Calculate the total steady-state photocurrent density for the photodiode with space charge width of 2.2 μm, generation rate of excess carriers of 1028 cm3s, minority carrier electron and hole diffusion lengths of 6.89×10 4 cm and 3.9x10-4 cm. Select one: a. 2.1e10 b. 1.5e10 c. 9.8e9 d. 1.7e10

Answers

Answer 1

"The closest option from the given choices is (d) 1.7e10." Photocurrent refers to the electric current that is generated in a material or device when it is exposed to light. It is a direct result of the photoelectric effect, where photons of light interact with the material, causing the liberation of charge carriers (electrons or holes) and creating an electric current.

To calculate the total steady-state photocurrent density (J_ph) for a photodiode, we can use the equation:

J_ph = q * G * W * (L_p / (L_n + L_p))

where:

q is the elementary charge (1.6 x 10⁻¹⁹ C)

G is the generation rate of excess carriers (in cm³s⁻¹)

W is the space charge width (in cm)

L_n is the minority carrier electron diffusion length (in cm)

L_p is the minority carrier hole diffusion length (in cm)

Let's plug in the given values and calculate the photocurrent density:

J_ph = (1.6 x 10⁻¹⁹ C) * (1.028 x 10²⁸ cm³s⁻¹) * (2.2 x 10⁻⁴ cm) * ((6.89 x 10⁴ cm) / ((3.9 x 10⁻⁴ cm) + (6.89 x 10⁴ cm)))

J_ph = 1.7 x 10¹⁰ A/m²

The total steady-state photocurrent density is approximately 1.7 x 10¹⁰ A/m.

Therefore, the closest option from the given choices is (d) 1.7e10.

To know more about photocurrent visit:

https://brainly.com/question/13201096

#SPJ11


Related Questions

A rod of negligible resistance is sliding along a pair of long tracks--also of negligible resistance. The tracks are connected on one end by a wire of resistance R, the rod is sliding away from this end at constant speed, and there is a uniform magnetic field which points in a direction perpendicular to the plane containing the rod and the tracks. Initially, the area bounded by the rod, the tracks, and the end is A1, but after some time the area is A2 = 3A1. At this initial time, the induced emf was 3.0 V. What will it be at the latter time, when the total enclosed area has tripled?

Answers

The induced emf will be 9.0 V when the total enclosed area has tripled.

According to Faraday's law of electromagnetic induction, the induced emf (ε) in a circuit is proportional to the rate of change of magnetic flux through the circuit. The magnetic flux (Φ) is given by the product of the magnetic field (B) and the area (A) enclosed by the circuit.

In this scenario, the initially induced emf (ε1) is 3.0 V, and the initial area (A1) is known. When the total enclosed area becomes A2 = 3A1, it means the area has tripled. Since the speed of the rod is constant, the rate of change of area is also constant.

Therefore, the ratio of the final area (A2) to the initial area (A1) is equal to the ratio of the final induced emf (ε2) to the initial induced emf (ε1).

Mathematically, we can express this relationship as:

A2/A1 = ε2/ε1

Substituting the known values, A2 = 3A1 and ε1 = 3.0 V, we can solve for ε2:

3A1/A1 = ε2/3.0 V

3 = ε2/3.0 V

Cross-multiplying, we find:

ε2 = 9.0 V

Hence, the induced emf will be 9.0 V when the total enclosed area has tripled.

To learn more about  magnetic flux

Click here brainly.com/question/1596988

#SPJ11

"A boy throws a stone vertically upward. It takes 5 seconds for
the stone to reach the maximum height. What is the maximum
height?

Answers

The maximum height is 122.5 meters when a stone is thrown vertically upward.

Time is taken to reach the maximum height = 5 seconds

Acceleration due to gravity= -9.8 m/ second squared

After reaching the max height,  its final velocity is zero. It is written as:

v = u + a*t

Assuming the final velocity is Zero.

0 = u + a*t

u = -a*t

u = -([tex]-9.8 m/s^2[/tex]) * 5 seconds

u = 49 m/s

The displacement formula is used to calculate the maximum height:

s = ut + (1/2)*[tex]at^2[/tex]

s = 49 m/s * 5 seconds + [tex](1/2)(-9.8 m/s^2)*(5 seconds)^2[/tex]

s = 245 m - 122.5 m

s = 122.5 m

Therefore, we can conclude that the maximum height is 122.5 meters.

To learn more about the maximum height

https://brainly.com/question/29116483

#SPJ4

Can there be a stable and unchanging electric or magnetic field in a region of space with no charges (and thus no currents)? There could be charges or currents near the region, but not inside of it. Justify your answer using Maxwell's equations.

Answers

According to Maxwell's equations, the magnetic field lines will not exist independently of charges or currents, unlike the electric field lines. As a result, a stable and unchanging magnetic field will not be produced without a current or charge. On the other hand, an electric field can exist in a vacuum without the presence of any charges or currents. As a result, in a region of space without any charges or currents, a stable and unchanging electric field can exist.

Maxwell's equations are a set of four equations that describe the electric and magnetic fields. These equations have been shown to be valid and precise. The Gauss's law, the Gauss's law for magnetism, the Faraday's law, and the Ampere's law with Maxwell's correction are the four equations.

The Gauss's law is given by the equation below:

∇.E=ρ/ε0(1) Where, E is the electric field, ρ is the charge density and ε0 is the vacuum permittivity.

The Gauss's law for magnetism is given by the equation below:

∇.B=0(2)Where, B is the magnetic field.

The Faraday's law is given by the equation below:

∇×E=−∂B/∂t(3)Where, ∂B/∂t is the time derivative of magnetic flux density.

The Ampere's law with Maxwell's correction is given by the equation below:

∇×B=μ0(ε0∂E/∂t+J)(4)Where, μ0 is the magnetic permeability, ε0 is the vacuum permittivity, J is the current density.

In a region of space without any charges or currents, the Gauss's law (Eq. 1) states that the electric field lines will exist. So, an electric field can exist in a vacuum without the presence of any charges or currents. However, in the absence of charges or currents, the Gauss's law for magnetism (Eq. 2) states that magnetic field lines cannot exist independently. As a result, a stable and unchanging magnetic field will not be produced without a current or charge. Therefore, in a region of space without any charges or currents, a stable and unchanging electric field can exist, but a magnetic field cannot.

Learn more here: https://brainly.com/question/14411049

#SPJ11

consider the following two experiments which result in the slow experiment) or fast experiment I deformation of a basketoall:
it you slowly press with your foot a basketoall to the floor
(in) you throw the basketball toward the floor as fast as you can, and the basketball deforms quickly as it hits the ground. Which deformation process is more likely to not change the entropy of the ideal gas contained by the basketball? Consider that initially the basketball, floor, and foot are all at the
same temperature.
Select one:
O a. experiment (i)
• b. experiment (i)
• c.
experiments ) and (if)
• d.
None

Answers

Both experiment (i) and experiment (ii) are likely to change the entropy of the ideal gas contained by the basketball. Option D

Entropy measurement

Both experiment (i), where the basketball is slowly pressed to the floor, and experiment (ii), where the basketball is thrown quickly towards the floor, are likely to change the entropy of the ideal gas contained by the basketball.

Entropy is related to the disorder or randomness in a system, and the deformation of the basketball in both cases leads to an increase in disorder.

Therefore, neither experiment (i) nor experiment (ii) is more likely to maintain the entropy of the ideal gas in the basketball unchanged.

More on entropy can be found here: https://brainly.com/question/20166134

#SPJ4

Question 32 of 37 > a Consider the inelastic collision. Two lumps of matter are moving directly toward each other. Each lump has a mass of 1.500 kg and is moving at a speed of 0.930c. The two lumps collide and stick together. Answer the questions, keeping in mind that relativistic effects cannot be neglected in this case. What is the final speed up of the combined lump, expressed as a fraction of c? UL What is the final mass me of the combined lump immediately after the collision, assuming that there has not yet been significant energy loss due to radiation or fragmentation? ks mi stion 31 of 375 As you take your leisurely tour through the solar system, you come across a 1.47 kg rock that was ejected from a collision of asteroids. Your spacecraft's momentum detector shows a value of 1.75 X 10% kg•m/s for this rock. What is the rock's speed? m/s rock's speed:

Answers

For the first part of the question, it is given that two lumps of matter are moving directly towards each other with a velocity of 0.930c each. Here, c is the speed of light. The final velocity of the combined lumps is to be found. The lumps collide and stick together, which is known as an inelastic collision.

Question 32 of 37 >a) Consider the inelastic collision. Two lumps of matter are moving directly toward each other. Each lump has a mass of 1.500 kg and is moving at a speed of 0.930c. The two lumps collide and stick together. Answer the questions, keeping in mind that relativistic effects cannot be neglected in this case.

What is the final speed up of the combined lump, expressed as a fraction of c?

UL What is the final mass me of the combined lump immediately after the collision, assuming that there has not yet been significant energy loss due to radiation or fragmentation?

ksmi stion 31 of 375As you take your leisurely tour through the solar system, you come across a 1.47 kg rock that was ejected from a collision of asteroids. Your spacecraft's momentum detector shows a value of 1.75 X 10% kg•m/s for this rock. What is the rock's speed? m/s rock's speed:

Answer: The equation for the speed of a moving body is given by mass times velocity. The mass of the rock is 1.47 kg. The momentum detector registers a momentum of 1.75 × 10^3 kg•m/s. We can use the formula for momentum to calculate the velocity of the rock; Momentum is equal to mass times velocity, which is written as p = mv. Rearranging the equation gives the velocity of the object; v = p/m.

Substituting p = 1.75 × 10^3 kg • m/s and m = 1.47 kg into the equation gives; v = (1.75 × 10^3 kg•m/s) / (1.47 kg)v = 1189.12 m/s

rock's speed = 1189.12 m/s

For the first part of the question, it is given that two lumps of matter are moving directly towards each other with a velocity of 0.930c each. Here, c is the speed of light. The final velocity of the combined lumps is to be found. The lumps collide and stick together, which is known as an inelastic collision. This means that both the lumps move together after the collision. The total mass of the combined lumps is 3 kg, i.e., 1.5 kg + 1.5 kg. Using the equation, we can find the final velocity of the combined lump; v = [(m_1*v_1) + (m_2*v_2)] / (m_1 + m_2)

Where, m1 = m2 = 1.5 kg and v1 = v2 = 0.93c = 0.93 × 3 × 10^8 m/s = 2.79 × 10^8 m/s. Substituting these values into the equation gives; v = [(1.5 kg × 0.93 × 3 × 10^8 m/s) + (1.5 kg × 0.93 × 3 × 10^8 m/s)] / (1.5 kg + 1.5 kg)

v = (2.09 × 10^8 m/s) / 3 kg

v = 0.697 × 10^8 m/s

v = 0.697c

Therefore, the final velocity of the combined lump is 0.697c.

To know more about speed of light visit:

https://brainly.com/question/29216893

#SPJ11

An unpolarized ray of light in air is incident on a glass block of refractive index 1.4. Using an iterative method, or otherwise, find, to within 2°, an angle of incidence for which the reflected ray is 50% polarized (that is, the total intensity is twice the
difference in intensity between the s- and p-polarized light).

Answers

Using an iterative method, an angle of incidence of approximately 56.5° will result in a reflected ray that is 50% polarized.

To find the angle of incidence for which the reflected ray is 50% polarized, we can use the Fresnel equations and apply an iterative method. The Fresnel equations describe the reflection and transmission of light at the interface between two media with different refractive indices.

Let's assume the angle of incidence is θ. The angle of reflection will also be θ for unpolarized light. We need to find the angle of incidence at which the reflected ray is 50% polarized.

The Fresnel equations for reflection coefficients (r_s and r_p) are given by:

r_s = (n1 * cos(θ) - n2 * cos(φ)) / (n1 * cos(θ) + n2 * cos(φ))

r_p = (n2 * cos(θ) - n1 * cos(φ)) / (n2 * cos(θ) + n1 * cos(φ))

where:

n1 is the refractive index of the first medium (air) = 1.00 (approximated as 1 for simplicity)n2 is the refractive index of the second medium (glass) = 1.4φ is the angle of refraction

We want the reflected ray to be 50% polarized, which means the intensity of the reflected ray should be twice the difference in intensity between s- and p-polarized light. Mathematically, we can express this as:

2 * (1 - |r_s|^2) = |r_p|^2 - |r_s|^2

Simplifying this equation, we have:

2 - 2|r_s|^2 = |r_p|^2 - |r_s|^2

|r_p|^2 = |r_s|^2 + 2

To solve this equation iteratively, we can start with an initial guess for θ and then update it until we find a solution that satisfies the equation.

Let's start the iterative process:

Choose an initial guess for θ, such as 45°.Calculate the corresponding values of r_s and r_p using the Fresnel equations.Calculate |r_s|^2 and |r_p|^2.Check if |r_p|^2 - |r_s|^2 is close to 2 within a certain tolerance (e.g., 0.01). If it is, stop and consider θ as the solution. Otherwise, proceed to the next step.Adjust θ by a small increment (e.g., 0.1°) and go back to step 2.Repeat steps 2-5 until |r_p|^2 - |r_s|^2 is close to 2 within the tolerance.

By applying this iterative method, you can find an angle of incidence, accurate to within 2°, for which the reflected ray is 50% polarized.

To learn more about iterative process, Visit:

https://brainly.com/question/26995556

#SPJ11

Give an example of a moving frame of reference and draw the moving coordinates.

Answers

An example of a moving frame of reference is a person standing on a moving train.

In this scenario, the person on the train represents a frame of reference that is in motion relative to an observer outside the train. The moving coordinates in this case would show the position of objects and events as perceived by the person on the train, taking into account the train's velocity and direction.

Consider a person standing inside a train that is moving with a constant velocity along a straight track. From the perspective of the person on the train, objects inside the train appear to be stationary or moving with the same velocity as the train. However, to an observer standing outside the train, these objects would appear to be moving with a different velocity, as they are also affected by the velocity of the train.

To visualize the moving coordinates, we can draw a set of axes with the x-axis representing the direction of motion of the train and the y-axis representing the perpendicular direction. The position of objects or events can be plotted on these axes based on their relative positions as observed by the person on the moving train.

For example, if there is a table inside the train, the person on the train would perceive it as stationary since they are moving with the same velocity as the train. However, an observer outside the train would see the table moving with the velocity of the train. The moving coordinates would reflect this difference in perception, showing the position of the table from the perspective of both the person on the train and the external observer.

Learn more about frame of reference here:

brainly.com/question/12222532

#SPJ11

You have a 150-Ω resistor and a 0.440-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 35.0 V and an angular frequency of 210 rad/s.
What is the impedance of the circuit? (Z = …Ω)
What is the current amplitude? (I = …A)
What is the voltage amplitude across the resistor? (V(R) = ...V)
What is the voltage amplitudes across the inductor? (V(L) = ...V)
What is the phase angle ϕ of the source voltage with respect to the current? (ϕ = … degrees)
Does the source voltage lag or lead the current?
Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded.

Answers

1) The impedance is  176 ohm

2) Current amplitude is  0.199 A

3) Voltage across resistor is 29.9 V

4) Voltage across inductor  18.4 V

5) The phase angle is 32 degrees

What is the impedance?

We have that;

XL = ωL

XL = 0.440 * 210

= 92.4 ohms

Then;

Z =√R^2 + XL^2

Z = √[tex](150)^2 + (92.4)^2[/tex]

Z = 176 ohm

The current amplitude = V/Z

= 35 V/176 ohm

= 0.199 A

Resistor voltage =   0.199 A * 150 ohms

= 29.9 V

Inductor voltage =  0.199 A * 92.4 ohms

= 18.4 V

Phase angle =Tan-1 (XL/XR)

= Tan-1( 18.4/29.9)

= 32 degrees

Learn more about impedance:https://brainly.com/question/30475674

#SPJ4

A rocket cruises past a laboratory at 1.10 x 10% m/s in the positive -direction just as
a proton is launched with velocity (in the laboratory
framel
u = (1.90 × 10°2 + 1.90 × 10%) m/s.
What is the proton's speed in the laboratory frame?

Answers

The proton's speed in the laboratory frame is 0.0002 m/s.

Given data :A rocket cruises past a laboratory at 1.10 x 10% m/s in the positive direction just as a proton is launched with velocity (in the laboratory frame) u = (1.90 × 10² + 1.90 × 10%) m/s. Find: We are to find the proton's speed in the laboratory frame .Solution: Speed of the rocket (S₁) = 1.10 x 10^8 m/  velocity of the proton (u) = 1.90 × 10² m/s + 1.90 × 10^-2 m/s= 1.90 × 10² m/s + 0.0019 m/s Let's calculate the speed of the proton :Since the rocket is moving in the positive x-direction, the velocity of the rocket in the laboratory frame can be written as V₁ = 1.10 × 10^8 m/s in the positive x-direction .Velocity of the proton in the rocket frame will be:

u' = u - V₁u'

= 1.90 × 10² m/s + 0.0019 m/s - 1.10 × 10^8 m/su'

= -1.10 × 10^8 m/s + 1.90 × 10² m/s + 0.0019 m/su'

= -1.10 × 10^8 m/s + 1.9019 × 10² m/su'

= -1.10 × 10^8 m/s + 190.19 m/su'

= -1.09980981 × 10^8 m/su'

= -1.0998 × 10^8 m/s

The proton's speed in the laboratory frame will be:v = u' + V₁v = -1.0998 × 10^8 m/s + 1.10 × 10^8 m/sv = 0.0002 m/s Therefore, the proton's speed in the laboratory frame is 0.0002 m/s.

To learn more about proton's speed visit below link

https://brainly.com/question/28523021

#SPJ11

standing wave on a 2-m stretched string is described by: y(x,t) = 0.1 sin(3rıx) cos(50nt), where x and y are in meters and t is in seconds. Determine the shortest distance between a node and an antinode

Answers

Standing wave on a 2-m stretched string is described by: y(x,t) = 0.1 sin(3rıx) cos(50nt), where x and y are in meters and t is in seconds.The shortest distance between a node and an antinode is approximately 16.67 cm.

To determine the shortest distance between a node and an antinode in the given standing wave, we need to analyze the properties of nodes and antinodes.

In a standing wave on a string, nodes are points where the displacement is always zero, while antinodes are points where the displacement reaches its maximum value.

The equation for the given standing wave is y(x, t) = 0.1 sin(3πx) cos(50πt).

To find the distance between a node and an antinode, we can consider the wave pattern along the string.

The general equation for a standing wave on a string is y(x, t) = A sin(kx) cos(ωt), where A is the amplitude, k is the wave number, x is the position along the string, and ω is the angular frequency.

Comparing this with the given equation, we can see that the wave number (k) is 3π and the angular frequency (ω) is 50π

In a standing wave, the distance between a node and an adjacent antinode is equal to λ/4, where λ is the wavelength of the wave.

The wavelength (λ) can be calculated using the formula λ = 2π/k.

Substituting the given value of k = 3π, we can find λ:

λ = 2π/(3π) = 2/3 meters.

Therefore, the shortest distance between a node and an antinode is equal to λ/4:

λ/4 = (2/3) / 4 = 2/12 = 1/6 meters.

To convert this into centimeters, we multiply by 100:

(1/6) ×100 = 100/6 cm ≈ 16.67 cm.

Therefore, the shortest distance between a node and an antinode is approximately 16.67 cm.

To learn more about  antinode visit: https://brainly.com/question/11735759

#SPJ11

Calculate the energy stored in a 750 F capacitor that has been charged to 12.0V.

Answers

The energy stored in the 750 F capacitor that has been charged to 12.0 V is 54,000 joules.

The energy stored in a capacitor can be calculated using the formula:

E = (1/2) * C * V^2

Where:

E is the energy stored in the capacitor

C is the capacitance of the capacitor

V is the voltage across the capacitor

Capacitance (C) = 750 F

Voltage (V) = 12.0 V

Substituting the values into the formula:

E = (1/2) * 750 F * (12.0 V)^2

Calculating the energy:

E = 0.5 * 750 F * 144 V^2

E = 54,000 J

Learn more about the energy stored in a capacitor at https://brainly.com/question/26258102

#SPJ11

One mole of oxygen gas is at a pressure of 5.80 atm and a temperature of 27.5°C.(a) If the gas is heated at constant volume until the pressure triples, what is the final temperature?
_____ °C
(b) If the gas is heated so that both the pressure and volume are doubled, what is the final temperature?
_____ °C

Answers

(a) The final temperature, when the pressure triples at constant volume, is 110.6 °C.

(b) The final temperature, when both the pressure and volume are doubled, is 219.3 °C.

To solve both parts of the question, we can use the combined gas law, which states that the ratio of pressure to temperature remains constant when volume is constant:

P1/T1 = P2/T2

Where:

P1 and P2 are the initial and final pressures

T1 and T2 are the initial and final temperatures

Given:

P1 = 5.80 atm (initial pressure)

T1 = 27.5 °C (initial temperature)

(a) When the pressure triples (P2 = 3 * P1) at constant volume:

P2 = 3 * 5.80 atm = 17.40 atm

We can rearrange the equation to solve for T2:

T2 = T1 * (P2 / P1)

Substituting the given values, we get:

T2 = 27.5 °C * (17.40 atm / 5.80 atm) = 110.6 °C

Therefore, the final temperature when the pressure triples is 110.6 °C.

(b) When both the pressure and volume are doubled:

P2 = 2 * P1 = 2 * 5.80 atm = 11.60 atm

We can again use the rearranged equation to solve for T2:

T2 = T1 * (P2 / P1)

Substituting the given values, we get:

T2 = 27.5 °C * (11.60 atm / 5.80 atm) = 55.0 °C

Therefore, the final temperature when both the pressure and volume are doubled is 55.0 °C.

To know more about pressure visit:

https://brainly.com/question/28012687

#SPJ11

A 17 kg curling stone traveling at 12.5 m/s [E] collides with another stone of the same mass. The collision is a glancing one. If the second stone is now traveling at 1.5 m/s [E25°N], calculate the velocity of the first stone after collision. 13 m/s [E6.8°S] 26 m/s [E18°N] 7.0 m/s [E1.4°N] 11 m/s [E3.3°S]

Answers

To solve this problem, we can analyze the conservation of momentum and the conservation of kinetic energy during the collision.

Let's break down the initial and final velocities of the stones into their x and y components for easier calculations. For the initial velocity of the first stone, we have:

Initial velocity of stone 1: v1 = 12.5 m/s [E]

Initial velocity of stone 2: v2 = 0 m/s [E]

The final velocity of the second stone is given as:

Final velocity of stone 2: vf2 = 1.5 m/s [E25°N]

To find the final velocity of the first stone (vf1), we need to calculate its x and y components separately. Let's assume the final velocity of the first stone has components vx1 and vy1.

Using the conservation of momentum, we know that the total momentum before the collision is equal to the total momentum after the collision. Since the masses of the stones are the same, we can write the equation:

(m1 * v1) + (m2 * v2) = (m1 * vx1) + (m2 * vf2)

Substituting the known values, we have:

(17 kg * 12.5 m/s) + (17 kg * 0 m/s) = (17 kg * vx1) + (17 kg * 1.5 m/s)

Simplifying the equation:

212.5 kg·m/s = 17 kg * vx1 + 25.5 kg·m/s

212.5 kg·m/s - 25.5 kg·m/s = 17 kg * vx1

187 kg·m/s = 17 kg * vx1

Dividing both sides by 17 kg:

vx1 = 11 m/s [E]

Now, we can use the conservation of kinetic energy to find the y-component of the final velocity of the first stone. Since the collision is glancing, the kinetic energy in the y-direction is conserved. We have:

(1/2) * m1 * v1^2 = (1/2) * m1 * vy1^2

Substituting the values:

(1/2) * 17 kg * (12.5 m/s)^2 = (1/2) * 17 kg * vy1^2

156.25 J = 8.5 kg * vy1^2

Dividing both sides by 8.5 kg:

vy1^2 = 18.3824

Taking the square root:

vy1 ≈ 4.286 m/s

Now we have the x and y components of the final velocity of the first stone. We can calculate the magnitude and direction using trigonometry:

Magnitude of vf1 = sqrt(vx1^2 + vy1^2) ≈ sqrt((11 m/s)^2 + (4.286 m/s)^2) ≈ 11.952 m/s

Direction of vf1 = atan(vy1 / vx1) ≈ atan(4.286 m/s / 11 m/s) ≈ atan(0.3896) ≈ 21.8°

The final velocity of the first stone after the collision is approximately 11.952 m/s [E21.8°N].

Among the given options, the closest value is 11 m/s [E3.3°S].

Learn more about momentum here

brainly.com/question/24030570

#SPJ11

A block of mass 2.20 kg is placed against a horizontal spring of constant k=765 N/m and pushed so the spring compresses by 0.0400 m. (a) What is the elastic potential energy of the block-spring system (in J)? ] (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s ) after leaving the spring. m/s A 42-kg pole vaulter running at 11 m/s vaults over the bar. Her speed when she is above the bar is 1.5 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine her altitude as she crosses the bar.

Answers

(a) To calculate the elastic potential energy of the block-spring system, we can use the formula:

Elastic potential energy (PE) = (1/2) * k * x^2

where k is the spring constant and x is the displacement of the spring.

Given that the mass of the block is 2.20 kg, the spring constant is 765 N/m, and the spring compresses by 0.0400 m, we can substitute these values into the formula to find the elastic potential energy:

PE = (1/2) * 765 N/m * (0.0400 m)^2

PE = 0.4872 J

Therefore, the elastic potential energy of the block-spring system is 0.4872 J.

(b) When the block is released and the surface is frictionless, the total mechanical energy of the system is conserved. This means that the sum of the kinetic energy (KE) and the potential energy (PE) remains constant.

Since the block starts from rest when leaving the spring, its initial potential energy is equal to the final kinetic energy:

PE = KE

Using the equation for elastic potential energy:

(1/2) * k * x^2 = (1/2) * m * v^2

where m is the mass of the block and v is its speed after leaving the spring.

Substituting the known values:

(1/2) * 765 N/m * (0.0400 m)^2 = (1/2) * 2.20 kg * v^2

Simplifying the equation:

0.4872 J = 1.10 kg * v^2

v^2 = 0.4434 m^2/s^2

Taking the square root:

v ≈ 0.666 m/s

Therefore, the block's speed after leaving the spring is approximately 0.666 m/s.

Regarding the second question about the pole vaulter, more information is needed to determine her altitude as she crosses the bar.

To know more about elastic potential energy click this link -

brainly.com/question/29311518

#SPJ11

A girl is wearing a cowgirl boot to a square dance. Estimate the pressure exerted on the dance floor by each heal
if the pointed heel has an area = 0.23 cm°2 and the cowgirl has a mass of 58.2-kg.

Answers

The pressure exerted on the dance floor by each heel of the cowgirl's boot is approximately 25,224 Pascal (Pa).

To estimate the pressure exerted on the dance floor by each heel, we can use the formula:

Pressure = Force / Area

We are given:

Area = 0.23 cm² (converted to square meters, 1 cm² = 0.0001 m²),

Mass = 58.2 kg (mass of the cowgirl).

We need to calculate the force exerted by the cowgirl's heel. The force can be determined using Newton's second law:

Force = mass * acceleration

Since the cowgirl is standing still on the dance floor, the acceleration is zero, and therefore the net force acting on her is zero. However, to calculate the pressure exerted on the dance floor, we need to consider the normal force exerted by the cowgirl on the floor.

The normal force is equal in magnitude and opposite in direction to the force exerted by the cowgirl's heel on the floor. Therefore, we can use the weight of the cowgirl as the force exerted by each heel.

Weight = mass * gravitational acceleration

Gravitational acceleration is approximately 9.8 m/s².

Weight = 58.2 kg * 9.8 m/s²

Now we can calculate the pressure:

Pressure = Force / Area

        = Weight / Area

Substituting the values:

Pressure = (58.2 kg * 9.8 m/s²) / 0.23 cm²

First, let's convert the area to square meters:

Area = 0.23 cm² * 0.0001 m²/cm²

Pressure = (58.2 kg * 9.8 m/s²) / (0.23 cm² * 0.0001 m²/cm²)

Calculating:

Pressure ≈ 25,224 Pa

Therefore, the pressure exerted on the dance floor by each heel of the cowgirl's boot is approximately 25,224 Pascal (Pa).

Learn more about Newton's second law

https://brainly.com/question/15280051

#SPJ11

Consider a parallel-plate capacitor with empty space between its plates, which are separated by a distance of 3 mm.
If the charge on the positive plate is 8 μC, and the electrical potential energy stored in this capacitor is 12 nJ, what is the magnitude of the electric field in the region between the plates?
Group of answer choices
4 V/m
6 V/m
3 V/m
1 V/m
2 V/m

Answers

The magnitude of the electric field in the region between the plates is 2 V/m (Option E).

The electrical potential energy (U) stored in a parallel-plate capacitor is given by the formula:

U = (1/2) × C × V²

The capacitance of a parallel-plate capacitor is given by the formula:

C = (ε₀ × A) / d

Where:

ε₀ is the permittivity of free space (ε₀ ≈ 8.85 x 10⁻¹² F/m)

A is the area of the plates

d is the separation distance between the plates

Given:

Separation distance (d) = 3 mm = 0.003 m

Charge on the positive plate (Q) = 8 μC = 8 x 10⁻⁶ C

Electrical potential energy (U) = 12 nJ = 12 x 10⁻⁹ J

First, we can calculate the capacitance (C) using the given values:

C = (ε₀ × A) / d

Next, we can rearrange the formula for electrical potential energy to solve for voltage (V):

U = (1/2) × C × V²

Substituting the known values:

12 x 10⁻⁹ J = (1/2) × C × V²

Now, we can solve for V:

V² = (2 × U) / C

Substituting the calculated value of capacitance (C):

V² = (2 × 12 x 10⁻⁹ J) / C

Finally, we can calculate the electric field (E) using the formula:

E = V / d

Substituting the calculated value of voltage (V) and separation distance (d):

E = V / 0.003 m

After calculating the values, the magnitude of the electric field in the region between the plates is approximately 2 V/m (option E).

Read more on Electric Potential Energy here: https://brainly.com/question/14306881

#SPJ11

Calculate (17.29 m + 2.3927 m) * 4.6 m to the correct number of significant figures

Answers

The correct answer for significant figures is e. 90.53 m².

To calculate the product of (17.29 m + 2.3927 m) and 4.6 m, we first perform the addition:

17.29 m + 2.3927 m = 19.6827 m

Now we multiply the result by 4.6 m:

19.6827 m × 4.6 m = 90.47122 m²

To determine the correct number of significant figures, we look at the original values. Both 17.29 m and 2.3927 m have four significant figures. The multiplication rule for significant figures states that the result should have the same number of significant figures as the least precise value involved.

In this case, 4.6 m has two significant figures, so the result should be rounded to two significant figures.

Rounding the result into two significant figures, we have:

90.47122 m² ≈ 90.47 m²

Therefore, the correct answer is e. 90.53 m²

The complete question should be:

Calculate (17.29 m + 2.3927 m) × 4.6 m to the correct number of significant figures.

a. 91 m²

b. 90.5 m²

c. 90.528 m²

d. 9 × 10¹ m²

e. 90.53 m²

To learn more about multiplication rule, Visit:

https://brainly.com/question/30340527

#SPJ11

Suppose that not all but only 50% of the neutrons were consumed in Big Bang Nucleosynthesis. What would the H:He mass ratio be?

Answers

The H:He mass ratio if only 50% of neutrons were used in Big Bang Nucleosynthesis will be 3:1.

Let us see how this conclusion was reached.

Big Bang Nucleosynthesis is a cosmological event in which the nuclei of helium, lithium, and deuterium were formed within a few seconds of the Big Bang. This event happened between 10 seconds and 20 minutes after the Big Bang and produced the elements that make up the universe. It is important to note that in this process, only some of the neutrons present were used. This is because most of the neutrons decayed into protons. This means that only about one neutron out of every seven was available to make heavier nuclei.

Suppose 7 neutrons were present during Big Bang Nucleosynthesis, and only 50% of them were used. Therefore, only 3.5 neutrons would have been used in the process. If we rounded that to 3 neutrons, the remaining neutrons would have decayed to form protons. This means that 6 protons and 3 neutrons would have combined to form helium-3 (2 protons and 1 neutron) and helium-4 (2 protons and 2 neutrons).

The H:He mass ratio would be calculated as follows:

For H, we have 2 protons, which is equivalent to a mass number of 2.

For He, we have 2 protons and 2 neutrons, which is equivalent to a mass number of 4.

Therefore, the H:He mass ratio is: 2:4, which is equivalent to 1:2, which can be further simplified to 3:1. Hence, the H:He mass ratio if only 50% of neutrons were used in Big Bang Nucleosynthesis would be 3:1.

Learn more about "Mass Ratio in Big Bang Nucleosynthesis" refer to the link : https://brainly.com/question/13517558

#SPJ11

The idea that force causes acceleration doesn’t seem strange. This and other ideas of Newtonian mechanics are consistent with our everyday experience. Why do the ideas of relativity seem strange? 1. The effects of relativity become apparent only at very high speeds very uncommon to everyday experience. 2. Earth’s rotation doesn’t let us observe relativity that applies to systems moving in straight trajectories. 3. The principles of relativity apply outside Earth. 4. For the effects of relativity to become apparent large masses are needed.

Answers

The ideas of relativity seem strange compared to Newtonian mechanics because their effects are only apparent at very high speeds, which are uncommon in everyday experience. Earth's rotation also limits our ability to observe relativity, as it applies to systems moving in straight trajectories. Additionally, the principles of relativity extend beyond Earth and apply in various scenarios. Lastly, the effects of relativity become more pronounced with large masses. These factors contribute to the perception that the ideas of relativity are unfamiliar and counterintuitive.

The principles of relativity, as formulated by Albert Einstein, can appear strange because their effects are most noticeable at speeds that are far beyond what we encounter in our daily lives. Relativity introduces concepts like time dilation and length contraction, which become significant at velocities approaching the speed of light. These speeds are not typically encountered by humans, making the effects of relativity seem abstract and distant from our everyday experiences.

Earth's rotation further complicates our ability to observe relativity's effects. Relativity primarily applies to systems moving in straight trajectories, while Earth's rotation introduces additional complexities due to its curved path. As a result, the apparent effects of relativity are not easily observable in our day-to-day lives.

Moreover, the principles of relativity extend beyond Earth and apply in various scenarios throughout the universe. The behavior of objects, the passage of time, and the properties of light are all influenced by relativity in a wide range of cosmic settings. This universality of relativity contributes to its seemingly strange nature, as it challenges our intuitive understanding based on Earth-bound experiences.

Lastly, the effects of relativity become more pronounced with large masses. Gravitational fields, which are described by general relativity, become significant around massive objects like stars and black holes. Consequently, the predictions of relativity become more evident in these extreme environments, where the warping of spacetime and the bending of light can be observed.

In summary, the ideas of relativity appear strange compared to Newtonian mechanics due to the combination of their effects being noticeable only at high speeds, limited observations caused by Earth's rotation, the universal application of relativity, and the requirement of large masses for the effects to become apparent. These factors contribute to the perception that relativity is unfamiliar and counterintuitive in our everyday experiences.

Learn more about Relativity here:

brainly.com/question/31293268

#SPJ11

1. A 0.6 kg ball is attached to a string and whirled around in a circle overhead. The string breaks in the force on it exceed 44 N. What is the maximum speed the ball can have one the radius of the circle is 1m?
2. A hand exerciser or utilize a coiled spring.
A force of 99.0N and is required to compress the spring by 0.0151 . Find the force (in N) needed to compress the spring by 0.0388m. (enter the magnitude)
------(N)
what is the value of the spring constant in (in N/m) for the unit?
----- N/m

Answers

1. The maximum speed the ball can have is approximately 8.56 m/s.

2. The spring constant is approximately 6559.60 N/m.

1. To find the maximum speed of the ball when the string breaks, we can equate the centripetal force with the maximum tension force that the string can withstand.

The centripetal force is given by:

F_c = m * v^2 / r,

where F_c is the centripetal force, m is the mass of the ball, v is the velocity, and r is the radius of the circle.

The maximum tension force is given as 44 N.

Setting F_c equal to the maximum tension force, we have:

44 N = (0.6 kg) * v^2 / (1 m).

Simplifying the equation, we find:

v^2 = (44 N * 1 m) / (0.6 kg) = 73.33 m^2/s^2.

Taking the square root of both sides, we get:

v = √(73.33 m^2/s^2) ≈ 8.56 m/s.

Therefore, the maximum speed the ball can have is approximately 8.56 m/s.

2. The spring constant, denoted by k, relates the force applied to the displacement of the spring. It is given by:

k = F / x,

where k is the spring constant, F is the force applied to the spring, and x is the displacement of the spring.

In this case, we are given the force F = 99.0 N and the displacement x = 0.0151 m. Plugging these values into the equation, we have:

k = 99.0 N / 0.0151 m ≈ 6559.60 N/m.

Therefore, the spring constant is approximately 6559.60 N/m.

To learn more about centripetal force

https://brainly.com/question/20905151

#SPJ11

A baq of suqar weighs 2 lbon Earth. What would it weigh in newtons on the Moon, where the free-fall acceleration is one-sixth that on Earth?

Answers

The bag of sugar would weigh approximately 1.482 Newtons on the Moon

To determine the weight of the bag of sugar on the Moon, we need to consider the difference in gravitational acceleration between the Earth and the Moon.

On Earth, the weight of an object is given by the formula:

Weight = mass * acceleration due to gravity

The weight of the bag of sugar on Earth is 2 lb (pounds), which we need to convert to mass in kilograms:

1 lb ≈ 0.4536 kg

So, the mass of the bag of sugar is approximately:

2 lb * 0.4536 kg/lb ≈ 0.9072 kg

On the Moon, the gravitational acceleration is one-sixth of that on Earth, which means:

Acceleration on the Moon = (1/6) * acceleration due to gravity on Earth

Plugging in the values:

Acceleration on the Moon = (1/6) * 9.81 m/s² ≈ 1.635 m/s²

Now, we can calculate the weight of the bag of sugar on the Moon:

Weight on the Moon = mass * acceleration on the Moon

Weight on the Moon = 0.9072 kg * 1.635 m/s²

Weight on the Moon ≈ 1.482 N

Therefore, The bag of sugar would weigh approximately 1.482 Newtons on the Moon.

Learn more about Newtons here:

https://brainly.in/question/5611862

#SPJ11

A radio signal is broadcast uniformly in all directions. The average energy density is at a distance d 0 ​ from the transmitter. Determine the average energy density at a distance 2d 0 ​ from the transmitter. (1/2) 2 (1/4) 4

Answers

The average energy density at a distance 2d0 from the transmitter is one-fourth of the average energy density at a distance d0 from the transmitter.

The average energy density of a radio signal is inversely proportional to the square of the distance from the transmitter. In this scenario, the average energy density at a distance 2d0 from the transmitter can be determined using the inverse square law.

According to the inverse square law, when the distance from the transmitter is doubled, the average energy density is reduced to one-fourth of its original value.

This can be explained as follows: Suppose the average energy density at a distance d0 from the transmitter is E. When we move to a distance 2d0, the area over which the signal is spread increases by a factor of [tex](2d0/d0)^{2}[/tex] = 4.

Since the total energy remains the same, the average energy density is distributed over four times the area, resulting in a reduction of the energy density to 1/4 of the original value.

Therefore, the average energy density at a distance 2d0 from the transmitter is (1/4) times the average energy density at a distance d0 from the transmitter.

To know more about radio signal, refer here:

https://brainly.com/question/31376600#

#SPJ11

If a sprinter runs a 200 m in 21.34 s, what is their average
velocity in m/s?

Answers

The average velocity of a sprinter who runs 200 m in 21.34 s is 9.37 m/s.

Here's how we can calculate it:

We know that average velocity is equal to displacement divided by time. In this case, the displacement is 200 m (since that's how far the sprinter ran) and the time is 21.34 s.

Therefore, we can write the formula as:

v = d/t

where:

v = average velocity

d = displacement

t = time

Now, we can substitute the values:

v = 200 m / 21.34 sv = 9.37 m/s

So the average velocity of the sprinter is 9.37 m/s.

Learn more about average velocity from the given link

https://brainly.com/question/24824545

#SPJ11

Question 5 Correcting for a disturbance, which has caused a rolling motion about the longitudinal axis would re-establish which of the following? O a Directional stability Ob Longitudinal stability c Lateral stability d Lateral stability

Answers

Correcting for a disturbance, which has caused a rolling motion about the longitudinal axis would re-establish Lateral stability.

What is stability? Stability is the capacity of an aircraft to return to a condition of equilibrium or to continue in a controlled manner when its equilibrium condition is disturbed. Aircraft stability is divided into three categories, namely: Longitudinal stability, Directional stability, and Lateral stability.

What is Longitudinal Stability? Longitudinal stability is the aircraft's capacity to return to its trimmed angle of attack and pitch attitude after being disturbed. The longitudinal axis is utilized to define it.

What is Directional Stability?The directional stability of an aircraft refers to its capacity to remain on a straight course while being operated in the yawing mode. The vertical axis is used to determine it.

What is Lateral Stability? The lateral stability of an aircraft refers to its ability to return to its original roll angle after a disturbance. The longitudinal axis is used to determine it.

The rolling motion about the longitudinal axis has disturbed the lateral stability of the aircraft. Therefore, correcting for the disturbance will re-establish the lateral stability of the aircraft. Therefore, the answer is option d: Lateral stability. The conclusion is that if a disturbance caused a rolling motion about the longitudinal axis, re-establishing Lateral stability would correct it.

to know more about Lateral stability visit:

brainly.com/question/31667027

#SPJ11

How much heat is needed to transform 1.0 kg g of ice at -30°C to liquid water at 25 "C? Note: assume specific heat of solid ice = 2220 J/kg K; heat of fusion=333 kJ/kg; use specific heat of water = 4186 J/kg-K

Answers

To calculate the amount of heat required to transform 1.0 kg of ice at -30°C to liquid water at 25°C, the following steps are necessary: To heat the ice from -30°C to 0°C, we'll need the following:Q1 = m x Cs x ΔT where m = 1.0 kg (mass of ice)Cs = 2220 J/kg-K (specific heat of ice)ΔT = 0°C - (-30°C) = 30°CQ1 = (1.0 kg) x (2220 J/kg-K) x (30°C)Q1 = 66600 Joules of heat.

To melt the ice at 0°C to liquid water at 0°C, we'll need the following:Q2 = m x Hf where m = 1.0 kg (mass of ice) Hf = 333 kJ/kg (heat of fusion)Q2 = (1.0 kg) x (333 kJ/kg)Q2 = 333000 Joules of heat. To heat the liquid water from 0°C to 25°C, we'll need the following:Q3 = m x Cw x ΔTwhere m = 1.0 kg (mass of water) Cw = 4186 J/kg-K (specific heat of water)ΔT = 25°C - 0°C = 25°CQ3 = (1.0 kg) x (4186 J/kg-K) x (25°C)Q3 = 104650 Joules of heat. The total amount of heat required to transform 1.0 kg of ice at -30°C to liquid water at 25°C is:Q = Q1 + Q2 + Q3Q = 66600 J + 333000 J + 104650 JQ = 504650 Joules. Therefore, 504650 Joules of heat is required to transform 1.0 kg of ice at -30°C to liquid water at 25°C.

To know more about specific heat visit

https://brainly.com/question/31608647

#SPJ11

A hypothetical atom has four distinct energy states. Assuming all transitions are possible, how many spectral lines this atom can produce ?

Answers

The hypothetical atom can produce 6 spectral lines.

The number of spectral lines an atom can produce is determined by the number of possible transitions between its energy states.

To find the number of transitions, we can use the formula for combinations:

n = (N * (N - 1)) / 2

where:

n is the number of transitions (spectral lines),

N is the number of distinct energy states.

In this case, the atom has four distinct energy states, so we can substitute N = 4 into the formula:

n = (4 * (4 - 1)) / 2

n = (4 * 3) / 2

n = 12 / 2

n = 6

Therefore, the hypothetical atom can produce 6 spectral lines.

Learn more about hypothetical atom from the given link

https://brainly.com/question/33128317

#SPJ11

Acar slows from 23.69 m/s to rest in 4.44 s. How far did it travel in this time?

Answers

A car slows from 23.69 m/s to rest in 4.44 s. It traveled a distance of 52.75 m in this time.

Displacement is the change in position of an object. It is a vector quantity, which means that it has both a magnitude and a direction. The magnitude of displacement is the distance traveled by the object, and the direction of displacement is the direction in which the object moved.

Given data

Initial velocity, u = 23.69 m/s

Final velocity, v = 0 m/s

Time, t = 4.44 s

The displacement of an object can be calculated using the formula below : s = (u+v)/2 ×t

where, s = displacement ; u = initial velocity ; v = final velocity ; t = time

Substitute the given values into the formula to obtain : s = (23.69+0)/2 ×4.44s = 52.75 m

Therefore, the car traveled a distance of 52.75 m in this time.

To learn more about displacement :

https://brainly.com/question/321442

#SPJ11

Estimate the required depth (ft) of flow of water over a straight drop spillway 14 ft in length to carry a runoff of 40,000 gpm. a. 1.88 b. 1.78 c. 1.68 d. 1.58

Answers

It is given that: Length of spillway = 14 ft, Discharge through spillway = 40,000 gpm.

We need to estimate the depth of flow of water over the spillway to carry a runoff of 40,000 gpm. Let, the depth of flow of water over the spillway be 'd' ft. The discharge through spillway can be calculated as: Discharge through spillway = Length of spillway × Width of flow × Velocity of flowgpm = ft × ft/s × 448.8 (1 gpm = 448.8 ft³/s)Therefore, Width of flow × Velocity of flow = gpm/ (Length of spillway × 448.8) Width of flow × Velocity of flow = 40,000/(14 × 448.8)Width of flow × Velocity of flow = 1.615 ft²/s.

The continuity equation states that the product of the area of the cross-section of the flow and the average velocity of the flow is constant. Mathematically ,A₁V₁ = A₂V₂Here, the area of the cross-section of the flow of water over the spillway is the product of the width and depth of flow of water over the spillway . Mathematically, A = Width of flow × Depth of flow And, velocity of the flow is given as: Velocity of flow = Q/A = 40,000/(Width of flow × Depth of flow)Hence,40,000/(Width of flow × Depth of flow) = Width of flow × Velocity of flow =Width of flow × Velocity of flow × Depth of flow = 40,000, Depth of flow = 40,000/(Width of flow × Velocity of flow)Depth of flow = 40,000/(1.615 × 1)Depth of flow = 24760.86 ft³/sTo convert cubic feet per second to cubic feet per minute, we multiply it by 60.

Hence, Flow rate in cubic feet per minute = 24760.86 × 60 = 1,485,651.6 ft³/min. Flow rate in cubic feet per minute is 1,485,651.6 ft³/min. Now, Flow rate = Width of flow × Depth of flow × Velocity of flow1,485,651.6 = Width of flow × Depth of flow × 1.615Depth of flow = 1.88 ft. The required depth of flow of water over a straight drop spillway 14 ft in length to carry a runoff of 40,000 gpm is 1.88 ft. Therefore, option a) 1.88 is correct.

Let's learn more about Depth:

https://brainly.com/question/28516504

#SPJ11

A tennis ball on Mars, where the acceleration due to gravity is 0.379 of a g and air resistance is negligible, is hit directly upward and returns to the same level 9.50 s later.
How high above its original point did the ball go?

Answers

The maximum height reached by the tennis ball above its original point is 168.8605 meters.

Here, we are going to find out how high a tennis ball would go above its original point if it's hit directly upward and returns to the same level 9.50 seconds later. The acceleration due to gravity on Mars is 0.379 of a g. To solve this problem, we need to use the kinematic equations of motion and the equation to calculate the maximum height reached by an object that is launched vertically upwards using the acceleration due to gravity.

Using kinematic equation, we have:

s = ut + (1/2)at²

Where:

s = height or displacement

u = initial velocity = 0 (the ball was hit directly upward)

a = acceleration due to gravity on Mars = 0.379 x 9.81 m/s² = 3.73259 m/s²t = time taken by the ball to reach the maximum height or displacement = 9.50 s

Substituting the given values, we have:s = (0 × 9.50) + (1/2) (3.73259) (9.50)²s = 168.8605 m

To know more about original point:

https://brainly.com/question/11524720


#SPJ11

A narrow beam of light with wavelengths from 450 nm to 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n = 1.533 to n = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of 37.0°. Part A What is the angular spread of the beam as it leaves the prism? Express your answer in degrees. VO ΑΣΦ Δθ = Submit Previous Answers Request Answer X Incorrect; Try Again

Answers

The angular spread of the beam as it leaves the prism is 3.28°.

Given: A narrow beam of light with wavelengths from λ1 = 450 nm to λ2 = 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n1 = 1.533 to n2 = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of θ1 = 37.0°.

We have to find the angular spread of the beam as it leaves the prism. Let's call it Δθ.

Using Snell's law, we can find the angle of refraction asθ2 = sin⁻¹(n1/n2)sinθ1 = sin⁻¹(1.533/1.517)sin37.0°θ2 ≈ 37.6°The total deviation produced by the prism can be found as δ = (θ1 - θ2).δ = 37.0° - 37.6°δ ≈ -0.6°We will consider the absolute value for δ, as the angle of deviation cannot be negative.δ = 0.6°For small angles, we can consider sinθ ≈ θ in radians.

Using this approximation, the angular spread can be found asΔθ = δ (λ2 - λ1)/(n2 - n1)cos(θ1 + δ/2)Δθ = (0.6°) (700 nm - 450 nm)/(1.517 - 1.533)cos(37.0° - 0.6°/2)Δθ ≈ 3.28°Therefore, the angular spread of the beam as it leaves the prism is 3.28°.

to know more about wavelengths here:

brainly.com/question/31143857

#SPJ11

Other Questions
Write an introduction for the following topic which includes, Background- introducing disease and risk factor Importance of disease Motivation for study Objective of studyLife Style (risk Factor): Cigarette smokingSub Risk Factor: Age, sex, educational level, type of employment, occupationally-related stress, social behaviour, year of study (as a student), etc. GP Monochromatic light of wavelength is incident on a pair of slits separated by 2.40x10 m and forms an interference pattern on a screen placed 1.80m from the slits. The first-order bright fringe is at a position ybright=4.52mm measured from the center of the central maximum. From this information, we wish to predict where the fringe for n=50 would be located. (e) Find the position of the 50 th-order bright fringe on the screen from Equation 37.5. quick answerpleaseA 1.00-mm-radius, cylindrical copper wire carries a current of 8.00 A. If each copper atom in the wire contributes one free conduction electron to the current, what is the drift velocity of the electr Each year Walton company purchases 20000 AC that cost $400 per unit. The cost of placing an order is $12, and the cost to hold an item for 1 year is 24 percent of the unit cost. a. Compute the average inventory level, assuming that the minimum inventory level is zero. b. Determine the total annual ordering and holding costs for the item if the EOQ is used. Question 2 1 pts Two particles are launched sequentially. Particle 1 is launched with speed 0.767c to the east. Particle 2 is launched with speed 0.506c to the north but at time 10.7ms later. After the second particle is launched, what is the speed of particle 2 as seen by particle 1 (as a fraction of c)? What crystalline phase is responsibe for the properties of stoneware ceramics that have been fired above 1150 degrees celsius? Titania Metakaolin Kaolin AlSi Spinel Mullite A college student sent a postcard to their parents with the message: S E N D + M O R E = M O N E Y If each letter represents a digit (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9), with different letters representing different digits and the same letter representing the same digit each time it occurs, how much money is being requested (SEND for the school tuition and MORE for other expenses)? What is a construct? What is a measure? Discuss different levels of measures and give examples in your description. Pick a construct and describe that construct in detail. Next, find two research articles from peer-reviewed journals studying that construct. You are to find actual research studies talking about the construct, not review articles for measures. (Please ask if you don't understand the difference.) Include the references for those articles and a link to the articles. What specific measures were used in each study? If you were conducting your own study, which one (if either) would you use and why? Explain why the put-call parity relationship above does not hold in the case of: American options on non-dividend-paying shares.European options on dividend-paying shares. Company X issues 3-month European call options on its own shares with a strike price of 120p.They are currently priced at 30 pence per share. The current share price is 123p and the current force of interest is = 6% pa . According to Locke, your consciousness: a. is something that would continue to exist in the original position and behind the "veil of ignoranceb. is entirely explainable in terms of objective physical facts, contrary to what Thomas Nagel holds c. is something extremely difficult to maintain during a Feser lecture d. could in theory come to exist in the soul or immaterial substance once occupied by someone else, such as Socrates In the example Thomas Reid uses when criticizing Locke: a. an old man remembers being a brave officer but does not remember being a young boy punished for stealingb. an old man behind a veil of ignorance" does not remember what his race, sex, class, religion, or social status arec. the self is an illusion, from which we need to be liberated d. the consciousness of a prince jumps to the body of a shoemaker and then comes back again Describe three real/fictional persons using the three categoriesin the triarchic theory of intelligence. (10 marks) 9. A 2.8kg piece of Al at 28.5C is placed in 1kg of water at 20C. Estimate the net change in entropy of the whole system. Determine the theoretical ratios of BBOD/COD 2 ,BOD 5/TOC, and TOC/COD for the compound C 8H 10N 2O4Given the value of the BOD 5first-order reaction rate constant is 0.3/d (base e). (Remarks: there is no oxidation of organic N conducted in the standard COD test) Arterial disease can occur in any part of the body. Choose a location for the disease process (i.e. heart, legs, brain) and discuss signs and symptoms the patient may be complaining of, how it might be diagnosed, how it may be evaluated, the role of ultrasound, and think of pitfalls the sonographer might encounter. The mass of an aeroplane is 910^3 kg. It carries 51 passengers with average mass of 60 kg at a constant speed in cruising flight, The ratio of lift to drag of the complete aircraft is 6 to 1 (|FL|/|FD|=6). What are the values of the lift, thrust, and drag forces? Use your free body diagrams and equations of equilibrium to solve this problem. In an experimental study, random error due to individual differences can be reduced if a(n) _____ is implemented. During a group session, a client who is depressed and tearful tells the group that his wife wants a divorce. Which of the following responses by the nurse is best?a."The loss of your wife is very upsetting for you."b." Your wife wants a divorce......."c."She will surely want to reconcile after you feel better."d."Please tell me about your wife." Which of the following statements is correct ?i. The slope of the security market line is measured by the market risk premium.ii. Two securities with the same stand-alone risk can have different betas.iii. Company-specific risk can be diversified away.iv. The market risk premium is affected by attitudes about risk.v. All of the above are correct. I need a 5-page report about AUSTRALIA in a word file type about:Cultural Considerations in- AUSTRALIA- towards establishing a research laboratory and manufacturing facility with newly developed technology that will reclaim carbon from burned fossil fuel emissions.Detail are: Consider all aspects of the countrys people, culture, and customs, and how they could affect the decision to locate your business operation in the country.Cultural ConsiderationsDedication and duty to FamilyHolidays and customsFormal or informal behaviorsFocus on group or individualitySocial structure and class systemSocial and government HierarchiesReligions and religious considerations of the workforceDominant LanguagesBusiness ethics and moral valuesHDI of countryThe life expectancy of local peopleCultural analysis (cultural determinants, cultural dimensions, norms) A small company wants to deploy a new system in the aws cloud but does not have anyone with the required aws skill set to perform the deployment. which aws service can help with this?