Answer:
d. Ad hominem
Step-by-step explanation:
A fallacy can be defined as a mistaken or false belief that are based on illogical arguments or reasoning.
However, a lot of people might actually think it to be true but it isn't. There are various types of fallacy, these include;
I. Black or white.
II. Non sequitur.
III. Appeal to moderation.
IV. Bandwagon.
V. Appeal to authority.
VI. Straw man.
VII. Oversimplification or hasty generalization.
VIII. Appeal to ignorance.
IX. Appeal to pity.
X. Ad hominem.
Ad hominem can be defined as a type of fallacy in which the motive, character, or some other aspect of a person is attacked rather than his or her position.
This ultimately implies that, Ad hominem is typically based on prejudices, emotions, or feelings rather than appealing to reason, intellect or substance.
In this scenario, John Bardeen's research work at the Advanced Institute for Physics has progressed so slowly that even his colleagues call him a plodder. As a result, the speaker concluded that it's prudent at present not to take seriously his current theory on how strings constitute the smallest of subatomic particles. Thus, the logical fallacy described above is an ad hominem because John's slowness in his research work is bone of contention for the speaker rather than analyzing and concentrating on his theory about strings.
Find the volume of the box. The box shows the length is 6 feet, the width is 5 feet, and the height is 3 feet. The volume of the box is blank cubic feet. The solution is
Answer:
[tex]90[/tex] [tex]ft^3[/tex]
Step-by-step explanation:
----------------------------------------
The formula to find the volume of a rectangular prism is [tex]V=lwh[/tex]
Let's substitute the number for the length, width, and height now.
[tex]V=(6)(5)(3)[/tex]
[tex]V=(30)(3)[/tex]
[tex]V=90[/tex]
--------------------
Hope this is helpful.
Which of the following represents the ratio of the hypotenuse to the given
side?
Answer:
D. √2 : 1
Step-by-step explanation:
The hypotenuse = 4√2 (longest side of a right triangle)
The given side = 4
Ratio of the hypotenuse to the given side = 4√2 : 4
Simplify by dividing both numbers by 4
√2 : 1
A meteorologist preparing a talk about global warming compiled a list of weekly low temperatures (in degrees Fahrenheit) he observed at his southern Florida home last year. The coldest temperature for any week was 36°F, but he inadvertently recorded the Celsius value of 2°. Assuming that he correctly listed all the other temperatures, explain how this error will affect these summary statistics:a) measures of center: mean and median.b) measures of spread: range, $IQR,$ and standard deviation.
Answer:
nr.herkyrsfdlufshfsyfs
Step-by-step explanation:
dsfsyfksutryrysyrslufzmfyzydzufmzmhfzl
hdhfuthfzhkrskyrsgj
in the diagram below, BD is parallel to XY. what is the value of y?
a. 70
b. 130
c. 110
d. 20
I can't see the diagram sorry.
Step-by-step explanation:
Is there supposed to be a picture attached?
Given right angle ABC, what the value of tan(A)?
5/13
12/13
12/5
13/12
need answer asap
Hi there!
[tex]\large\boxed{12/5}}[/tex]
tan (angle) = Opposite side / Adjacent side, so:
Tan (A) = opposite side / adjacent side
= 24 / 10
Simplify:
= 12 / 5
Tourism is extremely important to the economy of Florida. Hotel occupancy is an often-reported measure of visitor volume and visitor activity (Orlando Sentinel, May , ). Hotel occupancy data for February in two consecutive years are as follows. Current Year Previous Year Occupied Rooms 1,400 1,309 Total Rooms 1,750 1,700 a. Formulate the hypothesis test that can be used to determine whether there has been an increase in the proportion of rooms occupied over the one-year period. Let population proportion of rooms occupied for current year population proportion of rooms occupied for previous year - Select your answer - - Select your answer - b. What is the estimated proportion of hotel rooms occupied each year (to decimals)
Answer:
H1 : P1 - P2 = 0
H1 : P1 - P2 > 0
Step-by-step explanation:
The test to be performed on the given data is ; difference in proportion ;
P1 = proportion od rooms in current year
P2 = proportion of rooms
The null hypothesis ``, H0 : p1 - p2 (this onstage null hypothesis and it is the initial truth, representing the notion that no difference in proportion exists.
H1 : P1 - P2 = 0
The alternative hypothesis takes takes the side that there is an increase on proportion of rooms occupied :
H1 : P1 - P2 > 0
someone please help!!<3
Question 4 of 10
If f(x) = 5x – 2 and g(x) = 2x + 1, find (f - g)(x).
A. 3 - 3x
B. 7x-3
O C. 7x-1
D. 3x - 3
Answer:
the answer is c
Step-by-step explanation:
the answer is c
3 coins are flipped.
Answer:
just keep writing down outcome on a sheet of paper then count total
Step-by-step explanation:
Directions: Find each missing measure
Answer:
Q9: x = 27, Q10: x = 17
Step-by-step explanation:
What is the solution to the system of linear equations?
(-3,0)
(-3,3)
(0,2)
(3,1)
Find the product (-3/5) (-2/9)
Answer:
2/15
Step-by-step explanation:
(-3/5) (-2/9)
Rewriting
-3/9 * -2/5
-1/3 * -2/5
A negative times a negative is a positive.
2/15
When P(x) is divided by (x - 1) and (x + 3), the remainders are 4 and 104 respectively. When P(x) is divided by x² - x + 1 the quotient is x² + x + 3 and the remainder is of the form ax + b. Find the remainder.
Answer:
The remainder is 3x - 4
Step-by-step explanation:
[Remember] [tex]\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}[/tex]
So, [tex]Dividend = (Quotient)(Divisor) + Remainder[/tex]
In this case our dividend is always P(x).
Part 1
When the divisor is [tex](x - 1)[/tex], the remainder is [tex]4[/tex], so we can say [tex]P(x) = (Quotient)(x - 1) + 4[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x - 1) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x - 1 = 0\\x - 1 + 1 = 0 + 1\\x = 1[/tex]
When [tex]x = 1[/tex],
[tex]P(x) = (Quotient)(x - 1) + 4\\P(1) = (Quotient)(1 - 1) + 4\\P(1) = (Quotient)(0) + 4\\P(1) = 0 + 4\\P(1) = 4[/tex]
--------------------------------------------------------------------------------------------------------------
Part 2
When the divisor is [tex](x + 3)[/tex], the remainder is [tex]104[/tex], so we can say [tex]P(x) = (Quotient)(x + 3) + 104[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x + 3) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x + 3 = 0\\x + 3 - 3 = 0 - 3\\x = -3[/tex]
When [tex]x = -3[/tex],
[tex]P(x) = (Quotient)(x + 3) + 104\\P(-3) = (Quotient)(-3 + 3) + 104\\P(-3) = (Quotient)(0) + 104\\P(-3) = 0 + 104\\P(-3) = 104[/tex]
--------------------------------------------------------------------------------------------------------------
Part 3
When the divisor is [tex](x^2 - x + 1)[/tex], the quotient is [tex](x^2 + x + 3)[/tex], and the remainder is [tex](ax + b)[/tex], so we can say [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
From Part 1, we know that [tex]P(1) = 4[/tex] , so we can substitute [tex]x = 1[/tex] and [tex]P(x) = 4[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]4 = (1^2 + 1 + 3)(1^2 - 1 + 1) + a(1) + b\\4 = (1 + 1 + 3)(1 - 1 + 1) + a + b\\4 = (5)(1) + a + b\\4 = 5 + a + b\\4 - 5 = 5 - 5 + a + b\\-1 = a + b\\a + b = -1[/tex]
We will call [tex]a + b = -1[/tex] equation 1
From Part 2, we know that [tex]P(-3) = 104[/tex], so we can substitute [tex]x = -3[/tex] and [tex]P(x) = 104[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]104 = ((-3)^2 + (-3) + 3)((-3)^2 - (-3) + 1) + a(-3) + b\\104 = (9 - 3 + 3)(9 + 3 + 1) - 3a + b\\104 = (9)(13) - 3a + b\\104 = 117 - 3a + b\\104 - 117 = 117 - 117 - 3a + b\\-13 = -3a + b\\(-13)(-1) = (-3a + b)(-1)\\13 = 3a - b\\3a - b = 13[/tex]
We will call [tex]3a - b = 13[/tex] equation 2
Now we can create a system of equations using equation 1 and equation 2
[tex]\left \{ {{a + b = -1} \atop {3a - b = 13}} \right.[/tex]
By adding both equations' right-hand sides together and both equations' left-hand sides together, we can eliminate [tex]b[/tex] and solve for [tex]a[/tex]
So equation 1 + equation 2:
[tex](a + b) + (3a - b) = -1 + 13\\a + b + 3a - b = -1 + 13\\a + 3a + b - b = -1 + 13\\4a = 12\\a = 3[/tex]
Now we can substitute [tex]a = 3[/tex] into either one of the equations, however, since equation 1 has less operations to deal with, we will use equation 1.
So substituting [tex]a = 3[/tex] into equation 1:
[tex]3 + b = -1\\3 - 3 + b = -1 - 3\\b = -4[/tex]
Now that we have both of the values for [tex]a[/tex] and [tex]b[/tex], we can substitute them into the expression for the remainder.
So substituting [tex]a = 3[/tex] and [tex]b = -4[/tex] into [tex]ax + b[/tex]:
[tex]ax + b\\= (3)x + (-4)\\= 3x - 4[/tex]
Therefore, the remainder is [tex]3x - 4[/tex].
Lolz please help me I would gladly appreciate it
Pentagon has sum of 540°
factor the GCF out of the polynomial
Answer:
1. Find the GCF of all the terms in the polynomial.
2. Express each term as a product of the GCF and another factor.
3. Use the distributive property to factor out the GCF.
what is the formula for perimeter of a square
Answer: P = 4s
Step-by-step explanation:
P = 4s where s = the length of each side.
Since each side of a square is the same length, the side length is multiplied by 4.
hlw guys plz help me which set is this.for examples: A u B , A u B u C...like that..plz help me
Answer:
answer is;AnBnC ( common place for all)
HAVE A NİCE DAY
p{x:x is a natural number x (9
Answer:
you need a photo my dude
Step-by-step explanation:
find the exact value of 6cos(105°)
Answer:
[tex]-\frac{3(\sqrt{6}-\sqrt{2})}{2}\text{ or } \frac{-3\sqrt{6}+3\sqrt{2}}{2}}\text{ or }\frac{3(\sqrt{2}-\sqrt{6})}{2}[/tex]
Step-by-step explanation:
There are multiple ways to achieve and even express the exact answer to this problem. Because the exact value of [tex]6\cos(105^{\circ}})[/tex] is a non-terminating (never-ending) decimal, it does not have a finite number of digits. Therefore, you cannot express it as an exact value as a decimal, as you'd either have to round or truncate.
Solution 1 (Cosine Addition Identity):
Nonetheless, to find the exact value we must use trigonometry identities.
Identity used:
[tex]\cos(\alpha +\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta[/tex]
Notice that [tex]45+60=105[/tex] and therefore we can easily solve this problem if we know values of [tex]\cos(45^{\circ})[/tex], [tex]\cos(60^{\circ})[/tex], [tex]\sin (45^{\circ})[/tex], and [tex]\sin(60^{\circ})[/tex], which is plausible as they are all key angles on the unit circle.
Recall from either memory or the unit circle that:
[tex]\cos(45^{\circ})=\sin(45^{\circ})=\frac{\sqrt{2}}{2}[/tex] [tex]\cos(60^{\circ})=\frac{1}{2}[/tex] [tex]\sin(60^{\circ})=\frac{\sqrt{3}}{2}[/tex]Therefore, we have:
[tex]\cos(105^{\circ})=\cos(45^{\circ}+60^{\circ}}),\\\cos(45^{\circ}+60^{\circ}})=\cos 45^{\circ}\cos 60^{\circ}-\sin 45^{\circ}\sin 60^{\circ},\\\cos(45^{\circ}+60^{\circ}})=\frac{\sqrt{2}}{2}\cdot \frac{1}{2}-\frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2},\\\cos(105^{\circ})=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4},\\\cos(105^{\circ})={\frac{-\sqrt{6}+\sqrt{2}}{4}}[/tex]
Since we want the value of [tex]6\cos 105^{\circ}[/tex], simply multiply this by 6 to get your final answer:
[tex]6\cdot {\frac{-\sqrt{6}+\sqrt{2}}{4}}=\frac{-3\sqrt{6}+3\sqrt{2}}{2}}=\boxed{\frac{3(\sqrt{2}-\sqrt{6})}{2}}[/tex]
Solution 2 (Combination of trig. identities):
Although less plausible, you may have the following memorized:
[tex]\sin 15^{\circ}=\cos75^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4},\\\sin 75^{\circ}=\cos15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}[/tex]
If so, we can use the following trig. identity:
[tex]\cos(\theta)=\sin(90^{\circ}-\theta)[/tex] (the cosine of angle theta is equal to the sine of the supplement of angle theta - the converse is also true)
Therefore,
[tex]\cos (105^{\circ})=\sin (90^{\circ}-105^{\circ})=\sin(-15^{\circ})[/tex]
Recall another trig. identity:
[tex]\sin(-\theta)=-\sin (\theta)[/tex] and therefore:
[tex]\sin (-15^{\circ})=-\sin (15^{\circ})[/tex]
Multiply by 6 to get:
[tex]6\cos (105^{\circ})=-6\sin (15^{\circ})=-6\cdot \frac{\sqrt{6}-\sqrt{2}}{4}=\boxed{-\frac{3(\sqrt{6}-\sqrt{2})}{2}}[/tex] (alternative final answer).
Approximately 10% of all people are left-handed. Consider a grouping of fifteen people.
Write the probability distribution
Answer:
Step-by-step explanation:
Answer:
15*.1=1.5
so either one or two people of the 15 would be left handed
Sixty-five percent of men consider themselves knowledgeable soccer fans. If 10 men are randomly selected, find the probability that exactly seven of them will consider themselves knowledgeable fans. Round to the nearest thousandth.
0.700
0.65
0.252
0.021
Answer:
.252
Step-by-step explanation:
[tex]{10\choose7}*.65^7*(1-.65)^3=.252219625[/tex]
Is f(x)=4x^2 linear,quadratic,or exponential
Answer:
Step-by-step explanation:
it is a quadratic function.
Find the volume (in cubic yards) of a cylinder with radius 1.2 yards and height 2.9 yards. (Round your answer to one decimal place.)
Answer:
11.8 yd³
Step-by-step explanation:
Sumas y restas w+y=9 3w-y=11
Answer:
w = 5
y = 4
Step-by-step explanation:
w+y=9
3w-y=11
4w = 20
w = 5
y = 4
A cat is running away from a dog at a speed of 3m/s. originally, the distance between them was 48 meters. What should be the speed of the dog to catch with the cat in 1 minute?
Answer:
[tex]3.8\:\mathrm{m/s}[/tex]
Step-by-step explanation:
Use the formula [tex]d=rt[/tex] (distance is equal to rate/speed multiplied by time) to solve this problem.
We know that one minute is equal to 60 seconds. Therefore, the distance travelled by the cat in 1 minute is equal to [tex]d=3\cdot 60=180\text{ meters}[/tex].
To catch the cat, the dog needs to also cover an additional 48 meters, because the cat was initially 48 meters away from the dog and it ran away from the dog. Hence, the dog will need to cover [tex]180+48=228[/tex] meters in one minute.
Therefore, we have:
[tex]228=60r,\\r=\frac{228}{60}=\boxed{3.8\:\mathrm{m/s}}[/tex]
Answer:
[tex] \boxed{3.8 \: m/s} [/tex]
Explanation
The first step is to set the speed and the distance equal to the unknown rate of the dog.
3 m/s + 48 m = x m/60s.
Then substitute 60s in for both rates to get distance.
180m + 48m = x m/60
228m = 60x m
÷60 ÷60
3.8m = x m/s.
x = 3.8m/s
can anyone help me and explain
Answer:
cf
=41
5 f-46
Step-by-step explanation:
thiis is the answer
Answer:
To find the inverse, switch the y(F(C)) and the x(C) variables.
So this function:
[tex]y=\frac{9}{5}x+32 \\[/tex]
Will become this function:
[tex]x=\frac{9}{5}y+32 \\[/tex]
You will then solve for y:
[tex]x=\frac{9}{5}y+32 \\x-32=\frac{9}{5}y\\5(x-32)=5(\frac{9}{5}y)\\5x-160=9y\\y=\frac{5x-160}{9}\\y=\frac{5x}{9}-\frac{160}{9}[/tex]
Substitute in the variables of this problem:
[tex]C(F)=\frac{5C}{9}-\frac{160}{9}[/tex]
Using the Fenske equation, calculate the number of theoretical plates for a fractional distillation set up used to separate Ethyl acetate (the more volatile component) from hexane (less volatile component) in a mixture with the following experimental data:
n=log(X/Xb) -log(Y a/Yb)/ log α Fenske Equation
Experimental data: l
The following are the data optained from injection of a 1-microliter sample of the equimolar stock solution used in the distillation experiment into a GČ. The percent of the area under the appropriate peak is idicated.
a = 1.6
GC results of the stock mixture used in the experiment
Component Rt (retention time) Percent Area
Ethyl acetate 1.09 53 82
Hexane 1.58 47 18
GC results of a 1-microliter sample after 3 mL had been collected:
Component Rt (retention time) Percent Area
Ethyl acetate 1.09 82
Hexane 1.58 18
a. 3.9
b. 7.2
c. 7.0
d. 3.0
$2900 at 13% for 30 years. i need simple interest and compounding interest
Answer:
Step-by-step explanation:
simple:
2900(1+.13*30)=14210
Compounding
[tex]2900(1+.13)^{30}=113436.1041[/tex]
Answer:
113436.1041
Step-by-step explanation:
2900 ( 1 +0.13 ) ^ 30
Formula : amount ( 1 + percentage ) ^ years
Using the graph below, if f(x) = 4, find x.
Need help please....
Answer:
-14 x²
Step-by-step explanation:
10 x² - 24 x² = -14 x²
The answer is 14
if you multiply both P(x) and Q(x), the third part becomes 14x², so the coefficient of x² becomes 14.
Answered by GAUTHMATH
Two positive integers are 3 units apart on a number line. Their product is 108.
Which equation can be used to solve for m, the greater integer?
m(m – 3) = 108
m(m + 3) = 108
(m + 3)(m – 3) = 108
(m – 12)(m – 9) = 108
Answer:
m(m – 3) = 108
The correct equation can be used to solve for m, the greater integer is,
⇒ m (m - 3) = 108
We have to given that,
Two positive integers are 3 units apart on a number line.
And, Their product is 108.
Let us assume that,
In a number line, first point is m
Then, Second point is, m - 3
So, We get;
The correct equation can be used to solve for m, the greater integer is,
⇒ m (m - 3) = 108
Learn more about the equation visit:
brainly.com/question/28871326
#SPJ7