Answer:
No unless x is being used to define only elements of an integer set.
Step-by-step explanation:
No, not in general unless x is defined as a integer or a subset of the integers like the naturals, whole numbers....
Usually 6<=x<=10 means all real numbers between 6 and 10, inclusive. This means example that 6.6 or 2pi are in this set with infinitely other numbers that I can't name.
{6,7,8,9,10} just means the set containing the numbers 6,7,8,9,10 and that's only those 5 numbers.
Factorize : 4(x+y)^2 -9(x-y)^2
Answer:
Step-by-step explanation:
[tex]4(x+y)^{2} - 9(x-y)^{2}=4[x^{2}+2xy+y^{2}]-9[x^{2}-2xy+y^{2}]\\\\=4x^{2}+4*2xy + 4y^{2}-9x^{2}-2xy*(-9)+y^{2}*(-9)\\\\= 4x^{2}+8xy+4y^{2}-9x^{2}+18xy-9y^{2}\\\\= 4x^{2}-9x^{2} + 8xy + 18xy +4y^{2} - 9y^{2}\\\\= -5x^{2} + 26xy - 5y^{2}[/tex]
= -5x² + 25xy + xy - 5y²
= 5x(-x + 5y) - y(-x +5y)
= (-x + 5y)(5x - y)
Find the volume of the cement block in the figure shown.
Please help :)
9514 1404 393
Answer:
1240 in³
Step-by-step explanation:
The overall dimensions of the block are ...
10 in by 11 in by 17 in
The volume of that space is ...
V = LWH = (10 in)(11 in)(17 in) = 1870 in³
The volume of each of the three identical holes is similarly found:
V = (10 in)(3 in)(7 in) = 210 in³
Then the volume of the block is the overall volume less the volume of the three holes:
= 1870 in³ - 3(210 in³) = 1240 in³
you count after 2. What is the number?
4. When this 3-digit number is rounded to the
nearest hundred, it rounds to 200. Rounded
to the nearest ten, this number rounds to
200. The sum of the digits of this number
is 19. What is the number?
Answer:
I think the answer is 100 because nothing greater than 200 if its rounded hope this helped if not sorry
the area of triangle
11 Emilio makes metal fences.
He is making a fence using this design.
1.44 m
DO NOT WRITE IN THIS AREA
1.8 m
.
The fence will need
3 horizontal metal pieces of length 1.8m
2 tall metal pieces of length 1.44 m
5 medium metal pieces
6 short metal pieces as shown on the diagram.
The heights of the tall, medium and short metal pieces are in the ratio 9:8:7
.
How many metres of metal in total does Emilio need to make the fence?
Answer:
21.4 m
Step-by-step explanation:
Let x represent the sum of the tall metal, medium metal and short metal heights. Since the tall metal has a length of 1.44 m, and the ratio is in 9:8:7, hence:
(9/24) * x = 1.44
x = 3.84 m
For the medium metal pieces:
(8/24) * 3.84 = medium metal height
medium metal height = 1.28 m
For the short metal pieces:
(7/24) * 3.84 = short metal height
short metal height = 1.12 m
Total horizontal metal piece length = 3 * 1.8 m = 5.4 m
Total tall metal piece length = 2 * 1.44 m = 2.88 m
Total medium metal piece length = 5 * 1.28 m = 6.4 m
Total short metal piece length = 6 * 1.12 m = 6.72 m
Total length of metal = 5.4 + 2.88 + 6.4 + 6.72 = 21.4 m
work out the area of this shape
Answer:
1000
Step-by-step explanation:
according to byu idaho enrollment statisct there are 1200 femaile studnet here on campus during any given semester of those 3500 have serced a msion what is the probability that a radnoly selcted femal studne ton cmapus wil have served a mission g
Answer:
0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question:
1200 female students, out of them, 350 have served a mission. So
[tex]p = \frac{350}{1200} = 0.2917[/tex]
0.2917 = 29.17% probability that a randomly selected female student on campus will have served a mission.
integrate G(x,y,z)=yz over the surface of x+y+z=1 in the first octant.
Parameterize the surface (I'll call it S) by
r(u, v) = (1 - u) (1 - v) i + u (1 - v) j + v k
with 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
Take the normal vector to this surface to be
n = ∂r/∂u × ∂r/∂v = ((v - 1) i + (1 - v) j) × ((u - 1) i - u j + k) = (1 - v) (i + j + k)
with magnitude
||n|| = √3 (1 - v)
Then in the integral, we have
[tex]\displaystyle\iint_SG(x,y,z)\,\mathrm ds = \int_0^1\int_0^1 G((1-u)(1-v),u(1-v),v) \|\mathbf n\| \,\mathrm du\,\mathrm dv \\\\= \sqrt3 \int_0^1\int_0^1uv(1-v)^2\,\mathrm du\,\mathrm dv \\\\= \boxed{\frac1{8\sqrt3}}[/tex]
Alternatively, if you're not familiar with parameterizing surfaces, you can use the "projection" formula:
[tex]\displaystyle\iint_S G(x,y,z)\,\mathrm ds = \int_{S_{xy}}G(x,y,z)\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2}\,\mathrm dx\,\mathrm dy[/tex]
where I write [tex]S_{xy}[/tex] to mean the projection of the surface onto the (x, y)-plane, and z = f(x, y). We would then use
x + y + z = 1 ==> z = f(x, y) = 1 - x - y
and [tex]S_{xy}[/tex] is the triangle,
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 - x}
Then the integral becomes
[tex]\displaystyle\int_0^1\int_0^{1-x}y(1-x-y)\sqrt{1+(-1)^2+(-1)^2}\,\mathrm dy\,\mathrm dx \\\\= \sqrt3\int_0^1\int_0^{1-x} y(1-x-y)\,\mathrm dy\,\mathrm dx \\\\= \frac{\sqrt3}{24} \\\\= \boxed{\frac1{8\sqrt3}}[/tex]
what is the value of -2x²y³ when ×=2 and y=4?
Answer:
1024
Step-by-step explanation:
Given :-
x = 2 y = 4Value of -2x²y³
2x³ y³2 * (2)³ * (4)³2 * 8 * 64 1024Answer:
254
Step-by-step explanation:
^ <- this is the square sign
-2x^y^3
x=2
y=4
put x values in to x place and y value in to y place.
-2(2)^2(4)^3
Find the squares and - it with 2
-2(4)(64)
2-256=254
:. the value of -2x^2y^3 =254
That the answer.
Hope this is what you asked.
help me please i am struggle with this
What is the smallest 6-digit palindrome (a number that reads the same forward and
backward) divisible by 99?
Answer:
108801
Step-by-step explanation:
Well, you should first add 99 to 99999 which is 10098. And since it's not a palindrome you need to keep adding 99 to the sum until you reach one.
----------------------------------
This is with a calculator
Btw, I used calculator soup.com for it.
100089, 100188, 100287, 100386, 100485, 100584, 100683, 100782, 100881, 100980, 101079, 101178, 101277, 101376, 101475, 101574, 101673, 101772, 101871, 101970, 102069, 102168, 102267, 102366, 102465, 102564, 102663, 102762, 102861, 102960, 103059, 103158, 103257, 103356, 103455, 103554, 103653, 103752, 103851, 103950, 104049, 104148, 104247, 104346, 104445, 104544, 104643, 104742, 104841, 104940, 105039, 105138, 105237, 105336, 105435, 105534, 105633, 105732, 105831, 105930, 106029, 106128, 106227, 106326, 106425, 106524, 106623, 106722, 106821, 106920, 107019, 107118, 107217, 107316, 107415, 107514, 107613, 107712, 107811, 107910, 108009, 108108, 108207, 108306, 108405, 108504, 108603, 108702, 108801, 108900, 108999, 109098, 109197, 109296, 109395, 109494, 109593, 109692, 109791, 109890
Please help me to solve it
What are you trying to solve for?
[tex]824381 + 1654 = - 121[/tex]
A large on-demand, video streaming company is designing a large-scale survey to determine the mean amount of time corporate executives watch on-demand television. A small pilot survey of 10 executives indicated that the mean time per week is 12 hours, with a standard deviation of 3 hours. The estimate of the mean viewing time should be within 0.25 hour. The 95% level of confidence is to be used. How many executives should be surveyed? (Use z Distribution Table.)
How many executives should be surveyed? (Round the final answer to the next whole number.)
Answer:
554 executives should be surveyed.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 3 hours.
This means that [tex]\sigma = 3[/tex]
The 95% level of confidence is to be used. How many executives should be surveyed?
n executives should be surveyed, and n is found with [tex]M = 0.25[/tex]. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.25 = 1.96\frac{3}{\sqrt{n}}[/tex]
[tex]0.25\sqrt{n} = 1.96*3[/tex]
[tex]\sqrt{n} = \frac{1.96*3}{0.25}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96*3}{0.25})^2[/tex]
[tex]n = 553.2[/tex]
Rounding up:
554 executives should be surveyed.
PLEASE HELP I WILL MARK YOUR ANSWER AS BRAINLIEST PLEASE BE CORRECT BEFORE ANSWERING
LOOK AT THE BOTTOM
9514 1404 393
Answer:
y = 2
Step-by-step explanation:
The figure must be flipped top-to-bottom, so the line of reflection must be a horizontal line. Point B must be reflected to itself, so it is on the line of reflection. That means the line of reflection is y = 2.
__
You can draw the line of reflection using any two points that have y-coordinates of 2, for example, (0, 2) and (2, 2).
Please help plz plz plz plz help me i have been struggling in this class
Answer:
1. Tyler
2. 8.33
3. 8.5
4. Tyler
Step-by-step explanation:
this is just playing with the numbers. no complex math concepts.
Tyler's graph shows she reached 1 mile after 8 1/3 minutes (8 minutes and 20 seconds). that is 25/3 minutes.
according to Elena's equation she reached 1 mile (x=1) after 8.5 minutes. that is 8 1/2 minutes or 8 minutes and 30 seconds.
so, we see that Elena took more time (10 seconds longer) to run 1 mile, so Tyler was faster.
to generally compare the 2 we can write also Tyler's graph as function (like for Elena) :
8 1/3 = 8.333333....
y = 8.33x
but that is just FYI (not asked for here).
since Tyler was faster (and her graph also showed a straight line of time and distance up to 10 minutes and beyond, so, she did not slow down after the first mile), she also ran further after 10 minutes. that is the definition of "being faster" - to go further in the same amount of time.
Tyler needed 8.33 minutes per mile.
Elena needed 8.5 minutes per mile.
and so, Tyler was faster.
points 1 and 4 are directly coupled. they both express the same thing.
XYZ has side lengths that measure 20 centimeters each. Which of the
following best describes this type of triangle?
A. Obtuse triangle
B. Right triangle
C. Scalene triangle
D. Equilateral triangle
Answer:
it's and equilateral triangle because
all sides are equal
Answer:
equilateral triangle i have a math proffesor helping me
Step-by-step explanation:
I have a math proffesor helping me
2.
The height of a kicked football can be represented by the polynomial - 16+ + 22t+
3, where tis the time in seconds. Find the factored form of the polynomial.
-
5
A) (8t + 3)(-2t + 1)
OB) (-8t+ 3)(2t+ 1)
8
OC) (8t+ 1)(-2t + 3)
OD) (-8t + 1)(2t+ 3)
Two functions, A and B, are described as follows: Function A y = 9x + 4 Function B The rate of change is 3 and the y-intercept is 4. How much more is the rate of change of function A than the rate of change of function B?
2
3
6
9
Answer:
[tex]{ \tt{rate \: of \: change \: in \: A = 9}}[/tex]
Rate of change in function A is two times than that in function B
Pls help me someone this is annoying me
Answer:
They are both 42 cm
Step-by-step explanation:
the cost of 7 shirts is $63. find the cost of 5 shirts
1. $35
2. $45
3. $52
4. $70
what is the complete factorization of 8x^2-8x+2
Answer:
2x(4x-4+1)
Step-by-step explanation:
i hope it will help you
Answer:
x=1/2
Step-by-step explanation:
press the calculator
8x²-8x+2=0
x=1/2
min,x=1/2
min,y=0
Keiko, Chang, and Abdul sent a total of 109 text messages over their cell phones during the weekend. Keiko sent 7 fewer messages than Chang. Abdul sent 4
times as many messages as Keiko. How many messages did they each send?
9514 1404 393
Answer:
Keiko: 17Chang: 24Abdul: 68Step-by-step explanation:
Let c represent the number of messages sent by Chang. Then Keiko sent (c-7) messages, and Abdul sent 4(c-7) messages. The total number sent was ...
c + (c -7) +4(c -7) = 109
6c -35 = 109 . . . . . . . . . . simplify
6c = 144 . . . . . . . . . . . add 35
c = 24 . . . . . . . . . . . divide by 6
c-7 = 17
4(c-7) = 68
Keiko sent 17, Chang sent 24, and Abdul sent 68 text messages.
Estimate the student's walking pace, in steps per minute, at 3:20 p.m. by averaging the slopes of two secant lines from part (a). (Round your answer to the nearest integer.)
This question is incomplete, the complete question is;
A student bought a smart-watch that tracks the number of steps she walks throughout the day. The table shows the number of steps recorded (t) minutes after 3:00 pm on the first day she wore the watch.
t (min) 0 10 20 30 40
Steps 3,288 4,659 5,522 6,686 7,128
a) Find the slopes of the secant lines corresponding to the given intervals of t.
1) [ 0, 40 ]
11) [ 10, 20 ]
111) [ 20, 30 ]
b) Estimate the student's walking pace, in steps per minute, at 3:20 pm by averaging the slopes of two secant lines from part (a). (Round your answer to the nearest integer.)
Answer:
a)
1) for [ 0, 40 ], slope is 96
11) for [ 10, 20 ], slope is 86.3
111) for [ 20, 30 ], slope is 116.4
b) the student's walking pace is 101 per min
Step-by-step explanation:
Given the data in the question;
t (min) 0 10 20 30 40
Steps 3,288 4,659 5,522 6,686 7,128
SLOPE OF SECANT LINES
1) [ 0, 40 ]
slope = ( 7,128 - 3,288 ) / ( 40 - 0
= 3840 / 40 = 96
Hence slope is 96
11) [ 10, 20 ]
slope = ( 5,522 - 4,659 ) / ( 20 - 10 )
= 863 / 10 = 86.3
Hence slope is 86.3
111) [ 20, 30 ]
slope = ( 6,686 - 5,522 ) / ( 30 - 20 )
= 1164 / 10 = 116.4
Hence slope is 116.4
b)
Estimate the student's walking pace, in steps per minute, at 3:20 pm by averaging the slopes of two secant lines from part .
Since this is recorded after 3:00 pm
{ 3:20 - 3:00 = 20 }
so t = 20 min
so by average;
we have ( [ 10, 20 ] + [ 20, 30 ] ) /2
⇒ ( 86.3 + 116.4 ) / 2
= 202.7 /2
= 101.35 ≈ 101
Therefore, the student's walking pace is 101 per minutes
We have the number of emergency room admissions to SWTRHA hospital on 6 different Friday the 13ths along with the number of admissions to the same hospital on the previous Friday the 6th. Is there any difference between admissions on the 6th and the 13th. Conduct a depedent samples t-test to find out. What is the value of your t Stat
Answer:
Test statistic = - 2.71
Step-by-step explanation:
Table of the sample data is attached below :
Using a dependent sample t test :
H0 : μd = 0
H0 : μd ≠ 0
The difference in the 6th and 13th date data is :
Difference, d = -4, -6, -3, -1, 1, -7
The sample size, n = 6
The mean of d ; μd = Σd/ n = - 3.667
Standard deviation of difference, Sd = 3.011
The test statistic : μd/(Sd/√n)
Test statistic = - 3.33 / (3.011/√6)
Test statistic = - 3.33 / 1.2292356
Test statistic = - 2.709
Test statistic = - 2.71
In studying the sampling distribution of the mean, you were asked to list all the different possible samples from a small population and then find the mean
of each of them. Consider the following:
Personal phone calls received in the last three days by a new employee were 2. 4, and 7. Assume that samples of size 2 are randomly selected with replacement from
this population of three values
What different samples could be chosen? What would be their sample means?
O A. Possible samples 2-4, 2-74-2: 4-7, 7-2,7-4
Sample means: 3,45,55
O B. Possible samples: 2-2.2-4,2-74-2, 4-4 4-7,7-2,7-4.7-7
Sample means: 2, 3, 4, 4.5,55,7
OC. Possible samples: 2-4 2-7, 4-7
Sample means: 3.4,45
a
Q
rd
Larry deposits $15 a week into a savings account. His balance in his savings account grows by a constant percent rate.
True
False
Answer:
The answer is true
Step-by-step explanation:
find the exact value cos5pi/6
Answer:
[tex] - \frac{ \sqrt{3} }{2} [/tex]
Step-by-step explanation:
Unit circle
There is a bag filled with 3 blue and 5 red marbles.
A marble is taken at random from the bag, the colour is noted and then it is not replaced.
Another marble is taken at random.
What is the probability of getting 2 of the same colour?
JUST NEED THE ANSWER IN A FRACTION PLEASE
[tex]\frac{13}{28}[/tex]
Step-by-step explanation:Given:
Blue marbles: 3
Reb marbles: 5
Total marbles: 8
Two marbles are selected at random, one after the other with replacement.
Getting the same colour of marbles from the selection means the two marbles are both red or both blue.
(a) Probability of getting 2 marbles being red in colour
i. Probability of picking a red at the first selection:
Number of red marbles ÷ Total number of marbles
=> 5 ÷ 8 = [tex]\frac{5}{8}[/tex]
ii. Probability of picking a red at the second selection:
Number of remaining red marbles ÷ Total number of remaining marbles
Since after the first pick, the marble is not replaced, the remaining red marbles is 4 while the total number of remaining marbles is 7
=> 4 ÷ 7 = [tex]\frac{4}{7}[/tex]
iii. The probability of getting both marbles being red is the product of i and ii above. i.e
[tex]\frac{5}{8}[/tex] x [tex]\frac{4}{7}[/tex] = [tex]\frac{5}{14}[/tex]
(b) Probability of getting 2 marbles being blue in colour
i. Probability of picking a blue at the first selection:
Number of blue marbles ÷ Total number of marbles
=> 3 ÷ 8 = [tex]\frac{3}{8}[/tex]
ii. Probability of picking a blue at the second selection:
Number of remaining blue marbles ÷ Total number of remaining marbles
Since after the first pick, the marble is not replaced, the remaining blue marbles is 2 while the total number of remaining marbles is 7
=> 2 ÷ 7 = [tex]\frac{2}{7}[/tex]
iii. The probability of getting both marbles being blue is the product of i and ii above. i.e
[tex]\frac{3}{8}[/tex] x [tex]\frac{2}{7}[/tex] = [tex]\frac{3}{28}[/tex]
(c) Probability of getting 2 marbles of the same colour.
The probability of getting 2 marbles of same colour is the sum of the probability of getting both marbles of red colour and the probability of getting both marbles as blue colour. i.e The sum of a(iii) and b(iii)
[tex]\frac{5}{14}[/tex] + [tex]\frac{3}{28}[/tex] = [tex]\frac{13}{28}[/tex]
The probability of getting 2 of the same colour is [tex]\frac{13}{28}[/tex]
In a mid-size company, the distribution of the number of phone calls answered each day by each of the 12 receptionists is bell-shaped and has a mean of 47 and a standard deviation of 3. Using the empirical rule, what is the approximate percentage of daily phone calls numbering between 41 and 53? Do not enter the percent symbol.
-09
2 1 point
The amount of a radioactive substance y that remains after t years is given by the equation y = a (e)^kt, where a is the initial
amount present and k is the decay constant for the radioactive substance. If a = 100, y = 50, and k = -0.035, find t.
Answer:
19.80
Step-by-step explanation:
Given the equation :
y = a (e)^kt
If a = 100, y = 50, and k = -0.035, find t.
50 = 100(e)^(-0.035t)
50/100 = e^(-0.035t)
0.5 = e^-0.035t
Take the In
In(0.5) = - 0.035t
-0.693147 = - 0.035t
-0.693147 / - 0.035 = t
19.8042 = t
Hence, t = 19.80