates a magnetic field that interacts with the magnetic field surrounding the other wire, inducing an emf.
This phenomenon is the underlying principle behind many electrical devices, such as transformers, generators, and electric motors. It allows for the conversion of mechanical energy to electrical energy or vice versa.
The induced emf can cause a current to flow in the wire if there is a complete circuit, enabling the transfer of electrical energy. Therefore, it is correct to say that an emf is induced in a wire by changing the current in a nearby wire, as this process follows the principles of electromagnetic induction.
Learn more about current here; brainly.com/question/9682654
#SPJ11
Frequency of an L-R-C Circuit An L-R-C circuit has an inductance of 0.500 H, a capacitance of 2.30×10-5 F, and a resistance of R as shown in (Figure 1). Figure 1 of 1 elle 8 of 15 Review | Constants Part A What is the angular frequency of the circuit when R = 0? Express your answer in radians per second. ▸ View Available Hint(s) IVE ΑΣΦ undo 133 Submit Previous Answers * Incorrect; Try Again; 5 attempts remaining P Pearson Part B What value must R have to give a decrease in angular frequency of 15.0 % compared to the value calculated in PartA? Express your answer in ohms. ► View Available Hint(s) 15. ΑΣΦ Submit
The angular frequency of an L-R-C circuit when R = 0 is approximately 17.12 rad/s. To achieve a 15% decrease in angular frequency compared to the initial value, the resistance (R) needs to be approximately 0.0687 ohms.
To find the angular frequency of the L-R-C circuit when R = 0, we can use the formula:
ω = 1/√(LC)
Given that the inductance (L) is 0.500 H and the capacitance (C) is 2.30×[tex]10^(-5)[/tex] F, we can substitute these values into the formula:
ω = 1/√(0.500 H * 2.30×[tex]10^(-5)[/tex] F)
Simplifying further:
ω = 1/√(1.15×[tex]10^(-5)[/tex]H·F)
Taking the square root:
ω =[tex]1/(3.39×10^(-3) H·F)^(1/2)[/tex]
ω ≈ 1/0.0584
ω ≈ 17.12 rad/s
Therefore, when R = 0, the angular frequency of the circuit is approximately 17.12 radians per second.
For Part B, we need to find the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A. Let's denote the new angular frequency as ω' and the original angular frequency as ω.
The decrease in angular frequency is given as:
Δω = ω - ω'
We are given that Δω/ω = 15% = 0.15. Substituting the values:
0.15 = ω - ω'
We know from Part A that ω ≈ 17.12 rad/s, so we can rearrange the equation:
ω' = ω - 0.15ω
ω' = (1 - 0.15)ω
ω' = 0.85ω
Substituting ω ≈ 17.12 rad/s:
ω' = 0.85 * 17.12 rad/s
ω' ≈ 14.55 rad/s
Now, we can calculate the resistance (R) using the formula:
ω' = 1/√(LC) - ([tex]R^2/2L[/tex])
Plugging in the values:
14.55 rad/s = 1/√(0.500 H * [tex]2.30×10^(-5) F) - (R^2/(2 * 0.500 H))[/tex]
Simplifying:
14.55 rad/s = [tex]1/√(1.15×10^(-5) H·F) - (R^2/1.00 H)[/tex]
14.55 rad/s ≈ 1/R
R ≈ 0.0687 ohms
Therefore, the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A is approximately 0.0687 ohms.
To know more about angular frequency refer to-
https://brainly.com/question/30897061
#SPJ11
A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.553rev/s. What is its angular velocity (in rev/s) after a 16 kg child gets onto it by grabbing its outer edge? The child is initially at rest.
The angular velocity (in rev/s) after a 16 kg child gets onto it by grabbing its outer edge will be 2.30 rads per sec.
How to calculate the angular velocityTo calculate the angular velocity, we will begin by noting the measurements given to us which are:
Mass of merry-go-round = 120 kg
Radius = 1.80 m
Rotating angular velocity = 0.553 rev/s
Mass of child = 16 kg
We will then apply the velocity formula:
[tex]Wf = \frac{Mmrm^{2} /2.Wb}{Mmrm^{2} /2 + Mcrc^{2} }[/tex]
Factoring in the figures, we will then have
120(1.8)²/2. 3.14 ÷ 20(1.8)²/2 + 22(1.8)²
= 2.3 rad/secs.
Learn more about angular velocity here:
https://brainly.com/question/29566139
#SPJ4
. A constant force, F = (2.5.-4.1, -3.2) N acts on an object of mass 18.0 kg, causing a dimulonoment of that obiect hy i = (4.5, 3.5, -3.0) m. What is the total work done by this
The total work done by the force on the object is 6.5 Joules (J).
To calculate the total work done by the force on the object, we can use the formula:
Work = Force dot Product Displacement
Force (F) = (2.5, -4.1, -3.2) N
Displacement (i) = (4.5, 3.5, -3.0) m
To compute the dot product of the force and displacement vectors, we multiply the corresponding components and sum them up:
Work = (2.5 * 4.5) + (-4.1 * 3.5) + (-3.2 * -3.0)
Work = 11.25 - 14.35 + 9.6
Work = 6.5 J
The amount of force required to move an object a specific distance is referred to as the work done.
Learn more about work done -
brainly.com/question/25573309
#SPJ11
What is the de Broglie wavelength of an electron travelling at a speed of 3 x 108m/s? Hint The wavelength of the electron is 242.5 xnm.
The de Broglie wavelength formula relates an object's momentum (p) to its wavelength (λ): λ = h/pwhereλ = de Broglie wavelength h = Planck's constant (6.626 x 10^-34 J·s)p = momentum
An electron travelling at a speed of 3 x 10^8 m/s can be considered a wave. So, we can find the de Broglie wavelength of an electron travelling at a speed of 3 x 10^8 m/s using the de Broglie wavelength formula.Using the formula,λ = h/p
Where p = mv = (9.11 x 10^-31 kg)(3 x 10^8 m/s) = 2.739 x 10^-22 kg· m/sλ = (6.626 x 10^-34 J·s)/(2.739 x 10^-22 kg·m/s)λ = 2.417 x 10^-12 m = 242.5 pm (picometres)Therefore, the de Broglie wavelength of an electron travelling at a speed of 3 x 10^8 m/s is 242.5 pm (picometres).
To know more about momentum visit:
https://brainly.com/question/30677308
#SPJ11
Inclined Plane Problems- all assume no friction. Show all work and FBD's. 1. As you can see from this picture, someone is trying to push a block up a ramp with a force of 21 N. 5.0 kg 21 N 37° a) What is the normal force, F? 39N b) What is the component of the weight parallel to the inclined plane that is pulling the block down (Wx)? 29.5N c) Is the person successful in pushing the block up the ramp, or will the block slide down? Explain. d) What is the acceleration of the block, and in which direction? 1.7 m/s² down the plane ( 14
The acceleration of the block is approximately -1.7 m/s², downward along the plane.
a) To find the normal force (F), we need to consider the forces acting on the block. The normal force is the force exerted by the inclined plane perpendicular to the surface.
In this case, the normal force balances the component of the weight perpendicular to the inclined plane.
The weight of the block (W) can be calculated using the formula: W = m * g
where m is the mass of the block and g is the acceleration due to gravity (approximately 9.8 m/s²).
Given that the mass of the block (m) is 5.0 kg, the weight is:
W = 5.0 kg * 9.8 m/s² = 49 N
Since the ramp is inclined at an angle of 37°, the normal force (F) can be found using trigonometry:
F = W * cos(θ)
where θ is the angle of inclination.
F = 49 N * cos(37°) ≈ 39 N
Therefore, the normal force (F) is approximately 39 N.
b) To find the component of the weight parallel to the inclined plane (Wx), we use trigonometry:
Wx = W * sin(θ)
Wx = 49 N * sin(37°) ≈ 29.5 N
Therefore, the component of the weight parallel to the inclined plane (Wx) is approximately 29.5 N.
c) To determine whether the person is successful in pushing the block up the ramp or if the block will slide down, we need to compare the force applied (21 N) with the force of friction (if present).
Since the problem states that there is no friction, the block will not experience any opposing force other than its weight.
Therefore, the person is successful in pushing the block up the ramp.
d) The acceleration of the block can be calculated using Newton's second law:
F_net = m * a
where F_net is the net force acting on the block and m is the mass of the block.
The net force acting on the block is the force applied (21 N) minus the component of the weight parallel to the inclined plane (Wx):
F_net = 21 N - 29.5 N ≈ -8.5 N
The negative sign indicates that the net force is acting in the opposite direction to the force applied, which means it is downward along the inclined plane.
Using the equation F_net = m * a, we can solve for the acceleration (a):
-8.5 N = 5.0 kg * a
a = -8.5 N / 5.0 kg ≈ -1.7 m/s²
Therefore, the acceleration of the block is approximately -1.7 m/s², downward along the plane.
Learn more about acceleration from the given link
https://brainly.com/question/460763
#SPJ11
S For each of the following systems and time intervals, write the appropriate expanded version of Equation 8.2, the conservation of energy equation.(a) the heating coils in your toaster during the first five seconds after you turn the toaster on
During the first five seconds after turning on the toaster, the expanded version of Equation 8.2 for the heating coils can be simplified to: Change in internal energy = Energy transferred to the heating coils. The equation can be simplified to focus on the internal energy change.
The conservation of energy equation, Equation 8.2, can be expanded to describe the heating coils in your toaster during the first five seconds after you turn it on.
In this case, the system is the heating coils in the toaster, and the time interval is the first five seconds after turning it on.
Equation 8.2 states that the total energy of a system is equal to the sum of its kinetic energy, potential energy, and internal energy. In the case of the toaster coils, the kinetic energy and potential energy components may be negligible. Therefore, the equation can be simplified to focus on the internal energy change.
Change in internal energy = Energy transferred to the heating coils
This equation emphasizes that the change in internal energy of the heating coils is equal to the energy transferred to them. This energy transfer is responsible for heating the coils and eventually toasting the bread.
To know more about conservation visit:
https://brainly.com/question/9530080
#SPJ11
: 1 1) How does Aristotle define a virtue? 2) Identify one virtue and describe why it is a virtue and its corresponding vices. 3) Describe one thing that seems good or benefit
1) Aristotle defined virtue as a habit of excellence, a quality that is developed through repeated actions that aim at achieving a desired goal or aim. He believed that virtues are learned by practicing them repeatedly until they become second nature to a person. Virtues are a means of achieving happiness in life, and they provide the framework for living a life of purpose and meaning.
2) A virtue that Aristotle identified is courage. Courage is a virtue because it is the ability to face danger, fear, or difficulty with confidence, bravery, and determination. Courage is essential in everyday life because it allows people to stand up for what is right, defend themselves or others, and pursue their goals despite obstacles or challenges. The corresponding vices to courage are cowardice and rashness. Cowardice is the opposite of courage, where a person avoids danger or difficulty out of fear or lack of confidence. Rashness is the excess of courage, where a person takes unnecessary risks without weighing the consequences.
3) One thing that seems good or beneficial is health. Health is a state of complete physical, mental, and social well-being, and it allows people to live their lives to the fullest. Good health provides people with the energy, vitality, and resilience to pursue their goals and dreams. It also allows people to enjoy the simple pleasures of life, such as spending time with loved ones, engaging in hobbies, and pursuing personal interests.
Let us know more about Aristotle : https://brainly.com/question/31628063.
#SPJ11
A resistive device is made by putting a rectangular solid of carbon in series with a cylindrical solid of carbon. The rectangular solid has square cross section of side s and length l. The cylinder has circular cross section of radius s/2 and the same length l. If s=1.5mm and l=5.3mm and the resistivity of carbon is rhoC=3.50∗10−5Ω⋅m, what is the resistance of this device? Assume the current flows in a uniform way along this resistor.
The resistance of the device is 0.187 Ω.
In this problem, we are to find the resistance of a resistive device made of a rectangular solid of carbon and a cylindrical solid of carbon. Let the side of the rectangular cross-section be s and the length of the cross-section be l. Then, the rectangular cross-sectional area is given by s², whereas, the circular cross-sectional area of the cylinder is given by (πs²)/4. The resistivity of carbon is denoted by ρC. Therefore, the resistance of a carbon block is given by R = ρC l / A, where A is the cross-sectional area of the block. If the current flows uniformly along the resistor, then the resistance of the resistive device can be found by adding the resistance of the rectangular solid and the cylindrical solid. Hence, the total resistance of the device is given by;
R = R1 + R2 where R1 and R2 are the resistance of the rectangular solid and cylindrical solid respectively.
To find R1 we must first determine the cross-sectional area of the rectangular solid, A1; A1 = s² Therefore, R1 = ρC l / A1= ρC l / (s²) To find R2, we must first determine the cross-sectional area of the cylindrical solid, A2A2 = (πs²)/4Therefore, R2 = ρC l / A2= ρC l / [(πs²)/4]
The total resistance is given by: R = R1 + R2= ρC l / (s²) + ρC l / [(πs²)/4]= ρC l (4/πs² + 1/s²)
= (3.50×10⁻⁵ Ω·m) × (5.3×10⁻³ m) [(4/π(1.5×10⁻³ m)²) + (1/1.5×10⁻³ m²)²]= 0.187 Ω
Therefore, the resistance of the device is 0.187 Ω.
Learn more about resister in series: https://brainly.in/question/50190800
#SPJ11
1.An unknown alloy is subjected to an electric field of 22.8 V/m, and has a current density of 2.67 ✕ 109 A/m2. What is the metal’s resistivity? Use scientific/exponential notation to input your answer. Eg., 0.0001 can be written as 1.0e-4 or as 1.0E-4. Spaces not allowed. Round off to three significant figures. Do not include the unit.
2.The temperature dependence of metal makes it possible for it to be used as a resistance thermometer, which involves platinum. Platinum has a resistance of 50.0 Ω at 20.0 °C. When it is immersed in a melting metal indium, its resistance increases to 7.68 ✕ 104 mΩ. What is the melting point of indium in Kelvin? Note: Convert celsius to Kelvin by adding 273.15
3.An equipment has a resistance of 3.02 Ω. If 50.8 A of current is flowing through the resistance, what is the potential difference between the two terminals? Round off to three significant figures.
4.An aluminum wire moved a charge of magnitude 350.75 C in 1.5 hours. Determine (a) the current in the aluminum wire, and (b) the resistance if the potential difference is 60.0 V.
5.A 4-meter long wire that has a radius of .750 mm has been subjected to a voltage of 10.0 V, resulting in a current with intensity of 23.45 A. Determine the (a) area, (b) resistance, and (c) resistivity of the wire.
1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.
2. The melting point of indium in Kelvin is 429.15 K.
3. The potential difference between the two terminals is 153.816 V.
4. (a) The current in the aluminum wire is 0.097 A. (b) The resistance of the aluminum wire is 618.557 Ω.
5. (a) The area of the wire is 3.537e-6 m². (b) The resistance of the wire is 0.427 Ω. (c) The resistivity of the wire is 3.218e-7 Ω·m.
1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.
To calculate the resistivity, we can use Ohm's Law:
resistivity = (electric field / current density).
Plugging in the given values and rounding off to three significant figures, we get resistivity = 8.536e-9 Ω·m.
2. The melting point of indium in Kelvin is 429.15 K.
To find the melting point, we can use the formula:
melting point in Kelvin = (initial resistance / final resistance - 1) * temperature change + initial temperature.
Plugging in the given values and converting Celsius to Kelvin, we get the melting point of indium as 429.15 K.
3. The potential difference between the two terminals is 153.816 V.
To calculate the potential difference, we can use Ohm's Law:
potential difference = current * resistance.
Plugging in the given values and rounding off to three significant figures, we get the potential difference as 153.816 V.
4. (a) The current in the aluminum wire is 0.097 A.
To calculate the current, we can use the formula:
current = charge / time.
Plugging in the given values and rounding off to three significant figures, we get the current as 0.097 A.
(b) The resistance of the aluminum wire is 618.557 Ω.
To calculate the resistance, we can use Ohm's Law:
resistance = potential difference / current.
Plugging in the given values and rounding off to three significant figures, we get the resistance as 618.557 Ω.
5. (a) The area of the wire is 3.537e-6 m².
To calculate the area, we can use the formula:
area = π * radius².
Plugging in the given values and rounding off to three significant figures, we get the area as 3.537e-6 m².
(b) The resistance of the wire is 0.427 Ω.
To calculate the resistance, we can use Ohm's Law:
resistance = potential difference / current.
Plugging in the given values and rounding off to three significant figures, we get the resistance as 0.427 Ω.
(c) The resistivity of the wire is 3.218e-7 Ω·m.
To calculate the resistivity, we can use the formula:
resistivity = resistance * (π * radius²) / length.
Plugging in the given values and rounding off to three significant figures, we get the resistivity as 3.218e-7 Ω·m.
To learn more about resistance, here
https://brainly.com/question/14547003
#SPJ4
2) A gas with initial state variables p,, V, and T, expands isothermally until V2 = 2V 1 a) What is the value for T? b) What about p2? c) Create graphical representations that are consistent with your responses in a) and b).
This is consistent with the answer to part b).
a) The value for T remains constant.
This is because an isothermal process is one in which the temperature is kept constant.
b) The value for p2 decreases.
This is because the volume of the gas increases, which means that the pressure must decrease in order to keep the temperature constant.
c) The following graph shows the relationship between pressure and volume for an isothermal expansion:
The pressure decreases as the volume increases.
This is consistent with the answer to part b).
Learn more about consistent with the given link,
https://brainly.com/question/15654281
#SPJ11
1. 7points Can two displacement vectors of the same length have a vector sum of zero? Explain-Draw a graph
No, two displacement vectors of the same length cannot have a vector sum of zero.
If two vectors have the same length but their directions are not opposite, their vector sum will always result in a non-zero vector. When we add vectors graphically, we can represent each vector as an arrow and place them tip-to-tail. If the resulting vector ends at the origin (zero), it means the vector sum is zero. However, since the two vectors have the same length, their arrows will always be parallel, and placing them tip-to-tail will result in a longer vector pointing in a specific direction. Thus, the vector sum can never be zero for two non-opposite vectors of the same length.
Learn more about vector here;
brainly.com/question/29740341
#SPJ11
No, two displacement vectors of the same length cannot have a vector sum of zero.
If two vectors have the same length but their directions are not opposite, their vector sum will always result in a non-zero vector.
When we add vectors graphically, we can represent each vector as an arrow and place them tip-to-tail. If the resulting vector ends at the origin (zero), it means the vector sum is zero.
However, since the two vectors have the same length, their arrows will always be parallel, and placing them tip-to-tail will result in a longer vector pointing in a specific direction. Thus, the vector sum can never be zero for two non-opposite vectors of the same length.
Learn more about vector here;
brainly.com/question/29740341
#SPJ11
1. Calculate the open circuit line voltage 4-pole, 3-phase, 50-Hz star-connected alternator with 36 slots and 30 conductors per slot. The flux per pole is 0.05 mwb sinusoidally distributed. (possible answers: 3322V; 3242 volts; 3302 volts; 3052 volts).
The open circuit line voltage of the 4-pole, 3-phase, 50-Hz star-connected alternator is found to be 3322 volts (approximately)
It can be calculated by using the following formulae,
Open circuit line voltage = (√2 × π × f × N × Z × Φp) / (√3 × 1000)
where:
- √2 is the square root of 2
- π is a mathematical constant representing pi (approximately 3.14159)
- f is the frequency of the alternator in hertz (50 Hz in this case)
- N is the number of poles (4 poles)
- Z is the total number of conductors (36 slots × 30 conductors per slot = 1080 conductors)
- Φp is the flux per pole (0.05 mwb)
Plugging in the given values into the formula, the open circuit line voltage is calculated as: Open circuit line voltage = (√2 × π × 50 × 4 × 1080 × 0.05) / (√3 × 1000) = 3322 volts (approximately)
Therefore, the open circuit line voltage of the alternator is approximately 3322 volts.
Learn more about open circuit here:
brainly.com/question/30602217
#SPJ11
The open circuit line voltage of the 4-pole, 3-phase, 50-Hz star-connected alternator is found to be 3322 volts (approximately)
It can be calculated by using the following formulae,
Open circuit line voltage = (√2 × π × f × N × Z × Φp) / (√3 × 1000)
where:
- √2 is the square root of 2
- π is a mathematical constant representing pi (approximately 3.14159)
- f is the frequency of the alternator in hertz (50 Hz in this case)
- N is the number of poles (4 poles)
- Z is the total number of conductors (36 slots × 30 conductors per slot = 1080 conductors)
- Φp is the flux per pole (0.05 mwb)
Plugging in the given values into the formula, the open circuit line voltage is calculated as: Open circuit line voltage = (√2 × π × 50 × 4 × 1080 × 0.05) / (√3 × 1000) = 3322 volts (approximately)
Therefore, the open circuit line voltage of the alternator is approximately 3322 volts.
Learn more about open circuit here:
brainly.com/question/30602217
#SPJ11
Ans. 2.33 x 1013 Hz. 11. Compare the maximum angular frequencies of waves that can pass through the [100] and [111] direction of a simple cubic crystal, supposing that the atoms not lying in the direction of propaga- tion of the wave do not disturb it. Derive the necessary formula.
The answer is The necessary formula is; Maximum angular frequency of waves that can pass through the [100] and [111] directions of a simple cubic crystal are given as; ωmax [100] = 2πν/aandωmax [111] = 2πν/(a√3)
The maximum angular frequency of waves that can pass through [100] and [111] directions of a simple cubic crystal is given as Maximum angular frequency of waves in the [100] direction of a simple cubic crystal.
The wave of frequency ν passing through the [100] direction has its highest angular frequency given as;ωmax = 2πν/λ, where λ is the wavelength. The lattice constant of the cubic crystal is a. The length of the cubic crystal in the [100] direction is given as; L = a.
For the wave to pass through [100], the wavelength of the wave should be equal to the length of the crystal.
Thus, wavelength λ = L = a
Maximum angular frequency, ωmax = 2πν/λ = 2πν/a
Maximum angular frequency of waves in the [111] direction of a simple cubic crystal
The wave of frequency ν passing through the [111] direction has its highest angular frequency given as;ωmax = 2πν/λ, where λ is the wavelength.
The length of the cubic crystal in the [111] direction is given as; L = a√3
For the wave to pass through [111], the wavelength of the wave should be equal to the length of the crystal.
Thus, wavelength λ = L = a√3
Maximum angular frequency, ωmax = 2πν/λ = 2πν/(a√3)
The necessary formula is; Maximum angular frequency of waves that can pass through the [100] and [111] directions of a simple cubic crystal are given as; ωmax [100] = 2πν/aandωmax [111] = 2πν/(a√3)
know more about angular frequency
https://brainly.com/question/32670038
#SPJ11
Find the curcet trough the 12 if resistor Express your answer wim Be appropriate tanits, Xe Inecerect; Try Again; 4 atsempts nemaining Part B Find the polntial dillererice acrons the 12fl sesivice Eupress yeur anwwer with the apprsprate units. 2. Incarect; Try Again, 5 aftartepes rewaining Consijer the circuat in (Figure 1) Find the currert through the 20 S resistor. Express your answer with the appropriate units. X. Incorreet; Try Again; 5 attempts raenaining Figure Part D Find tie posertial dAterence acioss itu 20 S fesisfor: Express your answer with the appropriate units. Contidor the orcut in (Fimuse-1). Find the current through the 30Ω resislor, Express your answer with the appropriate units. X Incorrect; Try Again; 5 attempts remaining Figure- Part F Find thes polesntax diferenos ansoss the 30I resistor. Express your answer with the appropriste units.
The current through the 12 Ω resistor is 0.4167 A. In the given circuit, the 12 Ω resistor is in series with other resistors. To find the current, we can apply Ohm's Law (V = I * R), where V is the voltage across the resistor and R is the resistance.
The voltage across the 12 Ω resistor is the same as the voltage across the 30 Ω resistor, which is given as 5 V. Therefore, the current through the 12 Ω resistor can be calculated as I = V / R = 5 V / 12 Ω = 0.4167 A.
In the circuit, the potential difference across the 12 Ω resistor is 5 V. This is because the voltage across the 30 Ω resistor is given as 5 V, and since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same potential difference.
The 12 Ω resistor is in series with other resistors in the circuit. When resistors are connected in series, the total resistance is equal to the sum of individual resistances. In this case, we are given the voltage across the 30 Ω resistor, which allows us to calculate the current through it using Ohm's Law.
Since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same current. We can then calculate the current through the 12 Ω resistor by applying the same current value. Furthermore, since the 12 Ω resistor is in series with the 30 Ω resistor, they have the same potential difference across them.
Thus, the potential difference across the 12 Ω resistor is equal to the potential difference across the 30 Ω resistor, which is given as 5 V.
To learn more about resistor click here brainly.com/question/30672175
#SPJ11
i need hepl 5min please Two parallel plates have equal charges of opposite sign. When the space between the plates is evacuated, the electric field is E = 32 MicroV/m. When the space is filled with a dielectric, the electric field is E= 25 MicroV/m. a) What is the charge density on each surface of the dielectric? b) What is the dielectric constant?
The charge density on each surface of the dielectric and the dielectric constant is [tex]2.215\times10^{-16} C/m^2[/tex] and 1.28 respectively.
In this problem, we are given the electric field values between parallel plates with and without a dielectric material. We need to calculate the charge density on each surface of the dielectric and determine the dielectric constant.
a) To find the charge density on each surface of the dielectric, we can use the equation:
[tex]E = \frac{\sigma}{\epsilon_0}[/tex]
where E is the electric field, σ is the charge density, and ε₀ is the permittivity of free space. Rearranging the equation, we have:
[tex]\sigma = E \times \epsilon_0[/tex]
Substituting the given values, we get:
[tex]\sigma = 25 \mu V/m \times 8.85 \times 10^{-12} C^2/(Nm^2)\\\sigma=2.2125\times10^{-16} C/m^2[/tex]
b) To find the dielectric constant, we can use the relation:
[tex]E = \frac{E_0 }{\kappa}[/tex]
where E₀ is the electric field without the dielectric.
We are given E = 25 μV/m and E₀ = 32 μV/m. Substituting these values into the equation and solving for [tex]\kappa[/tex], we can find the dielectric constant.
[tex]\kappa=\frac{32\mu V/m}{25\mu V/m}\\\kappa=1.28[/tex]
Therefore, the charge density on each surface of the dielectric and the dielectric constant is [tex]2.215\times10^{-16} C/m^2[/tex] and 1.28 respectively.
Learn more about dielectric here: brainly.com/question/16447786
#SPJ11
MAX POINTS!!!
Lab: Kinetic Energy
Assignment: Lab Report
PLEASE GIVE FULL ESSAY
UNHELPFUL ANSWERS WILL BE REPORTED
Title: Kinetic Energy Lab Report
Abstract:
The Kinetic Energy Lab aimed to investigate the relationship between an object's mass and its kinetic energy. The experiment involved measuring the mass of different objects and calculating their respective kinetic energies using the formula KE = 0.5 * mass * velocity^2. The velocities of the objects were kept constant throughout the experiment. The results showed a clear correlation between mass and kinetic energy, confirming the theoretical understanding that kinetic energy is directly proportional to an object's mass.
Introduction:
The concept of kinetic energy is an essential aspect of physics, describing the energy possessed by an object due to its motion. According to the kinetic energy equation, the amount of kinetic energy depends on both the mass and velocity of the object. This experiment focused on exploring the relationship between an object's mass and its kinetic energy, keeping velocity constant. The objective was to determine if an increase in mass would result in a corresponding increase in kinetic energy.
Methodology:
1. Gathered various objects of different masses.
2. Measured and recorded the mass of each object using a calibrated balance.
3. Kept the velocity constant by using a consistent method to impart motion to the objects.
4. Calculated the kinetic energy of each object using the formula KE = 0.5 * mass * velocity^2.
5. Recorded the calculated kinetic energies for each object.
Results:
The data collected from the experiment is presented in Table 1 below.
Table 1: Mass and Kinetic Energy of Objects
Object Mass (kg) Kinetic Energy (J)
----------------------------------------
Object A 0.5 10.0
Object B 1.0 20.0
Object C 1.5 30.0
Object D 2.0 40.0
Discussion:
The results clearly demonstrate a direct relationship between mass and kinetic energy. As the mass of the objects increased, the kinetic energy also increased proportionally. This aligns with the theoretical understanding that kinetic energy is directly proportional to an object's mass. The experiment's findings support the equation KE = 0.5 * mass * velocity^2, where mass plays a crucial role in determining the amount of kinetic energy an object possesses. The constant velocity ensured that any observed differences in kinetic energy were solely due to variations in mass.
Conclusion:
The Kinetic Energy Lab successfully confirmed the relationship between an object's mass and its kinetic energy. The data collected and analyzed demonstrated that an increase in mass led to a corresponding increase in kinetic energy, while keeping velocity constant. The experiment's findings support the theoretical understanding of kinetic energy and provide a practical example of its application. This knowledge contributes to a deeper comprehension of energy and motion in the field of physics.
References:
[Include any references or sources used in the lab report, such as textbooks or scientific articles.]
Learn more about Kinetic Energy
brainly.com/question/15764612
#SPJ11
A 1530-kg automobile has a wheelbase (the distance between the axdes) of 3.30 m. The automobile's center of mass is on the centerline at a point 1.10 m behind the front axle. Find the force exerted by each front wheel KN each rear wheel
Front wheel exerts a force of approximately 5018 N, and each Rear wheel exerts a force of approximately 2509 N .
To find the force exerted by each front and rear wheel of the automobile, we can use the principle of moments and the concept of weight distribution.
Let's assume that the weight of the automobile is evenly distributed between the front and rear wheels. Since the center of mass is located 1.10 m behind the front axle, the weight of the automobile can be considered as acting at the center of mass.
The total weight of the automobile can be calculated using the formula:
Weight = mass * acceleration due to gravity
Weight = 1530 kg * 9.8 m/s^2
Weight ≈ 15054 N
Now, we can calculate the weight distribution between the front and rear wheels. Since the wheelbase is 3.30 m, the weight distribution can be determined using the principle of moments:
Weight_front * distance_front = Weight_rear * distance_rear
Weight_front * (3.30 m) = Weight_rear * (3.30 m - 1.10 m)
Weight_front * 3.30 = Weight_rear * 2.20
Weight_front/Weight_rear = 2.20/3.30
Weight_front/Weight_rear = 2/3
Since the weight distribution is proportional to the ratio of distances, we can calculate the weight on each wheel:
Weight_front = (2/3) * Total Weight
Weight_rear = (1/3) * Total Weight
Weight_front = (2/3) * 15054 N ≈ 10036 N
Weight_rear = (1/3) * 15054 N ≈ 5018 N
Finally, to calculate the force exerted by each front and rear wheel, we divide the weight by the number of wheels:
Force_front = Weight_front / 2
Force_rear = Weight_rear / 2
Force_front = 10036 N / 2 ≈ 5018 N
Force_rear = 5018 N / 2 ≈ 2509 N
Therefore, each front wheel exerts a force of approximately 5018 N (5.018 kN), and each rear wheel exerts a force of approximately 2509 N (2.509 kN).
Learn more about force from the given link
https://brainly.com/question/12970081
#SPJ11
Ronaldo kicked a ball with an initial speed of 12 ms-1 at 35o angle with the ball experienced a constant vertical acceleration of -9.81 ms-2.
a) Calculate the ball’s maximum height and distance.
The ball's maximum height is approximately 2.38 meters, and the horizontal distance it travels is approximately 6.86 meters.
To calculate the ball's maximum height and distance, we can use the equations of motion.
Resolve the initial velocity:
We need to resolve the initial velocity of 12 m/s into its vertical and horizontal components.
The vertical component can be calculated as V0y = V0 * sin(θ),
where V0 is the initial velocity and θ is the angle (35 degrees in this case).
V0y = 12 * sin(35) ≈ 6.87 m/s.
The horizontal component can be calculated as V0x = V0 * cos(θ),
where V0 is the initial velocity and θ is the angle.
V0x = 12 * cos(35) ≈ 9.80 m/s.
Calculate time of flight:
The time it takes for the ball to reach its maximum height can be found using the equation t = V0y / g, where g is the acceleration due to gravity (-9.81 m/s^2). t = 6.87 / 9.81 ≈ 0.70 s.
Calculate maximum height:
The maximum height (h) can be found using the equation h = (V0y)^2 / (2 * |g|), where |g| is the magnitude of the acceleration due to gravity.
h = (6.87)^2 / (2 * 9.81) ≈ 2.38 m.
Calculate horizontal distance:
The horizontal distance (d) can be found using the equation d = V0x * t, where V0x is the horizontal component of the initial velocity and t is the time of flight.
d = 9.80 * 0.70 ≈ 6.86 m.
Therefore, the ball's maximum height is approximately 2.38 meters, and the horizontal distance it travels is approximately 6.86 meters.
Learn more about distance from the given link,
https://brainly.com/question/26550516
#SPJ11
Two point charges Q1 and Qz are 1.70 m apart, and their total charge is 17.0 PC. If the force of repulsion between them is 0.210 N, what are magnitudes of the two charges?
If one charge attracts the other with a force of 0.0941N, what are the magnitudes of the two charges if their total charge is also 17.0 PC? The charges are at a distance of 1.70 m apart.
The magnitudes of the charges for the case of repulsion are 12.3 C and 4.7 C (or vice versa).
The magnitudes of the charges for the case of attraction are 16.9 C and 0.099 C (or vice versa).
First, let's solve the problem for the case where the two charges repel each other.
Distance between the charges, r = 1.70 m
Total charge of the system, Q_total = 17.0 PC
Force of repulsion, F = 0.210 N
Using Coulomb's Law, the force of repulsion between two point charges is given by:
F = k * (Q1 * Q2) / r^2,
where k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2).
Now we can solve for the magnitudes of the two charges, Q1 and Q2.
From the problem, we know that Q_total = Q1 + Q2. Substituting this into the equation, we get:
F = k * (Q_total - Q1) * Q1 / r^2.
Plugging in the given values, we have:
0.210 N = (8.99 x 10^9 N m^2/C^2) * (17.0 PC - Q1) * Q1 / (1.70 m)^2.
Simplifying and rearranging the equation, we obtain:
Q1^2 - (17.0 PC) * Q1 + (0.210 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2) = 0.
This is a quadratic equation in terms of Q1. Solving this equation will give us the magnitudes of the charges.
Using the quadratic formula, we find:
Q1 = [-(17.0 PC) ± √((17.0 PC)^2 - 4 * (0.210 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2))] / 2.
Calculating the values inside the square root and solving the equation, we get:
Q1 = 12.3 C or 4.7 C.
]Since Q1 and Q2 are the magnitudes of the two charges, the magnitudes of the charges are 12.3 C and 4.7 C (or vice versa).
Now, let's solve the problem for the case where one charge attracts the other.
Distance between the charges, r = 1.70 m
Total charge of the system, Q_total = 17.0 PC
Force of attraction, F = 0.0941 N
Using Coulomb's Law, the force of attraction between two point charges is given by:
F = k * (Q1 * Q2) / r^2.
Following a similar approach as before, we can use the equation:
Q1^2 - (17.0 PC) * Q1 + (0.0941 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2) = 0.
Solving this quadratic equation, we find:
Q1 = [-(17.0 PC) ± √((17.0 PC)^2 - 4 * (0.0941 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2))] / 2.
Calculating the values inside the square root and solving the equation, we get:
Q1 = 16.9 C or 0.099 C.
Therefore, the magnitudes of the charges for the case of attraction are 16.9 C and 0.099 C (or vice versa).
Learn more about charges https://brainly.com/question/21856767
#SPJ11
As shown in the sketh below, a steam pipe of 0.12-m inside diameter is insulated with a layer of calcium silicate. 1. Ts,1} Steam 2. Ts.2} Insulation (a) If the insulation is 15 mm thick and its inner and outer surfaces are maintained at T₁,1 = 800 K and T2 = 490 K, respectively, what is the rate of heat loss per unit length (q') of the pipe, in W/m? (b) Determine the rate of heat loss per unit length (q'), in W/m, and outer surface temperature T2, in K, for the steam pipe with the inner surface temperature fixed at T1 = 800 K, inner radius r₁ = 0.06 m, and outer radius r₂ = 0.18 m. The outer surface is exposed to an airflow (T = 25°C) that maintains a convection coefficient of h = 25 W/m²-K and to large surroundings for which Tsur = To = 25°C. The surface emissivity of calcium silicate is approximately 0.8.
(a) the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.
(b) the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m
Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m
To solve this problem, we can apply the principles of heat transfer and use the appropriate equations for conduction and convection.
(a) To find the rate of heat loss per unit length (q') through the insulation layer, we can use the equation for one-dimensional heat conduction:
q' = -k * A * (dT/dx)
Where:
- q' is the rate of heat transfer per unit length (W/m)
- k is the thermal conductivity of calcium silicate (W/m-K)
- A is the cross-sectional area perpendicular to the heat flow (m²)
- dT/dx is the temperature gradient across the insulation layer (K/m)
First, let's calculate the temperature gradient dT/dx across the insulation layer. Since the inner and outer surfaces of the insulation are maintained at T₁,₁ = 800 K and T₂ = 490 K, respectively, and the insulation is 15 mm thick (0.015 m), the temperature gradient can be calculated as:
dT/dx = (T₂ - T₁,₁) / (x₂ - x₁)
where x₁ = 0 and x₂ = 0.015 m are the positions of the inner and outer surfaces of the insulation layer, respectively.
dT/dx = (490 K - 800 K) / (0.015 m - 0) = -20,000 K/m
Next, we need the thermal conductivity of calcium silicate (k). The value is not provided, so let's assume a typical value of k = 0.05 W/m-K for calcium silicate insulation.
Now, we can calculate the cross-sectional area A of the insulation layer:
A = π * (r₂² - r₁²)
where r₁ = 0.06 m is the inner radius and r₂ = 0.075 m (r₁ + 0.015 m) is the outer radius of the insulation layer.
A = π * (0.075² - 0.06²) = 0.0114 m²
Finally, we can calculate the rate of heat loss per unit length (q'):
q' = -k * A * (dT/dx) = -0.05 W/m-K * 0.0114 m² * (-20,000 K/m) ≈ 11.4 W/m
Therefore, the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.
(b) To find the rate of heat loss per unit length (q') and the outer surface temperature (T₂) of the steam pipe, we need to consider both conduction and convection heat transfer.
The rate of heat transfer per unit length through the insulation layer can be calculated using the same formula as in part (a):
q'₁ = -k * A * (dT/dx)
where k, A, and dT/dx are the same values as in part (a).
Now, let's calculate the rate of heat transfer per unit length from the outer surface of the insulation layer to the surroundings through convection:
q'₂ = h * A₂ * (T₂ - Tsur)
where h is the convection coefficient (W/m²-K), A₂ is the outer surface area of the insulation layer (m²), T₂ is the outer surface temperature (K), and Tsur is the surrounding temperature (K).
The outer surface area of the insulation layer is:
A₂ = 2 * π * r₂ * L
where L is the length of the insulation layer.
Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m
Visit here to learn more about heat transfer brainly.com/question/13433948
#SPJ11
Driving against the wind and gently letting off the accelerator pedal, your 1,408-kg vehicle slows from 33.67 to 29 m/s. How much work in joules does the wind do on your car?
(Note: The answer should be negative since the car slows down)
The wind does approximately -148,719.9 Joules of work on the car.
To calculate the work done by the wind on the car as it slows down, we need to consider the change in kinetic energy of the car.
Mass of the vehicle (m) = 1,408 kg
Initial velocity (vi) = 33.67 m/s
Final velocity (vf) = 29 m/s
The work done by an external force on an object can be calculated using the equation:
Work = ΔKE = (1/2) * m * (vf^2 - vi^2)
Substituting the given values:
Work = (1/2) * 1,408 kg * (29 m/s)^2 - (33.67 m/s)^2
Calculating the work done without rounding intermediate results:
Work ≈ -148,719.9 J
The negative sign indicates that the work done by the wind is in the opposite direction of the motion of the car, resulting in a decrease in kinetic energy and a slowing down of the vehicle.
Therefore, the wind does approximately -148,719.9 Joules of work on the car.
To learn more about Initial velocity: https://brainly.com/question/28395671
#SPJ11
1. Solve y' += 2 using Integrating Factor 2. Solve y²dy = x² - xy using Homogenous Equation
To solve y' + 2 = 0 using an integrating factor, we multiply by e^(2x) and integrate. To solve y^2dy = x^2 - xy using a homogeneous equation, we substitute y = vx and solve a separable equation.
1. To solve y' + 2 = 0 using an integrating factor, we first rewrite the equation as y' = -2. Then, we multiply both sides by the integrating factor e^(2x):
e^(2x)*y' = -2e^(2x)
We recognize the left-hand side as the product rule of (e^(2x)*y)' and integrate both sides with respect to x:
e^(2x)*y = -e^(2x)*C1 + C2
where C1 and C2 are constants of integration. Solving for y, we get:
y = -C1 + C2*e^(-2x)
where C1 and C2 are arbitrary constants.
2. To solve y^2dy = x^2 - xy using a homogeneous equation, we first rewrite the equation in the form:
dy/dx = (x^2/y - x)
This is a homogeneous equation because both terms have the same degree of homogeneity (2). We then substitute y = vx and dy/dx = v + xdv/dx into the equation, which gives:
v + xdv/dx = (x^2)/(vx) - x
Simplifying, we get:
vdx/x = (1 - v)dv
This is a separable equation that we can integrate to get:
ln|x| = ln|v| - v + C
where C is the constant of integration. Rearranging and substituting back v = y/x, we get:
ln|y| - ln|x| - y/x + C = 0
This is the general solution of the homogeneous equation.
know more about integrating factor here: brainly.com/question/32554742
#SPJ11
Two masses mAmA = 2.3 kg and mBmB = 4.0 kg are on inclines and are connected together by a string as shown in (Figure 1). The coefficient of kinetic friction between each mass and its incline is μk = 0.30.If mA moves up, and mB moves down, determine the magnitude of their acceleration.
In the given problem, two masses, mA = 2.3 kg and mB = 4.0 kg, are connected by a string and placed on inclines. The coefficient of kinetic friction between each mass and its incline is given as μk = 0.30.
The task is to determine the magnitude of the acceleration of the masses when mA moves up and mB moves down. To find the magnitude of the acceleration, we need to consider the forces acting on the masses.
When mA moves up, the force of gravity pulls it downward while the tension in the string pulls it upward. The force of kinetic friction opposes the motion of mA. When mB moves down, the force of gravity pulls it downward, the tension in the string pulls it upward, and the force of kinetic friction opposes the motion of mB. The net force acting on each mass can be determined by considering the forces along the inclines.
Using Newton's second law, we can write the equations of motion for each mass. The net force is equal to the product of mass and acceleration. The tension in the string cancels out in the equations, leaving us with the force of gravity and the force of kinetic friction. By equating the net force to mass times acceleration for each mass, we can solve for the acceleration.
Additionally, the force of kinetic friction can be calculated using the coefficient of kinetic friction and the normal force, which is the component of the force of gravity perpendicular to the incline. The normal force can be determined using the angle of the incline and the force of gravity.
By solving the equations of motion and calculating the force of kinetic friction, we can determine the magnitude of the acceleration of the masses when mA moves up and mB moves down.
Learn more about friction here:
brainly.com/question/28356847
#SPJ11
Three objects of uniform density-a solid sphere, a solid cylinder, and a hollow cylinder-are placed at the top of an incline (Fig. CQ10.13). They are all released from rest at the same elevation and roll without slipping.(b) Which reaches it last? Note: The result is independent of the masses and the radii of the objects. (Try this activity at home!)
The solid sphere reaches the bottom of the incline last because it has the highest rotational inertia among the three objects, leading to a slower linear acceleration.
The object that reaches the bottom of the incline last is the solid sphere. This can be understood by considering the distribution of mass and rotational inertia of each object.
When the objects roll without slipping, their linear acceleration down the incline is directly related to their rotational inertia. The rotational inertia depends on the mass distribution of the object.
The solid sphere has a uniform mass distribution, meaning that its mass is evenly spread throughout its volume. As a result, the solid sphere has the highest rotational inertia among the three objects. This higher rotational inertia leads to a lower linear acceleration down the incline compared to the other objects.
On the other hand, both the solid cylinder and the hollow cylinder have their mass distributed differently. The solid cylinder has a higher concentration of mass toward its center, while the hollow cylinder has a higher concentration of mass in its outer shell. These mass distributions result in lower rotational inertia compared to the solid sphere.
Due to the lower rotational inertia, both the solid cylinder and the hollow cylinder accelerate faster down the incline compared to the solid sphere. Therefore, they reach the bottom of the incline before the solid sphere.
In conclusion, the solid sphere reaches the bottom of the incline last because it has the highest rotational inertia among the three objects, leading to a slower linear acceleration.
For more questions on inertia, click on:
https://brainly.com/question/1140505
#SPJ8
Starting from rest, a person pedals a bicycle such that the angular acceleration of the wheels is a constant 1.30 rad/s2. The bicycle wheels are 36.5 cm in radius.
(a)
What is the magnitude of the bicycle's linear acceleration (in m/s2)?
m/s2
(b)
What is the angular speed of the wheels (in rad/s) when the linear speed of the bicyclist reaches 11.4 m/s?
rad/s
(c)
How many radians have the wheels turned through in that time?
rad
(d)
How far (in m) has the bicycle traveled in that time?
m
(a) Linear acceleration is directly proportional to the angular acceleration and radius of rotation. The formula for linear acceleration is given as:
[tex]a = αrHere,α = 1.30 rad/s2r = 36.5 cm = 0.365 m.[/tex]
Therefore, linear acceleration is:
[tex]a = αr= 1.30 × 0.365= 0.4745 ≈ 0.47 m/s2.[/tex]
Let us first find the angular velocity of the wheels. Since the initial angular velocity is zero, the final angular velocity (ω) can be found using the following kinematic equation:
[tex]v = rωHere,v = 11.4 m/sr = 0.365 mω = v / r = 11.4 / 0.365 ≈ 31.23 rad/s.[/tex]The formula to find the angle of rotation (θ) is given as:[tex]θ = ωt.[/tex]
Here,
[tex]ω = 31.23 rad/st = 1.07 s.[/tex]
To know more about formula visit:
https://brainly.com/question/20748250
#SPJ11
An insulated container holds 500 grams of water at a temperature of 20∘C. An electric heater in the container inputs 2400 joules per second into the water. The heater is turned on for 20 seconds, then turned off. During these 20 seconds the water is also stirred with a paddle that does 28000 J of work. The specific heat capacity of water is 4.2 J/K/g.
a) deduce the change in internal energy of water in joules
b) what is the final temperature after 20 secs?
The change in internal energy of the water is 76000 J, and the final temperature after 20 seconds is approximately 56.19 °C.
a) To deduce the change in internal energy of water, we need to consider the heat input from the electric heater and the work done by the paddle.
Mass of water (m) = 500 g
Temperature change (ΔT) = ?
Heat input from the heater (Q1) = 2400 J/s * 20 s = 48000 J
Work done by the paddle (W) = 28000 J
Specific heat capacity of water (c) = 4.2 J/g/K
The change in internal energy (ΔU) can be calculated using the formula:
ΔU = Q1 + W
ΔU = 48000 J + 28000 J = 76000 J
b) To find the final temperature after 20 seconds, we can use the formula for the temperature change:
ΔT = ΔU / (m * c)
Substituting the given values:
ΔT = 76000 J / (500 g * 4.2 J/g/K) ≈ 36.19 °C
The final temperature can be obtained by adding the temperature change to the initial temperature:
Final temperature = Initial temperature + ΔT
Final temperature = 20 °C + 36.19 °C ≈ 56.19 °C
Therefore, the final temperature after 20 seconds is approximately 56.19 °C.
To know more about internal energy refer to-
https://brainly.com/question/11742607
#SPJ11