Can you please solve it with steps and not send previous
solutions. Thank you.
y(S)= 1/sT+1[C*A - C*/q* . qAmax/Cmax d(s) + C*b - c*/q* . q Bmax/Cmax u(s)]

T= time constant
T= V/q*
C*A = 10
C*= (10^(-7)) - (10^(-14+7))
q*= 10^-2
qAmax= 25x10^-4
Cmax= 10^-6
C*B= -10
qBmax= 5x10^-3

Assuming d(s) = 0, specify the parameter values that needs to be changed for the speed of the response to increase. Explain and justify your reasoning using appropriate mathematical functions and step response plots?

Answers

Answer 1

To increase the speed of the response in the given system, we need to identify the parameters that influence the time constant (T) of the system. The time constant is a measure of how quickly the system responds to changes.

In the given equation, y(s) = 1/(sT + 1)[C*A - C*/q* . qAmax/Cmax d(s) + C*b - c*/q* . q Bmax/Cmax u(s)], the time constant (T) is present in the denominator term sT + 1. To increase the speed of the response, we need to decrease the value of T.

The time constant T is determined by the product of the capacitance (C) and the resistance (R), where T = RC. In this case, we can observe that T is directly proportional to the capacitance C.

To increase the speed of the response, we can decrease the capacitance value (C). This can be achieved by decreasing the values of C*A and Cmax in the equation. By reducing the capacitance, we reduce the time constant T, resulting in a faster response.

Mathematically, the time constant T can be expressed as T = (V/q*) * C. By reducing the value of C, the time constant T decreases, leading to a faster response.

To justify the reasoning, we can analyze the step response plots. The step response shows how the system output responds to a sudden change in the input. By decreasing the capacitance (C), we reduce the time constant and observe a steeper rise in the step response, indicating a faster response time. Conversely, increasing the capacitance would result in a slower response characterized by a more gradual rise in the step response.

Therefore, to increase the speed of the response, we need to decrease the capacitance values C*A and Cmax in the equation by adjusting the corresponding parameters.

Learn more about constant here:

https://brainly.com/question/29166386

#SPJ11


Related Questions

Find the radius of convergence and the interval of convergence in #19-20: 1 32n 19.) 2n=1(-1)^ (2x - 1)" 20.) Σ=0, -(x + 4)" 1.3.5....(2n-1) 21.) Find the radius of convergence of the series: En=1 3.6.9....(3n) 72 non n+1 ·xn

Answers

19. The radius of convergence is infinity, and the interval of convergence is (-∞, ∞).

20.  The radius of convergence is infinity, and the interval of convergence is (-∞, ∞).

21. The radius of convergence is 1/24, and the interval of convergence is (-∞, -1/24) ∪ (1/24, ∞).

To determine the radius of convergence and interval of convergence for the given power series, we can use the ratio test.

19.) For the series Σ 2n=1 (-1)^(2n - 1) / 32n:

Using the ratio test, we calculate the limit:

lim (n→∞) |((-1)^(2(n+1) - 1) / 32(n+1)) / ((-1)^(2n - 1) / 32n)|

Simplifying the expression:

lim (n→∞) |-1 / (32(n+1))|

Taking the absolute value and simplifying further:

lim (n→∞) 1 / (32(n+1))

The limit evaluates to 0 as n approaches infinity.

Since the limit is less than 1, the series converges for all values of x. Therefore, the radius of convergence is infinity, and the interval of convergence is (-∞, ∞).

20.) For the series Σ (-(x + 4))^n / (1·3·5·...·(2n - 1)):

Using the ratio test, we calculate the limit:

lim (n→∞) |((-(x + 4))^(n+1) / (1·3·5·...·(2(n+1) - 1))) / ((-(x + 4))^n / (1·3·5·...·(2n - 1)))|

Simplifying the expression:

lim (n→∞) |(-(x + 4))^(n+1) / (2n(2n + 1))|

Taking the absolute value and simplifying further:

lim (n→∞) |-(x + 4) / (2n + 1)|

The limit depends on the value of x. For the series to converge, the absolute value of -(x + 4) / (2n + 1) must be less than 1. This occurs when |x + 4| < 2n + 1.

To determine the interval of convergence, we set the inequality |x + 4| < 2n + 1 to be true:

-2n - 1 < x + 4 < 2n + 1

Simplifying:

-2n - 5 < x < 2n - 3

Since n can take any positive integer value, the interval of convergence depends on x. Therefore, the radius of convergence is infinity, and the interval of convergence is (-∞, ∞).

21.) For the series Σ (3·6·9·...·(3n)) / (72(n+1)·xn):

Using the ratio test, we calculate the limit:

lim (n→∞) |((3·6·9·...·(3(n+1))) / (72(n+2)·x^(n+1))) / ((3·6·9·...·(3n)) / (72(n+1)·xn))|

Simplifying the expression:

lim (n→∞) |(3(n+1)) / (72(n+2)x)|

Taking the absolute value and simplifying further:

lim (n→∞) (3(n+1)) / (72(n+2)|x|)

The limit evaluates to 3 / (72|x|) as n approaches infinity.

For the series to converge, the limit must be less than 1, which implies |x| > 1/24.

Therefore, the radius of convergence is 1/24, and the interval of convergence is (-∞, -1/24) ∪ (1/24, ∞).

To learn more about radius of convergence visit:

brainly.com/question/31770221

#SPJ11

Find the volume of the pyramid below.

Answers

The volume of the rectangular pyramid with a height of 6in, width of 2in and length of 4in is 16 cubic inches.

What is the volume of the pyramid?

A rectangular pyramid is a three-dimentional object with a rectangular shaped base and triangular shaped faces that correspond to each side of the base.

The volume of rectangular pyramid is expressed as;

V = (1/3) × l × w × h

From the image:

Length l = 4 in

Width w = 2 in

Height h = 6 in

Volume V = ?

Plug the given values into the above formula and solve for the volume.

V = (1/3) × l × w × h

V = (1/3) × 4 × 2 × 6

V = (1/3) × 48

V = 16 in³

Therefore, the volume is 16 cubic inches.

Learn more about volume of pyramids here: brainly.com/question/21308574

#SPJ1

Write in C++
Let l be a line in the x-y plane. If l is a vertical line, its
equation is x = a for some real number a. Suppose l is not a
vertical line and its slope is m. Then the equation of l is y =

Answers

To write a C++ program that handles the different cases of the equation of a line, you can use an if-else statement to check whether the line is vertical or not. Here's an example implementation:

```cpp

#include <iostream>

int main() {

   float m, a;

   std::cout << "Enter the slope of the line: ";

   std::cin >> m;

   

   if (m == 0) {

       std::cout << "The line is horizontal. The equation is y = c" << std::endl;

   }

   else if (std::isinf(m)) {

       std::cout << "The line is vertical. Enter the x-intercept: ";

       std::cin >> a;

       std::cout << "The equation of the line is x = " << a << std::endl;

   }

   else {

       std::cout << "The line is not vertical. Enter the y-intercept: ";

       std::cin >> a;

       std::cout << "The equation of the line is y = " << m << "x + " << a << std::endl;

   }

   

   return 0;

}

```

In this code, the user is prompted to enter the slope of the line. Then, it checks whether the slope is zero (indicating a horizontal line), infinite (indicating a vertical line), or neither. Depending on the case, the appropriate equation is displayed.

If the slope is zero, it means the line is horizontal, and the program outputs the equation as "y = c", where "c" represents the y-intercept.

If the slope is infinite (indicating a vertical line), the program prompts the user to enter the x-intercept and outputs the equation as "x = a", where "a" represents the x-intercept.

For any other slope value, the program prompts the user to enter the y-intercept and outputs the equation as "y = mx + a", where "m" is the slope entered by the user and "a" is the y-intercept.

Note: The code assumes that the user will enter valid numeric inputs. You may need to add additional error handling or input validation for robustness.

To know more about C++ program visit:

https://brainly.com/question/33180199

#SPJ11

Use the following data definitions for the next exercises: .data myBytes BYTE 10h.20h.30h.40h my Words WORD 3 DUP(?),2000h myString BYTE "ABCDE"

What will be the values of EDX EAX after the following instructions execute? mov edx. 100h mov eax.80000000h sub eax.90000000h sbb edx.

Answers

After executing the given instructions, the values of EDX and EAX will be EDX = 0FFFFFFFFh and EAX = -10000000h, respectively.

In the given code snippet, the following instructions are executed:

1. mov edx, 100h: This instruction moves the immediate value 100h into the EDX register. After this instruction, the value of EDX will be 100h.

2. mov eax, 80000000h: This instruction moves the immediate value 80000000h into the EAX register. After this instruction, the value of EAX will be 80000000h.

3. sub eax, 90000000h: This instruction subtracts the immediate value 90000000h from the EAX register. Since the subtraction operation results in a borrow, the Carry Flag (CF) will be set to 1. The result of the subtraction, in this case, will be a negative value. After this instruction, the value of EAX will be -10000000h.

4. sbb edx: This instruction performs a "subtract with borrow" operation on the EDX register. Since the Carry Flag (CF) is set due to the previous subtraction instruction, the value of EDX will be further decremented by 1. Therefore, the final value of EDX will be 0FFFFFFFFh (FFFFFFFFh represents -1 in two's complement).

In summary, after executing the given instructions, the values of EDX and EAX will be EDX = 0FFFFFFFFh and EAX = -10000000h, respectively.

Learn more about EDX

https://brainly.com/question/28874567

#SPJ11  

Evaluate the line integral under the given curve: c∫xzds,C:x=6t,y=32​t2,z=2t3,0⩽t⩽1

Answers

Required value of line integral is  2c/11(36 + 40√2 + 3√3) by using property of integration,

Given line integral is c∫xzds, where the curve is C: x = 6t, y = 32t^2, z = 2t^3, and 0 ≤ t ≤ 1.

To evaluate this line integral, we need to first find ds in terms of dt, then substitute the expressions of x, y, z, and ds into the given line integral.

So, let's start by finding ds in terms of dt:

ds² = dx² + dy² + dz²

ds² = (dx/dt)²dt² + (dy/dt)²dt² + (dz/dt)²dt²

ds² = (36t² + 128t^4 + 12t^4)dt²

ds = √(36t² + 128t^4 + 12t^4)dt

Now, we will substitute x, y, z, and ds into the given line integral:

c∫xzds = c∫(6t)(2t^3)√(36t² + 128t^4 + 12t^4)dt

c∫12t^4√(36t² + 128t^4 + 12t^4)dt

When we solve this integral, we get:

c∫12t^4√(36t² + 128t^4 + 12t^4)dt = 2c/11(36 + 40√2 + 3√3)

To know more about line integral ,visit:

https://brainly.in/question/26393860

#SPJ11

I need anyone to answer this question quickly.
6. Find the Z-transform and then compute the initial and final values \[ f(t)=1-0.7 e^{-t / 5}-0.3 e^{-t / 8} \]

Answers

The Z-transform of [tex]f(t)=1-0.7 e^(-t/5)-0.3 e^(-t/8) is F(z) = 1/(1-0.7z-1-0.3z-2),[/tex]the initial value of f(t) is 0 and the final value of f(t) is 1.

The Z-transform of[tex]f(t)=1-0.7 e^(-t/5)-0.3 e^(-t/8)[/tex]is given by:

F(z) = Z{f(t)} = 1/(1-0.7z-1-0.3z-2)

The initial value of f(t) is given by f(0) = 1 - 0.7 - 0.3 = 0.

The final value of f(t) is given by [tex]lim_{t- > inf} f(t) = lim_{z- > 1} (z-1)F(z)/z = (1-0.7-0.3)/(1-0.7-0.3) = 1.[/tex]

The Z-transform is a mathematical tool used for transforming discrete-time signals into the z-domain, which is a complex plane where the frequency response of the signal can be analyzed. The initial value of a signal is the value of the signal at time t=0, while the final value is the limit of the signal as t approaches infinity.

LEARN MORE ABOUT Z-transform here: brainly.com/question/32622869

#SPJ11

1. For bitcoin blockchain, explain why the block time is designed to be around 10 minutes. What happen if the block time is smaller, say, around 10 seconds?

2. For bitcoin blockchain, explain the solution for reducing the storage without reducing the accuracy performance.

Answers

The block time in the Bitcoin blockchain is designed to be 10 minutes for security, scalability, etc. If the block time is significantly reduced to around 10 seconds issues like security risks may occur.

1. a) Security: A longer block time provides more time for the network to reach a consensus on the validity of transactions. Each block contains a set of transactions that need to be verified and added to the blockchain. With a longer block time, there is more time for nodes in the network to validate transactions, reducing the chances of malicious actors manipulating the network.

b) Scalability: A longer block time allows more transactions to be included in each block. This helps in accommodating the increasing number of transactions over time without overwhelming the network. If the block time is too short, there would be a limit on the number of transactions that can be processed within a block, leading to congestion and higher transaction fees.

c) Blockchain size: Longer block times result in slower growth of the blockchain size. Each block added to the blockchain increases the storage requirements for running a full node. By having a longer block time, the growth rate of the blockchain is reduced, making it more manageable for participants to store and maintain a copy of the entire blockchain.

If the block time is significantly reduced to around 10 seconds, several issues may arise:

a) Security risks: A shorter block time reduces the time available for consensus, making the network more susceptible to double-spending attacks and other malicious activities. It becomes easier for an attacker to create competing blocks and disrupt the consensus process.

b) Forking and blockchain reorganization: With a shorter block time, there is a higher chance of multiple miners solving blocks simultaneously, leading to frequent forks and blockchain reorganizations. This can result in a less stable and reliable blockchain, making it harder for participants to trust the confirmed transactions.

c) Network congestion: A shorter block time increases the frequency of block creation, which may lead to network congestion and longer confirmation times for transactions. It becomes more challenging to prioritize and include a significant number of transactions within each block, potentially causing delays and increased transaction fees.

2. To reduce storage requirements without compromising accuracy performance in the Bitcoin blockchain, a solution called "pruning" is employed.

Pruning involves discarding older blockchain data while still maintaining the integrity and validity of the blockchain. Instead of storing the entire transaction history from the genesis block, a pruned node only keeps a subset of the blockchain data necessary to validate new transactions.

It helps reduce the storage burden for nodes while ensuring that they can still contribute to the security and validation of the blockchain. It enables nodes with limited storage capacity to participate in the network without sacrificing the accuracy and reliability of the Bitcoin blockchain.

Learn more about bitcoin blockchain here:

https://brainly.com/question/32587030

#SPJ11

Find the minimum distance from the point (8, 0, 9) to the plane x - y + z = 4. (Hint: To simplify the computations, minimize the square of the distance.)

Answers

Given:A point is (8, 0, 9) and Plane equation is x - y + z = 4. The minimum distance from the point (8, 0, 9) to the plane x - y + z = 4.We know that the shortest distance from a point to a plane is along the perpendicular.

Let the point P(8, 0, 9) and the plane is x - y + z = 4. Then a normal vector n to the plane is given by the coefficients of x, y and z of the plane equation, i.e., n = (1, -1, 1).Therefore, the equation of the plane can be written as (r - a).n = 4, where r = (x, y, z) and a = (0, 0, 4) is any point on the plane.Substituting the values, we have (r - a).n

[tex]= ((x-8), y, (z-9)).(1, -1, 1) = (x-8) - y + (z-9) = 4So, (x-8) - y + (z-9) = 4x - y + z - 21 = 0[/tex]

Now, the distance from the point P to the plane can be given by:Distance d =  |(P - a).n| / |n|where |n| = [tex]√(1^2 + (-1)^2 + 1^2) = √3Then, d = |(8, 0, 9) - (0, 0, 4)).(1, -1, 1)| / √3= |(8, 0, 5)).(1, -1, 1)| / √3= |8(1) + 0(-1) + 5(1)| / √3= 13 /[/tex]√3 Since the denominator √3 is less than 2, then the numerator is greater than 13*2=26. This means that d > 26. Hence the minimum distance from the point (8, 0, 9) to the plane x - y + z = 4 is greater than 26 or more than 100.

To know more about minimum visit:

https://brainly.com/question/21426575

#SPJ11

Find an equation for the tangent to the curve at the given point.
f(x) = 2√x -x + 9, (4,9)
o y = -1/2x + 11
o y = 1/2x - 11
o y =-1/2x + 9
o y = 9

Answers

The equation for the tangent to the curve at the given point is:y = -1/2x + 11 Therefore, the answer is y = -1/2x + 11.

Given: f(x)

= 2√x -x + 9, (4,9)The slope of the tangent to a curve is given by the derivative of the curve. Hence, the first step to finding the equation of the tangent to the curve f(x)

= 2√x -x + 9 at the given point (4, 9) is to find the derivative of the curve.f(x)

= 2√x -x + 9 Differentiate f(x) using the product and chain rule:  f'(x)

= 2(1/2√x) - 1 + 0

= 1/√x - 1 The slope of the tangent to the curve at (4, 9) is therefore:f'(4)

= 1/√4 - 1

= 1/2 - 1

= -1/2 The equation of the tangent to the curve at the point (4, 9) is:y - 9

= -1/2(x - 4)Multiplying through by -2 gives:-2y + 18

= x - 4 Rearranging the equation gives:x + 2y

= 22 .The equation for the tangent to the curve at the given point is:y

= -1/2x + 11 Therefore, the answer is y

= -1/2x + 11.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

Find an equation of the sphere that passes through the point (6,3,−3) and has center (3,6,3).

Answers

The equation of the sphere that passes through the point (6,3,−3) and has center (3,6,3) is (x-3)²+(y-6)²+(z-3)²=27.

The equation of the sphere in the standard form is: (x-a)²+(y-b)²+(z-c)²=r²where (a,b,c) is the center of the sphere and r is the radius of the sphere. We are given that the center of the sphere is (3,6,3), so a=3, b=6, and c=3. Let's find the radius of the sphere. The point (6,3,-3) lies on the sphere. So, the distance between this point and the center of the sphere is equal to the radius of the sphere.Using the distance formula, we get:r = √[(6-3)²+(3-6)²+(-3-3)²]= √[3²+(-3)²+6²]= √54= 3√6The equation of the sphere is therefore:(x-3)²+(y-6)²+(z-3)² = (3√6)²= 27

Learn more about standard form here:

https://brainly.com/question/25094938

#SPJ11

Let r(t) = 2t^2i+tj+1/2t^2k.
(a) Find the unit tangent vector T(t) and T(3).
(b) Find the principal unit normal vector N(t) and N(3).
(c) Find the tangential and normal components of acceleration, a_T and a_N for t = 3.
(d) Find the curvature.

Answers

(a) To find the unit tangent vector T(t), we differentiate r(t) with respect to t and normalize the resulting vector. We have r'(t) = 4ti + j + tk. The magnitude of r'(t) is √(16t^2 + 1 + t^2), so the unit tangent vector T(t) is given by T(t) = (4ti + j + tk) / √(16t^2 + 1 + t^2). To find T(3), substitute t = 3 into the expression for T(t).

(b) The principal unit normal vector N(t) is obtained by differentiating T(t) with respect to t, dividing by its magnitude, and negating the result. N(t) = (-4t / √(16t^2 + 1 + t^2))i + (1 / √(16t^2 + 1 + t^2))j + (t / √(16t^2 + 1 + t^2))k. To find N(3), substitute t = 3 into the expression for N(t).

(c) To find the tangential and normal components of acceleration at t = 3, we differentiate T(t) and N(t) with respect to t, and then evaluate them at t = 3. The tangential component a_T(t) is given by a_T(t) = T'(t) · T(t), and the normal component a_N(t) is given by a_N(t) = T'(t) · N(t). Substitute t = 3 into these expressions to find a_T and a_N.

(d) The curvature of the curve is given by the formula κ(t) = |T'(t)| / |r'(t)|. Differentiate T(t) with respect to t to find T'(t), and substitute it along with r'(t) into the curvature formula. Evaluate the expression at t = 3 to find the curvature.

For more information on tangential vector visit: brainly.com/question/31481178

#SPJ11

Find the eccentricity of the ellipse. Then find the ellipse's foci and directrices.
6x^2 + 5y^2 = 30
The eccentricity of the ellipse is _____
(Type an exact answer, using radicals as needed.)
The ellipse's foci are_____
(Type ordered pairs. Use a comma to separate answers as needed.)
Choose the correct equations of the directrices.
O A. y = ± 30
O B. y = ±5
O C. x = ±6
O D. y = ±6

Answers

The correct equations of the directrices for the given ellipse are:

O B. y = ±5

To find the eccentricity of the ellipse given by the equation 6x^2 + 5y^2 = 30, we need to first rewrite the equation in standard form.

Divide both sides of the equation by 30 to get:

x^2/5 + y^2/6 = 1

The equation is now in the standard form of an ellipse

(x-h)^2/a^2 + (y-k)^2/b^2 = 1

Where (h, k) represents the center of the ellipse, and 'a' and 'b' represent the semi-major and semi-minor axes lengths, respectively.

Comparing the equation of the given ellipse to the standard form, we can determine the values of 'a' and 'b':

a^2 = 5

-> a = √5

b^2 = 6

-> b = √6

The eccentricity (e) of the ellipse can be calculated using the formula:

e = √(1 - b^2/a^2

Substituting the values of 'a' and 'b' into the formula:

e = √(1 - 6/5)

= √(5/5 - 6/5)

= √(-1/5)

= i√(1/5)

So the eccentricity of the ellipse is i√(1/5).

To find the foci of the ellipse, we can use the relationship between the semi-major axis 'a', the semi-minor axis 'b', and the distance 'c' from the center to the foci:

c = √(a^2 - b^2)

Substituting the values of 'a' and 'b' into the formula:

c = √(5 - 6)

= √(-1)

= i

The foci are located at a distance of 'c' from the center along the major axis. Since the center is (h, k) = (0, 0), the foci will have coordinates (±c, 0):

Foci: (±i, 0)

Now let's find the directrices of the ellipse. The directrices are lines perpendicular to the major axis and equidistant from the center. The distance from the center to the directrices is given by:

d = a/e

Substituting the values of 'a' and 'e' into the formula:

d = √5 / (i√(1/5))

= √5 * √(5/1)

= √(5 * 5)

= 5

The directrices are parallel to the minor axis and located at a distance of 'd' from the center. Since the center is (h, k) = (0, 0), the equations of the directrices will be:

y = ±d

Therefore, the correct equations of the directrices for the given ellipse are:

O B. y = ±5

To know more about ellipse visit

https://brainly.com/question/3480131

#SPJ11

what is the slope of the line that passes through the points (9,4) and (3,9) ? write you answer in simplest form

Answers

The slope of the line passing through the points (9, 4) and (3, 9) is 5/(-6).

To find the slope of the line that passes through the points (9, 4) and (3, 9), we can use the slope formula:

m = (y2 - y1) / (x2 - x1)

Let's substitute the coordinates of the given points into the formula:

m = (9 - 4) / (3 - 9)

Simplifying the numerator and denominator, we have:

m = 5 / (-6)

To simplify the fraction further, we can divide both the numerator and denominator by their greatest common divisor, which is 1:

m = 5 / -6

Therefore, the slope of the line passing through the points (9, 4) and (3, 9) is 5/(-6).

It is worth noting that the negative sign in the slope indicates that the line is sloping downwards from left to right. The magnitude of the slope, 5/6, represents the rate at which the line is ascending or descending. In this case, for every 6 units of horizontal change (from 3 to 9), there is a corresponding 5 units of vertical change (from 9 to 4), resulting in a slope of 5/6.

for more such question on slope visit

https://brainly.com/question/16949303

#SPJ8

If a price-demand equation is solved for p, then price is expressed as p=g(x) and x becomes the independent variable. In this case, it can be shown that the elasticity of demand is given by E(x)=g(x)/x g’(x). Use the price-demand equation below to find the values of x for which demand is elastic and for which demand is inelastic.

p=g(x)=450−0.9x

Demand is elastic for all x in the interval ______(Type your answer in interval notation.)

Answers

Demand is elastic for all x in the interval (-[tex]\infty[/tex], 250).

To determine the values of x for which demand is elastic, we need to find the interval where the elasticity of demand, E(x), is greater than 1.

Given the price-demand equation p = g(x) = 450 - 0.9x, we can calculate the derivative of g(x) with respect to x:

g'(x) = -0.9.

Now, let's substitute the values into the elasticity of demand equation:

E(x) = g(x) / (x * g'(x)) = (450 - 0.9x) / (x * -0.9) = -(450 - 0.9x) / (0.9x).

To find the interval where demand is elastic, we need to find the values of x that make E(x) > 1:

-(450 - 0.9x) / (0.9x) > 1.

We can simplify the inequality:

-(450 - 0.9x) > 0.9x.

Expanding and rearranging:

450 - 0.9x > 0.9x.

Now, solving for x:

450 > 1.8x,

x < 450 / 1.8,

x < 250.

Therefore, demand is elastic for all x in the interval (-[tex]\infty[/tex], 250).

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

Given the demand function q(p) = 150 – p^2 with domain 0 ≤ p ≤ √150
(a) Find the Price Elasticity of Demand function, E(p).
(b) Find ∣E(p)∣.
(c) When is ∣E(p)∣=1 ?
(d) When is price Inelastic?

Answers

(a) The Price Elasticity of Demand function, E(p), can be found by differentiating the demand function with respect to price and multiplying it by the ratio of price to quantity.

(b) ∣E(p)∣ is the absolute value of the Price Elasticity of Demand function.

(c) ∣E(p)∣=1 when the Price Elasticity of Demand is equal to 1, indicating unit elasticity.

(d) Price is inelastic when the absolute value of the Price Elasticity of Demand is less than 1, indicating a relatively low responsiveness of quantity demanded to price changes.

Explanation:

(a) To find the Price Elasticity of Demand function, E(p), we need to differentiate the demand function q(p) = 150 - p^2 with respect to price, p. Differentiating q(p) with respect to p gives us q'(p) = -2p. Then, multiplying q'(p) by the ratio of price to quantity, we have E(p) = (p/q) * q'(p) = (p/(150 - p^2)) * (-2p).

(b) ∣E(p)∣ represents the absolute value of the Price Elasticity of Demand function. In this case, it is the absolute value of (p/(150 - p^2)) * (-2p), which simplifies to 2p^2 / (p^2 - 150).

(c) To find when ∣E(p)∣ = 1, we set the absolute value of the Price Elasticity of Demand function equal to 1 and solve for p. So, |(p/(150 - p^2)) * (-2p)| = 1. This equation can be rearranged to |2p^2| = |(p^2 - 150)|. Since the absolute value of a squared term is always positive, we can simplify this equation to 2p^2 = p^2 - 150. Solving for p, we find p = ±√150.

(d) Price is considered inelastic when the absolute value of the Price Elasticity of Demand is less than 1. So, for |E(p)| < 1, we need 2p^2 / (p^2 - 150) < 1. Multiplying both sides by (p^2 - 150), we get 2p^2 < p^2 - 150. Simplifying further, we have p^2 > 150. Taking the square root of both sides, we find p > √150. Therefore, when price is greater than the square root of 150, the demand is considered price inelastic.

To know more about integral, refer to the link below:

brainly.com/question/14502499#

#SPJ11

Solve this in python.
QUESTION2: Solve the initial value problem: \( d y / d x=2 x, y(0)=2 \).

Answers

To solve the initial value problem  [tex]dy/dx = 2x[/tex] with the initial condition y(0)=2 in Python, we can use an appropriate numerical method, such as Euler's method or the built-in function odeint from the scipy.integrate module.

Here's an example code snippet in Python that solves the given initial value problem using Euler's method:

import numpy as np

import matplotlib.pyplot as plt

def f(x, y):

   return 2*x

def euler_method(f, x0, y0, h, num_steps):

   x = np.zeros(num_steps+1)

   y = np.zeros(num_steps+1)

   x[0] = x0

   y[0] = y0

   for i in range(num_steps):

       y[i+1] = y[i] + h * f(x[i], y[i])

       x[i+1] = x[i] + h

   return x, y

x0 = 0

y0 = 2

h = 0.1

num_steps = 10

x, y = euler_method(f, x0, y0, h, num_steps)

plt.plot(x, y)

plt.xlabel('x')

plt.ylabel('y')

plt.title('Solution of dy/dx = 2x')

plt.show()

In this code, we define the function f(x, y) that represents the right-hand side of the differential equation. Then, we implement the Euler's method in the euler_method function, which takes the function f, the initial values x0 and y0, the step size h, and the number of steps num_steps as inputs. The method iteratively calculates the values of x and y using the Euler's method formula. Finally, we plot the solution using matplotlib.pyplot. Running the code will generate a plot showing the solution of the initial value problem dy/dx = 2x with y(0)=2 over the specified range of x-values.

Learn more about Euler's method here:

https://brainly.com/question/33227556

#SPJ11

How long will it take for an investment of $8,000 to triple if the investment earns interest at the rate of 5%/year compounded daily? (Round your answer to one decimal place.)

Answers

It will take approximately 47.1 years for an investment of $8,000 to triple if the investment earns interest at the rate of 5%/year compounded daily.

To solve the given question, we will use the formula for compound interest which is given below:

A=P(1+r/n)^nt Where,

P = Principal or initial investment

A = Final amount

T = Time period

r = Rate of interest

n = Number of times the interest is compounded per year In the given question, the initial investment is $8,000, the rate of interest is 5% per year compounded daily.To find out how long it will take for the investment to triple, we need to calculate the time it takes for the final amount to become 3 times the initial investment.we can say that;

A = 3P = 3 × $8,000 = $24,000 We will substitute the given values in the formula: A = P(1 + r/n)^(nt)A = $8,000 (1 + 0.05/365)^(365t) Now we will take the natural logarithm on both sides to solve for t.

ln(A) = ln(P(1 + r/n)^(nt))

ln(A) = ln(P) + ln(1 + r/n)^(nt)

ln(A) = ln(P) + tln(1 + r/n)

ln(A/P) = tln(1 + r/n)t = ln(A/P) / ln(1 + r/n)t = ln($24,000/$8,000) / ln(1 + 0.05/365)t ≈ 47.1

Therefore, it will take approximately 47.1 years for an investment of $8,000 to triple if the investment earns interest at the rate of 5%/year compounded daily.The compound interest formula A=P(1+r/n)^nt can be used to solve this question. We have initial investment as $8,000 and interest rate of 5%/year compounded daily. We need to calculate the time taken to reach the triple of initial investment. Therefore, we need to find out when the final amount will become 3 times the initial investment.

To know more about earning visit:

https://brainly.com/question/21219294

#SPJ11

_____ of an erp software product often involves comprehensive scorecards and vendor product demos.

Answers

selecting an ERP software product is a critical process for companies, and it involves a rigorous evaluation of different vendors and software products. an ERP software product often involves comprehensive scorecards and vendor product demos to evaluate different criteria such as functionality, usability, customization, and scalability.

an ERP software product often involves comprehensive scorecards and vendor product demos.ERP software products are essential in the running of businesses today. They help businesses automate their operations and streamline processes, which makes them more efficient and effective. When selecting an ERP software product, companies go through a rigorous selection process that involves many stages.

The first stage is the evaluation stage. During this stage, the company evaluates different vendors and ERP software products.In evaluating different vendors and ERP software products, the company looks at different factors such as the cost, functionality, scalability, and vendor reputation. The company also looks at different criteria such as the software's ability to integrate with existing systems, user-friendliness, and customization. The company then evaluates the ERP software product by looking at the different features, modules, and functionalities that it offers.

an ERP software product often involves comprehensive scorecards and vendor product demos. Scorecards are used to evaluate different criteria such as functionality, usability, and customization. Vendor product demos are used to demonstrate the different features, modules, and functionalities of the software product. A comprehensive scorecard includes an evaluation of different criteria such as the software's ability to integrate with existing systems, user-friendliness, customization, and scalability.

To know more about ERP software Visit:

https://brainly.com/question/32220268

#SPJ11

The polynomial
f(x) = −x^5+3x^4−2x^3−2x^2+3x−1
has a stationary point at x=1. This is because
f^(1)(1)= ________
Calculate the higher derivatives:
f^(2)(1)= _____
f^(3)(1)= ______
f^(4)(1)= ______
So the smallest positive integer n > 1 for which f^(n)(1)≠0 is
n = _____
Hence the function has a______ at x=1.

Answers

The polynomial f(x) = −x^5+3x^4−2x^3−2x^2+3x−1 has a minimum point at x=1. The first derivative of the polynomial is f'(x) = −5x^4 + 12x^3 - 6x^2 - 4x + 3. Setting f'(x) = 0 and solving for x, we get x = 1. This means that x = 1 is a critical point of the function.

The higher derivatives of the polynomial are f''(x) = -20x^3 + 36x^2 - 12x - 4, f'''(x) = -60x^2 + 72x - 12, and f''''(x) = -120x + 72. Note that f''''(x) ≠ 0 for any value of x. This means that the smallest positive integer n > 1 for which f^(n)(1)≠0 is n = 4.

Therefore, the function has a minimum point at x=1.

To learn more about polynomial click here : brainly.com/question/11536910

#SPJ11

roblem 9.001.a: Inductor for ovedamped response Determine a suitable value of L. (You must provide an answer before moving on to the next part.) The value of L is greater than H. Assume L=13 H and write the equation for the voltage vacross the resistor if it is known that (0)=9 V and dv/dt=o=2 V/s. s-¹,C=[ The value of the voltage across the resistor vg() is AeBt+CeDtv, where A B= and D=

Answers

In problem 9.001.a, we are asked to determine a suitable value for the inductance L in an over-damped response circuit.


The given information states that L must be greater than H, and we assume L = 13 H for this problem. Additionally, we are asked to write the equation for the voltage across the resistor if it is known that v(0) = 9 V and dv/dt = 2 V/s. The equation for the voltage across the resistor (vg(t)) is given by Ae^(Bt) + Ce^(Dt)v. In order to determine the values of A, B, and D, we need to consider the given initial conditions and the characteristics of an over-damped response.

In an over-damped response, the circuit settles to its final value without any oscillation. This means that the system is not critically damped and has two distinct real roots. The general solution for an over-damped response can be written as vg(t) = Ae^(-αt) + Be^(-βt), where α and β are positive real numbers. To find the values of A, B, and D, we can use the initial conditions. Given that v(0) = 9 V, we substitute t = 0 into the equation: vg(0) = A + B = 9 V.

Next, we consider the derivative of the voltage across the resistor. Given that dv/dt = 2 V/s, we differentiate the general solution with respect to time: d(vg(t))/dt = -αAe^(-αt) - βBe^(-βt). Substituting t = 0 into the equation: d(vg(0))/dt = -αA - βB = 2 V/s. Since we assume L = 13 H and the equation involves the exponential function, we cannot determine the exact values of A, B, and D without additional information or equations relating to the circuit components.


Learn more about exponential here: brainly.com/question/17161065

#SPJ11

According to a flyer created by Broadway Party Rental. Com, their 18-inch helium balloons fly.

on average, for 32 hours. You purchase a SRS of 50 18-inch helium balloons from this

company and record how long they fly. You would like to know if the actual mean flight time

of all balloons differs from the advertised 32 hours

Answers

Conduct a hypothesis test to compare the sample mean flight time of the 50 balloons to the advertised mean of 32 hours to determine if there is a significant difference.

To determine if the actual mean flight time of the balloons differs from the advertised 32 hours, you can conduct a hypothesis test. Set up the null hypothesis (H0) as the mean flight time equals 32 hours, and the alternative hypothesis (Ha) as the mean flight time is not equal to 32 hours. Use the sample mean and standard deviation from the 50 balloons to calculate the test statistic (e.g., t-test or z-test) and compare it to the critical value or p-value threshold. If the test statistic falls in the rejection region (i.e., it is statistically significant), you can conclude that there is a significant difference between the actual mean flight time and the advertised 32 hours.

learn more about significant difference here:

https://brainly.com/question/29621890

#SPJ11

A fair 20-sided die is rolled repeatedly, until a gambler decides to stop. The gambler pays $1 per roll, and receives the amount shown on the die when the gambler stops (e.g., if the die is rolled 7 times and the gambler decides to stop then, with an 18 as the value of the last roll, then the net payo↵ is $18 $7 = $11). Suppose the gambler uses the following strategy: keep rolling until a value of m or greater is obtained, and then stop (where m is a fixed integer between 1 and 20). (a) What is the expected net payoff? (b) Use R or other software to find the optimal value of m.

Answers

The expected net payoff E(m) is equal to m + 10.5 and the optimal value of m is 20.

To calculate the expected net payoff, we need to determine the probabilities of stopping at each value from 1 to 20 and calculate the corresponding payoff for each case.

Let's denote the expected net payoff as E(m), where m is the threshold value at which the gambler decides to stop.

(a) To calculate the expected net payoff E(m), we sum the probabilities of stopping at each value multiplied by the payoff for that value.

E(m) = (1/20) * m + (1/20) * (m + 1) + (1/20) * (m + 2) + ... + (1/20) * 20

Simplifying the equation:

E(m) = (1/20) * (m + (m + 1) + (m + 2) + ... + 20)

E(m) = (1/20) * (20 * m + (1 + 2 + ... + 20))

E(m) = (1/20) * (20 * m + (20 * (20 + 1)) / 2)

E(m) = (1/20) * (20 * m + 210)

E(m) = m + 10.5

Therefore, the expected net payoff E(m) is equal to m + 10.5.

(b) To find the optimal value of m, we need to maximize the expected net payoff E(m).

Since E(m) = m + 10.5, we can see that the expected net payoff is linearly increasing with m.

Therefore, the optimal value of m would be the maximum possible value, which is 20.

Hence, the optimal value of m is 20.

To learn more about expected net payoff visit:

brainly.com/question/30429228

#SPJ11

Question 3 2 pts A widget factory produces n widgets in t hours of a single day. The number of widgets the factory produces is given by the formula n(t) = 10,000t - 25t2, 0≤t≤9. The cost, c, in dollars of producing n widgets is given by the formula c(n) = 2040 + 1.74n. Find the cost c as a function of time t that the factory is producing widgets.
A) c(t) = 2040 + 17,400t - 43.5t²
B) c(t) = 2045 +17,400t - 42.5t²
C) c(t) = 2045 +17,480t - 42.5t²
D) c(t) = 2040 + 17,480t - 43.5t²

Answers

Option A. Answer: A) c(t) = 2040 + 17,400t - 43.5t².Given that a widget factory produces n widgets in t hours of a single day. The number of widgets the factory produces is given by the formula,n(t) = 10,000t - 25t², 0 ≤ t ≤ 9

and the cost, c, in dollars of producing n widgets is given by the formula c(n) = 2040 + 1.74n.

We need to find the cost c as a function of time t that the factory is producing widgets.

To find the cost c as a function of time t that the factory is producing widgets, we substitute n(t) in the formula of c(n) as follows;

c(t) = 2040 + 1.74 × [n(t)]c(t)

= 2040 + 1.74 × [10000t - 25t²]c(t)

= 2040 + 17400t - 43.5t²

Hence, the cost c as a function of time t that the factory is producing widgets is

c(t) = 2040 + 17,400t - 43.5t²,

which is option A. Answer: A) c(t) = 2040 + 17,400t - 43.5t².

To know more about factory produces visit:

https://brainly.com/question/29698347

#SPJ11

7.2. A discrete-time signal \( x[n] \) has \( z \)-transform \[ X(z)=\frac{z}{8 z^{2}-2 z-1} \] Determine the \( z \)-transform \( V(z) \) of the following signals:
\( v[n]=x[n] * x[n] \)

Answers

The z-transform of the signal v[n] = x[n] * x[n] is given by: V(z) = X(z)^2 = \frac{z^2}{(8z^2 - 2z - 1)^2}. The z-transform of the product of two signals is the product of the z-transforms of the individual signals.

In this case, the z-transform of x[n] is given by X(z). Therefore, the z-transform of v[n] = x[n] * x[n] is given by: V(z) = X(z)^2 = \frac{z^2}{(8z^2 - 2z - 1)^2}

The z-transform of a discrete-time signal is a mathematical function that represents the signal in the frequency domain. The z-transform can be used to analyze the properties of a signal, such as its frequency response and its stability. The product of two z-transforms is the z-transform of the product of the two signals. This can be shown using the following equation:

X(z) * Y(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} * \sum_{n=-\infty}^{\infty} y[n] z^{-n} = \sum_{n=-\infty}^{\infty} (x[n] y[n]) z^{-n} = Z(z)

where Z(z) is the z-transform of the signal z[n] = x[n] * y[n].

To learn more about z-transform click here : brainly.com/question/32622869

#SPJ11

5.5.4 (TST) - Systems of Linear Equations

Answers

Answer:

I dont see a

Step-by-step explanation:

Weighted least squares (WLS) estimation should only be used when _____.

a.
the error term in a regression model has a constant variance.

b.
the functional form of the (non-constant) error variance is known.

c.
the independent variables in a regression model are correlated.

d.
the dependent variable in a regression model is binary.

e.
when the form of heteroskedasticity is unknown.

Answers

The correct answer is e. Weighted least squares (WLS) estimation should be used when the form of heteroskedasticity is unknown. Heteroskedasticity refers to the situation where the variance of the error term in a regression model is not constant across all levels of the independent variables.

In such cases, using ordinary least squares (OLS) estimation, which assumes constant variance, may result in inefficient and biased parameter estimates. WLS estimation allows for the incorporation of weights that reflect the varying levels of uncertainty or volatility in the error term across different observations. By assigning higher weights to observations with lower variance and lower weights to observations with higher variance, WLS estimation accounts for the heteroskedasticity and provides more efficient and unbiased estimates of the regression coefficients. Therefore, when the form of heteroskedasticity is unknown and there is reason to believe that the variance of the error term may differ across observations, WLS estimation is an appropriate technique to address this issue.

Learn more about WLS estimation here: brainly.com/question/32464326

#SPJ11

1 10 A NO 0 1 1 0 A = and T = 1 0 A -1 HA 0 0 1 1 Find the general solution of the system of equations x' = Ax.
You may use that 1 0 2 HOO HOO THAT = 0 0 O O O

Answers

The general solution of the system of equations x' = Ax is x = [0, 0].

To find the general solution of the system of equations x' = Ax, where A is the given matrix, we can follow these steps:

Find the eigenvalues of matrix A by solving the characteristic equation:

det(A - λI) = 0

where I is the identity matrix and λ is the eigenvalue.

Let's calculate the characteristic equation:

| 1 - λ 1 |

| 0 - λ |

(1 - λ)(-λ) - 1 = 0

λ^2 - λ - 1 = 0

Using the quadratic formula, we find the eigenvalues:

λ = (1 ± √5) / 2

The eigenvalues are (1 + √5) / 2 and (1 - √5) / 2.

Find the corresponding eigenvectors for each eigenvalue.

For λ = (1 + √5) / 2:

Let's solve the equation (A - λI) * v = 0 to find the eigenvector v.

| 1 - (1 + √5) / 2 1 |

| 0 - (1 + √5) / 2 |

Simplifying:

| -√5 / 2 1 |

| 0 -√5 / 2 |

Solving the system of equations:

(-√5 / 2) * x + y = 0

(-√5 / 2) * y = 0

From the second equation, we have y = 0.

Substituting y = 0 into the first equation, we have (-√5 / 2) * x = 0, which gives x = 0.

So, the eigenvector corresponding to λ = (1 + √5) / 2 is v1 = [0, 0].

For λ = (1 - √5) / 2:

Let's solve the equation (A - λI) * v = 0 to find the eigenvector v.

| 1 - (1 - √5) / 2 1 |

| 0 - (1 - √5) / 2 |

Simplifying:

| √5 / 2 1 |

| 0 √5 / 2 |

Solving the system of equations:

(√5 / 2) * x + y = 0

(√5 / 2) * y = 0

From the second equation, we have y = 0.

Substituting y = 0 into the first equation, we have (√5 / 2) * x = 0, which gives x = 0.

So, the eigenvector corresponding to λ = (1 - √5) / 2 is v2 = [0, 0].

Write the general solution of the system.

Since both eigenvectors are [0, 0], the general solution of the system is x = [0, 0] for all t.

Therefore, the general solution of the system of equations x' = Ax is x = [0, 0].

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

1 Refiact JKL. over the \( x \)-ails. Fecord the eoard nates of the imoge beiow. 2. Wrìe en algebrais representolion for tha rafiector. B The toble repeesents the bcation of QRST pefore and efter a r

Answers

The coordinates of the reflected image of JKL over the x-axis are:

J'(-5, 7), K'(-3, 2), and L'(-2, 3).

To reflect a point over the x-axis, we keep the x-coordinate the same and change the sign of the y-coordinate.

Given the points J(-5, -7), K(-3, -2), and L(-2, -3), let's reflect each point over the x-axis to find their images:

J'(-5, 7): The x-coordinate remains the same, and the y-coordinate changes its sign from -7 to 7.

K'(-3, 2): The x-coordinate remains the same, and the y-coordinate changes its sign from -2 to 2.

L'(-2, 3): The x-coordinate remains the same, and the y-coordinate changes its sign from -3 to 3.

Therefore, the coordinates of the reflected image of JKL over the x-axis are:

J'(-5, 7), K'(-3, 2), and L'(-2, 3).

Learn more about Reflection here:

https://brainly.com/question/15487308

#SPJ4

Y=tan ( cos ( pi t)+. 5)+2


Estimate the total area under this curve on the interval [0, 12] with a Riemann sum using 36 equal subdivisions and circumscribed rectangles. Hint: use symmetry to make this problem easier

Answers

The estimated total area under the curve is approximately 58.628, calculated using a Riemann sum with 36 equal subdivisions and circumscribed rectangles.

By leveraging symmetry, we can simplify the problem and calculate the area of half the interval [0, 6] instead.

To estimate the total area, we divide the interval [0, 12] into 36 equal subdivisions, resulting in a subinterval width of 1/3. Since the function exhibits symmetry around the y-axis, we can focus on calculating the area for the first half of the interval, [0, 6].

We evaluate the function at the right endpoints of each subdivision and construct circumscribed rectangles. For each subdivision, we find the maximum value of the function within that interval and multiply it by the width of the subdivision to get the area of the rectangle.

Using this approach, we calculate the area for each rectangle in the first half of the interval and sum them up. Finally, we double the result to account for the symmetry of the function.

The estimated total area under the curve is approximately 58.628.

learn more about rectangles here:

https://brainly.com/question/29123947

#SPJ11

Answer: The answer is 86.634

Suppose f(x)=7x2+C, where C is any real number. Then the expression
f(6+h)−f(6) //h
can be written in the form Ah+B(6), where A and B are constants.
Find:
(a) A=
(b) B=
(c) f′(6)=

Answers

The expression f(6+h)−f(6) / h, where f(x) = 7x^2 + C, can be written in the form Ah + B(6), where A and B are constants. To find A and B, we need to evaluate the expression and determine the coefficients of h and 6.

To find A and B, we first calculate f(6+h) and f(6) separately:

f(6+h) = 7(6+h)^2 + C = 7(36 + 12h + h^2) + C = 252 + 84h + 7h^2 + C

f(6) = 7(6)^2 + C = 7(36) + C = 252 + C

Now, we substitute these values into the expression:

f(6+h)−f(6) / h = (252 + 84h + 7h^2 + C - (252 + C)) / h

Simplifying, we get:

f(6+h)−f(6) / h = (84h + 7h^2) / h = 84 + 7h

Comparing this expression with Ah + B(6), we can see that A = 7 and B = 84. Therefore:

(a) A = 7 (b) B = 84

To find f'(6), we differentiate the function f(x) = 7x^2 + C with respect to x:

f'(x) = 14x

Substituting x = 6, we get:

f'(6) = 14(6) = 84.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Other Questions
Course Name Labor Conflict Management1) answer the following questions as quick as you can pleaseA) Explain disparate treatment Give examplesB) Discuss characteristics of the most effective type of contingent pay plan in an organization with an involvement culture. Give examples.C) Discuss the key features of effective feedback.D) What is the direct supervisors role in the creation of a developmental plan? A cubical box of widths Lx = Ly = -z = L = 3.0 nm contains three electrons. What is the energy of the ground state of this system? Assume that the electrons do not interact with one another, and do not neglect spin. LU E = i eV Which is not true in a short circuited transmission line? The current produced is minimum. Maximum voltage is produced. Standing waves are produced. There is an infinite resistance. Match up the cholinergic fiber system with the correct role of that system in the control of behavior:a. Most CNS circuits that use ACh are inhibitory for learning.b. Cholinergic neurons in the dorsolateral pons are involved in the control of the electrical rhythms of the hippocampus.c. Cholinergic neurons in the medial septum are involved in the control of the electricalrhythms of the hippocampus.d. Cholinergic neurons in the basal forebrain are involved in the control of REM sleep.e. Cholinergic neurons in the medial septum facilitate learning. what commands could be used to give them root privileges to a limited set of backup commands? B2. a) State the two main rules as applied to an ideal Op-Amp and state the conditions, under which these rules are applicable. [5 marks] b) What kind of an amplifier does the circuit in Figure B2 rep confused as to the process....The four walls of a room need to be painted. The perimeter of the floor of the room is 72 feet, and the room's height is 12 feet. There are two square windows, each with a side length of 4 feet, in on A-Sn (exists below 13.2 C) has a cubic structure with lattice parameter a 6.4912 A and a density of 5.769 g/ce (at 0 C). B-Sn has a tetragonal crystal structure with lattice parameter a 5.8316 A, c= 3.1813 A and a density of 7365 g/co (at 30 C). Determine the number of atoms per unit cell for both a-Sn and -Sn and hence determine the percentage volume change that would occur when a-Sn is heated from 0C to 30C? The atomic weight of Sn is 118.69 gmol. plsssss solve allQ5) Given the Fourier transform of the signal \( x \) ( \( t \) )as below \[ X(J \omega)=\frac{2}{1+j \omega} \] Find the Fourier transform of the signal \( y(t)=x(-3 t+6) \) a \( ^{6} \) ) Given \( x a product line is most likely too long if managers can The nonverbal code of physical appearance suggests how we look, what we wear and what we carry may influence how other people treat us. True or False? Based on a costbenefit analysis, societys cost incurred due to _____ will be reduced as the amount of pollution _____. However, at the same time, the cost of pollution control will increase. An element, X has an atomic number 43 and a atomic mass of 126.201 u. This element is unstable and decays by - decay, with a half life of 89d. The beta particle is emitted with a kinetic energy of 8.24MeV. Initially there are 5.49102 atoms present in a sample. Determine the activity of the sample after 110 days (in Ci ). Ivy bought a house for $205 000 and made a down payment of $30 000. The annual interest rate for a five-year fixed rate mortgage is 5.5%. Determine the biweekly payment for a mortgage with a 25-yearamortisation period. Round up to the nearest dollar. all of the following refer to the face rate of interest on a bond except: a. stated rate b. effective rate c. nominal rate d. coupon rate Geometry: Please Help!!!The runways at an airport are arranged to intersect and are bordered by fencing. A security guard needs to patrol the outside fence of the runways once per shift. What is the estimated distance she wa unpaired h-bond donors and acceptors are found in the hydrophobic core of a protein because long exposure times ruled out action shots in early photography, how were such images presented in newspapers? a) Find analytical expressions for the magnitude and phase of \[ G(s)=\frac{s}{(s+1)(s+10)} \] [6 marks] b) Based on Fig.5, determine the range of \( K \) for stability using Routh-Hurwitz stability c listen as marisela describes her new fitness program. then indicate which activity she plans to do each day.