Answr: C
Step-by-step explanation:
...
Can some help simplify this question, with positive exponents
Answer:
4[tex]a^{9}[/tex][tex]b^{8}[/tex]
Step-by-step explanation:
[tex]\frac{8a^{6}b^{12} x 4a b^{3} }{8x^{-2}b^{7} }[/tex]
[tex]\frac{32a^{7} b^{15} }{8a^{-2} b^{7} }[/tex]
4[tex]a^{9}[/tex][tex]b^{8}[/tex]
Helping in the name of Jesus.
Consider the graph of the function f (2)
y
-2
L.
2-
-1-
。
-N
in
OA The domain ier &
= log z.
K
-4
Which is a feature of function g if(2)=-4 log(
-10
5
-
8
X
Answer: c
Step-by-step explanation: I'm pretty sure this is right
The first derivative of the function h is given by h'(x)= x^4 - x^3 + x. On which of the following intervals is the graph of h concave down?
The first derivative of the function h is given by [tex]h'(x)= x^4 - x^3 + x[/tex]. The graph of h is concave down at (−∞,−0.455). Therefore the correct answer is option D.
Given, the first derivative of the function,
[tex]h'(x)=x^{4} -x^{3} +x[/tex]
The second derivative of the function,
[tex]h''(x)=4x^{3} -3x^{2} +1[/tex]
When h''(x)<0, then the function is said to be concave down.
h′′(x)<0
=> [tex]4x^{3} -3x^{2} +1 < 0[/tex]
Finding the root of the equation,
[tex]f(x)=4x^{3} -3x^{2} +1=0[/tex]
This equation has only one real solution,
At x = -0.5, f(−0.5)<0
f(-0.5)<0
At x = -0.4, f(−0.4)>0
f(-0.4)>0
So according to the intermediate value theorem, there is a root in (-0.5, -0.4)
From the option, that root can be x = -0.455
So if the function concave down h''(x) < 0
Interval : (−∞,−0.455)
Therefore, the graph of h is concave down at (−∞,−0.455).
Know more about concave down graph,
https://brainly.com/question/29579792
#SPJ1
A loan in the amount of $14,800 was opened on January 22, at an interest rate of 9%. The maturity value of the loan is $15,799. What is the due date of the loan?
a. October 22nd
b. October 31st
c. September 22nd
d. September 30th
The due date of the loan in the amount of $14,800, opened on January 22, at an interest rate of 9% and with the maturity value of the loan as $15,799, is a. October 22nd.
How is the due date determined?The due date can be determined using an online finance calculator, which shows that it will take almost 9 months for the loan's due date.
I/Y (Interest per year) = 9%
PV (Present Value) = $14,800
PMT (Periodic Payment) = $0
FV (Future Value) = $15,799
Results:
Loan Period (N) = 8.742 months
≈ 9 months
Total Interest = $999.00
Thus, 9 months to January 22 falls on October 22nd.
Learn more about determining loan due dates at https://brainly.com/question/15848690.
#SPJ1
anyone there? im being timed help ASAPP
Answer:
(3[tex]x^{2}[/tex]+4)
Step-by-step explanation:
Add and subtract the second term to the expression and factor by grouping.
Claim: Fewer than 93% of adults have a cell phone. In a reputable poll of 1232 adults, 87% said that they have a cell phone. Find the value of the test statistic. Question content area bottom
The value of the test statistic is -8.2542.
We have,
p'= 0.87, p= 0.93 and n= 1232
We know, the equation for the Test statistic for a population proportion is mathematically given as
z = (p' - p)/ √p(1-p)/ n
So, z= (0.87 - 0.93)/ √0.93(1-0.93)/ 1232
z = (-0.06) / 0.007269
z = -8.2542
So, the value of the test statistic is -8.2542.
Learn more about Confidence interval here:
brainly.com/question/17097944
#SPJ1
having trouble with this!
Answer:you need to multiply and ur answer u would get is 64
Step-by-step explanation: multiply 4x16 and you get ur answer.
The question is in the picture
I NEED HELP ON THIS ASAP!!!
The table should be completed by writing each part of the exponential function as follows;
Geometric sequence Exponential function Mathematical meaning
gₙ f(x) dependent variable
g₁/r a coefficient of power
r b base of power
n x independent variable (exponent)
How to calculate the nth term of a geometric sequence?In Mathematics, the nth term of a geometric sequence can be calculated by using this mathematical expression:
aₙ = a₁rⁿ⁻¹
Where:
aₙ represents the nth term of a geometric sequence.r represents the common ratio or constant ratio.a₁ represents the first term of a geometric sequence.What is an exponential function?In Mathematics, an exponential function can be represented or modeled by using the following mathematical equation:
[tex]f(x) = a(b)^x[/tex]
Where:
a represent the base value, vertical intercept, or y-intercept.b represent the slope or rate of change.x represent time.By comparison, we have:
gₙ = f(x) (dependent variable)
g₁/r = a (coefficient of power)
r = b (base of power).
n = x (independent variable or exponent).
Read more on exponential functions here: https://brainly.com/question/30241796
#SPJ1
Whoever gets it right gets brainliest
The Surface Area of the cube that has a side length of 4 yards is calculated as: 96 square yards.
What is the Surface Area of a Cube?A cube has equal side length, and all its faces have the same area. Therefore, we have:
Surface Area of a cube = 6a² [note that a is the length of the side or edge of the cube].
Given the following:
Side length (a) = 4 yards
Plug in the value of a into the formula:
Surface Area of the cube = 6(4²)
Surface Area of the cube = 6(16)
Surface Area of the cube = 96 square yards.
Learn more about the Surface Area on:
https://brainly.com/question/28776132
#SPJ1
A rectangle has an area of 96 in2.One side is 8in.What is the other side length?
Answer:
11.5
Step-by-step explanation:
96 divided by 8 is 11.5
Answer:
12in
Step-by-step explanation:
If a rectangle has an area of 96 in²
and 1 side is 8in, then this means we have to find the other side length.
The formula for a rectangle area is:
[tex]A=lw[/tex]
We know the area and length so let's substitute:
96=8w
divide both sides by 8
12=w
The other side is 12in, hope this helps!
3 of 6
Find the value of the length a rounded to 1 DP
80
P=
27°
31m
The diagram is not drawn accurately.
m
x
Answer: x=5.9
Step-by-step explanation:
Use SOH CAH TOA to find full length then subtract to find x
full angle is 27+8=35
they gave adjacent and opposite to the angle so use TOA
tan 35 =[tex]\frac{y}{31}[/tex]
y=31 tan 35
y=21.71 this is the full length
now we do same for the shorter part lets call z
tan 27 = [tex]\frac{z}{31}[/tex]
z= 31 tan 27
z= 15.80 this is th bottom part of line
subtract to find x
x = y - z
x = 21.71 - 15.80
x=5.9
A car dealership increased the price of a certain car by13% . The original price was 32600.
Answer:
If the original price of the car was $32600 and the dealership increased the price by 13%, we can start by calculating the amount of the increase:
Increase = 13% of 32600
Increase = 0.13 x 32600
Increase = 4238
So the increase in price is $4238. To find the new price of the car, we need to add this increase to the original price:
New price = Original price + Increase
New price = 32600 + 4238
New price = 36838
Therefore, the new price of the car is $36,838.
Express 9/81 and -9/81 as powers of a rational number.
Step-by-step explanation:
9/81 = 3^2 / 3^4 = 3^ (2-4) = 3 ^-2
- 9/81 = - (3^-2 )
how many ways can you give 7 (identical) apples to your 4 favourite mathematics lecturers if each of them gets at most two apples
Thus, we get a total of 210 + 90 + 6 + 60 = 366 number of ways to distribute the 7 apples among the 4 lecturers.
To solve this problem, we can use a combination of techniques from combinatorics and basic arithmetic. Since each lecturer can receive at most two apples, we can break down the problem into several cases:
1. Each lecturer receives 2 apples: In this case, we simply need to distribute the 7 apples among the 4 lecturers in a way that each receives 2. This can be done in (7 choose 2) * (5 choose 2) * (3 choose 2) * (1 choose 2) = 210 ways.
2. Three lecturers receive 2 apples and one receives 1 apple: In this case, we need to choose one of the lecturers to receive 1 apple, and then distribute the remaining 6 apples among the other three in pairs. There are 4 ways to choose the lecturer who receives 1 apple, and then (6 choose 2) * (4 choose 2) * (2 choose 2) = 90 ways to distribute the remaining apples.
3. Two lecturers receive 2 apples each, and two receive 1 apple each: In this case, we need to choose two of the lecturers to receive 2 apples each, and then distribute the remaining 3 apples among the other two in a way that each receives 1. There are (4 choose 2) = 6 ways to choose the two lecturers who receive 2 apples, and then (3 choose 1) * (2 choose 1) = 6 ways to distribute the remaining apples.
4. One lecturer receives 2 apples, and three receive 1 apple each: In this case, we need to choose one of the lecturers to receive 2 apples, and then distribute the remaining 5 apples among the other three in a way that each receives 1. There are 4 ways to choose the lecturer who receives 2 apples, and then (5 choose 1) * (4 choose 1) * (3 choose 1) = 60 ways to distribute the remaining apples.
Adding up the results from each case, we get a total of 210 + 90 + 6 + 60 = 366 ways to distribute the 7 apples among the 4 lecturers.
Know more about the combination
https://brainly.com/question/28065038
#SPJ11
I need help with this assignment
The quality manager at newvis pharmaceutical company is certifying a new process that must produce 90 percent (or better) good product before certification can be completed. a sample of 49 containers from the process line is tested, and 87 percent are found to be good. formulate the appropriate hypotheses and test them using an alpha
If there is enough evidence to reject the null hypothesis and conclude that the new process produces less than 90% good product.
The appropriate hypotheses for this scenario would be:
Null hypothesis (H0): The true proportion of good product produced by the new process is equal to or less than 0.9.
Alternative hypothesis (Ha): The true proportion of good product produced by the new process is greater than 0.9.
To test these hypotheses, we can use a one-sample proportion test. The test statistic for this test is calculated using the formula:
z = (p - P0) / sqrt(P0 * (1 - P0) / n)
where:
- p is the proportion of good product in the sample (0.87 in this case)
- P0 is the hypothesized proportion of good product (0.9)
- n is the sample size (49)
Using an alpha level of 0.05, we can find the critical z-value from a standard normal distribution table. For a one-tailed test (since our alternative hypothesis is one-sided), the critical z-value is 1.645.
Calculating the test statistic using the formula above, we get:
z = (0.87 - 0.9) / sqrt(0.9 * 0.1 / 49) = -1.17
Since the calculated z-value (-1.17) is less than the critical z-value (1.645), we fail to reject the null hypothesis. This means that we do not have enough evidence to conclude that the true proportion of good product produced by the new process is greater than 0.9. The quality manager should investigate the process further to improve the proportion of good product before certifying it.
Let's formulate the appropriate hypotheses and test them using an alpha:
The quality manager at Newvis Pharmaceutical Company wants to ensure that the new process produces at least 90% good product. We can define the null hypothesis (H0) and the alternative hypothesis (H1) as follows:
H0: p ≥ 0.90 (The process produces 90% or more good product)
H1: p < 0.90 (The process produces less than 90% good product)
Now, let's test these hypotheses using an alpha (significance level), which is typically set at 0.05.
1. Calculate the test statistic using the sample proportion (p-hat) and sample size (n):
p-hat = 0.87 (87% of the 49 containers were good)
n = 49
2. Find the standard error of the sample proportion:
SE = √(p * (1-p) / n)
3. Calculate the z-score:
z = (p-hat - p) / SE
4. Compare the z-score to the critical value from the z-table corresponding to the chosen alpha level. If the z-score is less than the critical value, reject the null hypothesis in favor of the alternative hypothesis.
If you complete these steps, you can determine if there is enough evidence to reject the null hypothesis and conclude that the new process produces less than 90% good product.
Learn more about null hypothesis at: brainly.com/question/30821298
#SPJ11
the owner of prices limited claims that 75% of all the items in the store are less than $5. suppose that you check a random sample of 146 items in the store and find that 105 have prices less than $5. does this indicate that the percentage of items in the store costing less than $5 is different from 75%? use a 1% level of significance.
From hypothesis testing, the p-value is greater than the level of significance ( 0.01), so there's no sufficient evidence to reject the null hypothesis or support the owner's claim that 75% of all the items in the store are less than $5.
Hypothesis Testing for a Proportion : Hypothesis testing is a statistical way carried out to determine whether the null hypothesis should be rejected or whether it is not to be rejected. We have to owner'claim regarding the limited of prices all the items in the store. For this Set null and alternative hypotheses: [tex]H_o : P = 0.75 [/tex]
[tex]H_a : P ≠ 0.75 [/tex]
Calculate the test statistic value by z test,
[tex]z = \frac{ \hat p - p)}{\sqrt{ \frac{ p( 1 -p)}{n}}}[/tex]
Calculate the sample proportion, [tex]\hat p = \frac{105}{146}[/tex] = 0.72
then, [tex]z = \frac{ 0.72 - 0.75)}{\sqrt{ \frac{ 0.75( 1 -0.75)}{146}}}[/tex]
= - 0.84
Now, using the distribution table, the p-value for z = -0.84 is equals to the 0.401. As we see the p-value is greater than the level of significance, there's no sufficient evidence to reject the null hypothesis. aSo, the 75% of all the items in the store are less than $5.
For more information about hypothesis testing refer:
https://brainly.com/question/15980493
#SPJ4
if we increase a number by 15 percent, we get 356.5
The number which we increase by 15 percent gives 356.5 is the number
Given that,
if we increase a number by 15 percent, we get 356.5
Let x be the unknown number.
Then the given statement can be numerically written as,
x + (15% of x) = 356.5
x + (15/100) of x = 356.5
x + 0.15x = 356.5
1.15x = 356.5
Dividing both sides by 1.15, we get,
x = 356.5 / 1.15 = 310
Hence the unknown number is 310.
Learn more about Percentage here :
https://brainly.com/question/29764698
#SPJ1
BA
Enter an equation for the line of symmetry for the function defined by f(x)=-3x² +6x-9.
1
4
7
0
2
5
8
3
6
9
x
11
ojo
y
The equation for the line of symmetry for the function defined by f(x) =-3x² +6x - 9 is x = 1.
What is the equation for the line of symmetry for the given function?Given the function in the question;
f(x) = -3x² + 6x - 9
To find the equation for the line of symmetry, we need to use the formula:
x = -b/2a,
Where a and b are the coefficients of x² and x in the quadratic equation, respectively.
Given the function:
f(x)= -3x² +6x - 9
We have:
a = -3 and b = 6.
Hence, the equation for the line of symmetry is:
x = -b/2a
x = -6 / ( 2(-3))
x = -6/(-6)
x = 1
The equation for the line of symmetry is x = 1.
Learn more about axis of symmetry here:
https://brainly.com/question/29082142
#SPJ1
1. Find the following products using patterns
a. Starting from (-2)*(-4),find2*(-4)
The product of 2*(-4) by using a pattern is determined as - 8.
What is the product of the numbers?The product of 2*(-4) is calculated by using a pattern where we multiply the initial value by the desired factor and then divide by the original factor.
Starting from (-2)(-4), we can find 2(-4) as follows:
(-2)*(-4) = 8
To get to 2*(-4), we multiply the initial value (8) by 2 and then divide by the original factor (-2);
(8 x 2) / (-2) = -8
Learn more about product here: https://brainly.com/question/25922327
#SPJ4
A family has a unique pattern in their tile flooring on the patio. An image of one of the tiles is shown.
A quadrilateral with a line segment drawn from the bottom vertex and perpendicular to the top that is 5 centimeters. The right vertical side is labeled 3 centimeters. The portion of the top from the left vertex to the perpendicular segment is 5 centimeters. There is a horizontal segment from the left side that intersects the perpendicular vertical line segment and is labeled 6 centimeters.
What is the area of the tile shown?
53 cm2
45.5 cm2
42.5 cm2
36.5 cm2
Answer:
The area of the tile can be found by dividing it into two triangles and one trapezoid. The area of the trapezoid is (5+3)/2 x 6 = 24 cm^2. The area of the two triangles can be found using the height of 5 cm and the base of 6 cm and 2 cm, respectively. The total area is then 24 + (5 x 6)/2 + (5 x 2)/2 = 24 + 15 + 5 = 44 cm^2. Therefore, the closest answer choice is 42.5 cm^2. The answer is (C) 42.5 cm^2.
Step-by-step explanation:
gg
A. start fraction 3 over 2 end fraction
B. 1
C. –1
D. –start fraction 3 over 2 end fraction
HELP ME PLEASE
to get the slope of any straight line, we simply need two points off of it, let's use those two in the picture below
[tex](\stackrel{x_1}{-2}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{1}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{1}-\stackrel{y1}{5}}}{\underset{\textit{\large run}} {\underset{x_2}{2}-\underset{x_1}{(-2)}}} \implies \cfrac{-4}{2 +2} \implies \cfrac{ -4 }{ 4 } \implies - 1[/tex]
pls help these 2 questions
Step-by-step explanation:
15.
the area of the whole region is the sum of the area of the rectangle BCDE and the triangle ABE.
the area of a rectangle is
length × width
the area of a triangle is
baseline × height / 2
as a nice coincidence (that reduced the amount of work we have to do) the points of the rectangle are on the same x and y lines parallel to the x-axis and y-axis.
so, we can directly see, the distance BC = 5 (only the x- difference matters, as both have the same y- coordinate).
the distance CD = 4 (only the y- difference matters, as they have the same x-coordinate).
DE = 5, EB = 4. so, a true rectangle.
for the triangle we need the length of the baseline (EB = 4) and the length of the height to that baseline (FA = 2 from -2 to 0 of the x-values, and again they have the same y- coordinate).
so, the area of the rectangle is
5×4 = 20 units²
the area of the triangle is
4×2/2 = 4 units²
therefore, together, the shaded area is 20+4 = 24 units².
24.
there is no shaded region (all is white), but I assume we are taking about the inner regions with all sides being continuous lines.
that area is the area of the total rectangle AGDH minus the 2 right-angled triangles BGC and EFH.
the same formulas for the area of rectangle and a triangle apply as before.
right-angled triangle have a big advantage, as their legs can be used as baseline and corresponding height.
again, the points are sharing x- and y- coordinates, so that we only need to calculate the difference of either the x- or the y coordinates.
AG = 5
BG = 2
GC = 5
GD = 14 (6+8)
EH = 2
FH = 11 (6+5)
so, the area of the large rectangle is
14×5 = 70 units²
the area of BGC is
5×2/2 = 5 units²
the area of EFH is
11×2/2 = 11 units²
the total inner area is then
70 - 5 - 11 = 54 units²
mrs sigler put 7 gallons of cider into quart jars how many quart jars did she fill?
Answer:
28 quart jars
Step-by-step explanation:
We know that there are 4 quarts in a gallon.
7 gallons * 4 quarts/gallon = 28 quarts
She needs 28 quart jars
a fast food restaurant executive wishes to know how many fast food meals adults eat each week. they want to construct a 90% confidence interval with an error of no more than 0.06 . a consultant has informed them that a previous study found the mean to be 3 fast food meals per week and found the variance to be 1.69 . what is the minimum sample size required to create the specified confidence interval? round your answer up to the next integer.
The minimum sample size required to construct a 90% confidence interval with an error of no more than 0.06, given a population mean of 3 fast food meals per week and a population variance of 1.69, is 166.
To find the minimum sample size required to construct the specified confidence interval, we need to use the following formula
n = [Z² × σ²] / E²
where n is the sample size, Z is the Z-score for the desired level of confidence (90% in this case), σ² is the population variance, and E is the maximum error or margin of error.
First, we need to find the Z-score for the 90% confidence level using a standard normal distribution table or calculator. For a two-tailed test, the Z-score is 1.645.
Next, we plug in the given values
n = [1.645² × 1.69] / 0.06²
n = 165.82
We round up to the nearest whole number since we cannot have a fraction of a person in our sample
n = 166
Learn more about confidence interval here
brainly.com/question/29680703
#SPJ4
Find the sale price of the item. Round to two decimal places if necessary.
Original price: $76.00
Markdown: 32%
Answer:
32% off the original price = 68% of the original price. So the sale price is:
$76.00 × .68 = $51.68
HELP!!
The following table represents the highest educational attainment of all adult residents in a certain town. If a resident who is 40 or older is chosen at random what is the probability that hey have only completed highschool? ROUND YOUR ANSWER TO THE NEAREST TENTH!!
Answer: .1 or 12.2%
Step-by-step explanation:
probability is the part out of the whole
the part = those taken high school only and over 40 =388+1448=1836
the whole are all the people which is 15048
1836/15048=.1 or 12.2%
Please answer the question shown in the image below:
The distance between given point A and point B on the graph is 3√2 units.
Hence the correct option is (A).
We know that the distance between two points having coordinates (a, b) and (c, d) is = √((c - a)² + (d - b)²).
From the given graph we can see that,
the coordinates of the point A = (-2, -1)
the coordinates of the point B = (1, 2)
So the distance between the point A and point B is given by,
= √((1 - (-2))² + (2 - (-1))²)
= √((1 + 2)² + (2 + 1)²)
= √(3² + 3²)
= √(9 + 9)
= √18
= 3√2 units
Hence the correct option will be (A).
To know more about coordinates here
https://brainly.com/question/17206319
#SPJ1
the confidence interval formula for a sample size is the same as the sample size formula for a mean. true false
The statement "the confidence interval formula for a sample size is the same as the sample size formula for a mean" is false because they serve different purposes and cannot be used interchangeably.
The formula for a confidence interval depends on several factors, including the sample size, the level of confidence, and the standard deviation of the sample. The formula for a confidence interval for a mean is:
Confidence interval = sample mean ± (t-value) x (standard error)
where the t-value is based on the level of confidence and the degrees of freedom, and the standard error is the standard deviation of the sample divided by the square root of the sample size.
In summary, while both formulas involve the sample size and are used in statistical analysis, the confidence interval formula and the sample size formula for a mean are distinct and cannot be used interchangeably.
To know more about confidence interval here
https://brainly.com/question/24131141
#SPJ4