CE = CD + DE and DF = EF + DE by.

Answers

Answer 1

The correct options to fill in the gaps are:

Addition postulateSegment AdditionTransitive Property of EqualityTransitive Property of Equality

From the diagram given, we have that;

CD = EFAB = CE

We are to show that the segment AB is congruent to DF

Also from the diagram

CD + DE = EF + DE according to the Addition postulate of Equality

CE = CD + DE and DF = DE + EF according to the Segment Addition

Since CD = EF, hence DF = DE + CE, this means

CD = DF by the Transitive Property of Equality

Similarly, given that:

AB = CE and CE = DF implies AB = DF by the Transitive Property of Equality.

Learn more here: brainly.com/question/13044549

Complete Question:

The complete question is in the attached figure below.

CE = CD + DE And DF = EF + DE By.

Related Questions

For each value of θ , find the values of cos θ, sinθ , and tan θ . Round your answers to the nearest hundredth.5π/6

Answers

For the value θ = 5π/6, the values of cos θ, sin θ, and tan θ are approximately -0.87, 0.50, and -0.58 respectively.

To find the values, we can use the unit circle and the definitions of the trigonometric functions.

In the unit circle, θ = 5π/6 corresponds to a point on the unit circle in the third quadrant. The x-coordinate of this point gives us the value of cos θ, while the y-coordinate gives us the value of sin θ.

The x-coordinate at θ = 5π/6 is -√3/2, rounded to -0.87. Therefore, cos θ ≈ -0.87.

The y-coordinate at θ = 5π/6 is 1/2, rounded to 0.50. Therefore, sin θ ≈ 0.50.

To find the value of tan θ, we can use the identity tan θ = sin θ / cos θ. Substituting the values we obtained, we get tan θ ≈ (0.50) / (-0.87) ≈ -0.58.

Read more about trigonometric here:

https://brainly.com/question/29156330

#SPJ11

pls help asap if you can!!!!!!

Answers

Answer:

3) Definition of angle bisector

4) Reflexive property (of congruence)

5) SAS

Hi, i know how to solve this question, but i was wondering if it was possible to solve #1 using the effective yearly rate. IE. (1+r/n)^n
Mike just bought a house for $1.3m. He paid $300k as a down-payment and the rest of the cost has been obtained from a mortgage. The mortgage has a nominal interest rate of 1.8% compounded monthly with a 30-year amortization period. The term (maturity) of the mortgage is 5 years.
1) What are Mike's monthly payments?
2) What does Mike owe at the end of the 5-year term (what is the balance at time 60, B60)?

Answers

Mike's monthly payments are approximately $19,407.43. At the end of the 5-year term (time 60), Mike owes approximately $1,048,446.96.

To solve the given problem, we can use the formula for calculating the monthly mortgage payments:

P = (r * A) / (1 - (1 + r)^(-n))

Where:
P = Monthly payment
r = Monthly interest rate
A = Loan amount
n = Total number of payments

First, let's calculate the monthly interest rate. The nominal interest rate is given as 1.8%, which means the monthly interest rate is 1.8% divided by 12 (number of months in a year):

r = 1.8% / 12 = 0.015

Next, let's calculate the total number of payments. The mortgage has a 30-year amortization period, which means there will be 30 years * 12 months = 360 monthly payments.

n = 360

Now, let's calculate Mike's monthly payments using the formula:

P = (0.015 * (1.3m - 300k)) / (1 - (1 + 0.015)^(-360))

Substituting the values:

P = (0.015 * (1,300,000 - 300,000)) / (1 - (1 + 0.015)^(-360))

Simplifying the expression:

P = (0.015 * 1,000,000) / (1 - (1 + 0.015)^(-360))

P = 15,000 / (1 - (1 + 0.015)^(-360))

Calculating further:

P = 15,000 / (1 - (1.015)^(-360))

P ≈ 15,000 / (1 - 0.22744)

P ≈ 15,000 / 0.77256

P ≈ 19,407.43

Therefore, Mike's monthly payments are approximately $19,407.43.

To calculate the balance at time 60, we can use the formula for calculating the remaining loan balance after t payments:

Bt = P * ((1 - (1 + r)^(-(n-t)))) / r

Where:
Bt = Balance at time t
P = Monthly payment
r = Monthly interest rate
n = Total number of payments
t = Number of payments made

Substituting the values:

B60 = 19,407.43 * ((1 - (1 + 0.015)^(-(360-60)))) / 0.015

B60 = 19,407.43 * ((1 - (1.015)^(-300))) / 0.015

B60 ≈ 19,407.43 * ((1 - 0.19025)) / 0.015

B60 ≈ 19,407.43 * 0.80975 / 0.015

B60 ≈ 19,407.43 * 53.9833

B60 ≈ 1,048,446.96

Therefore, at the end of the 5-year term (time 60), Mike owes approximately $1,048,446.96.

To know more about "Monthly Payments":

https://brainly.com/question/27926261

#SPJ11

Calculate the inverse Laplace transform and the value of time in the expression:
1 / [(s – 2) (s – 3)]; t = 1

The answer is supposed to be 12.6964

Answers

The value of time t = 1 in the given expression is approximately 12.6964.

To calculate the inverse Laplace transform of the expression 1/[(s – 2)(s – 3)], we can use the partial fraction decomposition method.

First, we need to factorize the denominator:

[tex](s – 2)(s – 3) = s^2 – 5s + 6[/tex]

The partial fraction decomposition is given by:

1/[(s – 2)(s – 3)] = A/(s – 2) + B/(s – 3)

To find the values of A and B, we can multiply both sides by (s – 2)(s – 3):

1 = A(s – 3) + B(s – 2)

Expanding and equating coefficients, we get:

1 = (A + B)s + (-3A – 2B)

From the above equation, we obtain two equations:

A + B = 0 (coefficient of s)

-3A – 2B = 1 (constant term)

Solving these equations, we find A = -1 and B = 1.

Now, we can rewrite the expression as:

1/[(s – 2)(s – 3)] = -1/(s – 2) + 1/(s – 3)

The inverse Laplace transform of[tex]-1/(s – 2) is -e^(2t)[/tex] , and the inverse Laplace transform of 1/(s – 3) is [tex]e^(3t).[/tex]

Substituting t = 1 into the expression, we have:

[tex]e^(21) + e^(31) = -e^2 + e^3[/tex]

Evaluating this expression, we find the value to be approximately 12.6964.

The value of time t = 1 in the given expression is approximately 12.6964.

For more such questions on time

https://brainly.com/question/24051741

#SPJ8

t = 1, the value of the expression [tex]-e^{(2t)} + e^{(3t)}[/tex] is approximately 12.6964.

To calculate the inverse Laplace transform of the expression 1/[(s - 2)(s - 3)], we can use partial fraction decomposition.

Let's rewrite the expression as:

1 / [(s - 2)(s - 3)] = A/(s - 2) + B/(s - 3)

To find the values of A and B, we can multiply both sides of the equation by (s - 2)(s - 3):

1 = A(s - 3) + B(s - 2)

Expanding and equating coefficients:

1 = (A + B)s + (-3A - 2B)

From this equation, we can equate the coefficients of s and the constant term separately:

Coefficient of s: A + B = 0 ... (1)

Constant term: -3A - 2B = 1 ... (2)

Solving equations (1) and (2), we find A = -1 and B = 1.

Now, we can rewrite the expression as:

1 / [(s - 2)(s - 3)] = -1/(s - 2) + 1/(s - 3)

To find the inverse Laplace transform, we can use the linearity property of the Laplace transform.

The inverse Laplace transform of each term can be found in the Laplace transform table.

The inverse Laplace transform of [tex]-1/(s - 2) is -e^{(2t)}[/tex], and the inverse Laplace transform of [tex]1/(s - 3) is e^{(3t)}.[/tex]

The inverse Laplace transform of 1/[(s - 2)(s - 3)] is [tex]-e^{(2t)} + e^{(3t)}[/tex].

To find the value of time (t) when t = 1, we substitute t = 1 into the expression:

[tex]-e^{(2t)} + e^{(3t)} = -e^{(21)} + e^{(31)}[/tex]

= [tex]-e^2 + e^3[/tex]

≈ 12.6964

For similar questions on value

https://brainly.com/question/25922327

#SPJ8

[xcos2(y/x)−y]dx+xdy=0, when x=1,y=π​/4

Answers

The solution to the given equation [xcos^2(y/x)−y]dx+xdy=0, when x=1 and y=π/4, is:

e^0 * (1/2)^2 + h(π/4) = 1/4 + h(π/4) = C1

1 + g(1) = C1

The given equation is [xcos^2(y/x)−y]dx+xdy=0.
To solve this equation, we can use the method of exact differential equations. For an equation to be exact, it must satisfy the condition:
∂M/∂y = ∂N/∂x
where M is the coefficient of dx and N is the coefficient of dy.
In this case, M = xcos^2(y/x) - y and N = x. Let's calculate the partial derivatives:
∂M/∂y = -2xsin(y/x)cos(y/x) - 1
∂N/∂x = 1
Since ∂M/∂y is not equal to ∂N/∂x, the equation is not exact. However, we can make it exact by multiplying the entire equation by an integrating factor.
To find the integrating factor, we divide the difference between the partial derivatives of M and N with respect to x and y respectively:
(∂M/∂y - ∂N/∂x)/N = (-2xsin(y/x)cos(y/x) - 1)/x = -2sin(y/x)cos(y/x) - 1/x
Now, let's integrate this expression with respect to x:
∫(-2sin(y/x)cos(y/x) - 1/x) dx = -2∫sin(y/x)cos(y/x) dx - ∫(1/x) dx
The first integral on the right-hand side requires substitution. Let u = y/x:
∫sin(u)cos(u) dx = ∫(1/2)sin(2u) du = -(1/4)cos(2u) + C1


The second integral is a logarithmic integral:
∫(1/x) dx = ln|x| + C2
Therefore, the integrating factor is given by:
μ(x) = e^∫(-2sin(y/x)cos(y/x) - 1/x) dx = e^(-(1/4)cos(2u) + ln|x|) = e^(-(1/4)cos(2y/x) + ln|x|)
Multiplying the given equation by the integrating factor μ(x), we get:
e^(-(1/4)cos(2y/x) + ln|x|)[xcos^2(y/x)−y]dx + e^(-(1/4)cos(2y/x) + ln|x|)xdy = 0


Now, we need to check if the equation is exact. Let's calculate the partial derivatives of the new equation with respect to x and y:
∂/∂x[e^(-(1/4)cos(2y/x) + ln|x|)[xcos^2(y/x)−y]] = 0
∂/∂y[e^(-(1/4)cos(2y/x) + ln|x|)[xdy]] = 0
Since the partial derivatives are zero, the equation is exact.

To find the solution, we need to integrate the expression ∂/∂x[e^(-(1/4)cos(2y/x) + ln|x|)[xcos^2(y/x)−y]] with respect to x and set it equal to a constant. Similarly, we integrate the expression ∂/∂y[e^(-(1/4)cos(2y/x) + ln|x|)[xdy]] with respect to y and set it equal to the same constant.


Integrating the first expression ∂/∂x[e^(-(1/4)cos(2y/x) + ln|x|)[xcos^2(y/x)−y]] with respect to x:
e^(-(1/4)cos(2y/x) + ln|x|)cos^2(y/x) + h(y) = C1
where h(y) is the constant of integration.
Integrating the second expression ∂/∂y[e^(-(1/4)cos(2y/x) + ln|x|)[xdy]] with respect to y:
e^(-(1/4)cos(2y/x) + ln|x|)x + g(x) = C1
where g(x) is the constant of integration.


Now, we have two equations:
e^(-(1/4)cos(2y/x) + ln|x|)cos^2(y/x) + h(y) = C1
e^(-(1/4)cos(2y/x) + ln|x|)x + g(x) = C1

Since x = 1 and y = π/4, we can substitute these values into the equations:
e^(-(1/4)cos(2(π/4)/1) + ln|1|)cos^2(π/4/1) + h(π/4) = C1
e^(-(1/4)cos(2(π/4)/1) + ln|1|) + g(1) = C1

Simplifying further:
e^(-(1/4)cos(π/2) + 0)cos^2(π/4) + h(π/4) = C1
e^(-(1/4)cos(π/2) + 0) + g(1) = C1

Since cos(π/2) = 0 and ln(1) = 0, we have:
e^0 * (1/2)^2 + h(π/4) = C1
e^0 + g(1) = C1

Simplifying further:
1/4 + h(π/4) = C1
1 + g(1) = C1

Therefore, the solution to the given equation [xcos^2(y/x)−y]dx+xdy=0, when x=1 and y=π/4, is:

e^0 * (1/2)^2 + h(π/4) = 1/4 + h(π/4) = C1
1 + g(1) = C1

Please note that the constants h(π/4) and g(1) can be determined based on the specific initial conditions of the problem.

Learn more about derivatives here:

https://brainly.com/question/23819325

#SPJ11

This ga this: Ahmad chooses one card from the deck at random. He wins an amount of money equal to the value of the card if an even numbered ard is drawn. He loses $6 if an odd numbered card is drawn a) Find the expected value of playing the game. Dollars 5) What can Ahmad expect in the long run, after playing the game many times? (He replaces the card in the deck each time. ) Ahmad can expect to gain money. He can expect to win dollars per draw. Ahrad can expect to lose money, He can expect to lose dollars per draw. Ahmad can expect to break even (neither gain nor lose money)

Answers

Answer:

5

Step-by-step explanation:

NO LINKS!

The question is in the attachment

Answers

Answer:

I have completed it and attached in the explanation part.

Step-by-step explanation:

Answer:

Step-by-step explanation:

a) Since CD is perpendicular to AB,

∠BDC = ∠CDA = 90°

Comparing ΔABC and  ΔACD,

∠BCA = ∠CDA = 90°

∠CAB = ∠DAC (same angle)

since two angle are same in both triangles, the third angles will also be same

∠ABC = ∠ACD

∴ ΔABC and  ΔACD are similar

Comparing ΔABC and  ΔCBD,

∠BCA = ∠BDC = 90°

∠ABC = ∠CBD(same angle)

since two angle are same in both triangles, the third angles will also be same

∠CAB = ∠DCB

∴ ΔABC and  ΔCBD are similar

b) AB = c,  AC = a and BC = b

ΔABC and  ΔACD are similar

[tex]\frac{AB}{AC} =\frac{AC}{AD} =\frac{BC}{CD} \\\\\frac{c}{a} =\frac{a}{AD} =\frac{b}{CD} \\\\\frac{c}{a} =\frac{a}{AD}[/tex]

⇒ a² = c*AD    - eq(1)

ΔABC and  ΔCBD are similar

[tex]\frac{AB}{CB} =\frac{AC}{CD} =\frac{BC}{BD} \\\\\frac{c}{b} =\frac{a}{CD} =\frac{b}{BD} \\\\\frac{c}{b} =\frac{b}{BD}[/tex]

⇒ b² = c*BD    - eq(2)

eq(1) + eq(2):

(a² = c*AD ) + (b² = c*BD)

a² + b² = c*AD + c*BD

a² + b² = c*(AD + BD)

a² + b² = c*(c)

a² + b² = c²

olve the given system of (D² + 4)x - tial equations by system 3y = 0 -2x + (D² + 3)y = 0 (x(t), y(t)) ») = ( nination. cost+c₂sint+c₂cos√√6t+csin√6t,c₁cost+ √6t-csin√6t X

Answers

The solution to the given system of differential equations is:

x(t) = c₁cos(2t) + c₂sin(2t)

y(t) = c₃cos(√3t) + c₄sin(√3t)

To solve the given system of differential equations:

(D² + 4)x - 3y = 0   ...(1)

-2x + (D² + 3)y = 0   ...(2)

Let's start by finding the characteristic equation for each equation:

For equation (1), the characteristic equation is:

r² + 4 = 0

Solving this quadratic equation, we find two complex conjugate roots:

r₁ = 2i

r₂ = -2i

Therefore, the homogeneous solution for equation (1) is:

x_h(t) = c₁cos(2t) + c₂sin(2t)

For equation (2), the characteristic equation is:

r² + 3 = 0

Solving this quadratic equation, we find two complex conjugate roots:

r₃ = √3i

r₄ = -√3i

Therefore, the homogeneous solution for equation (2) is:

y_h(t) = c₃cos(√3t) + c₄sin(√3t)

Now, we need to find a particular solution. Since the right-hand side of both equations is zero, we can choose a particular solution that is also zero:

x_p(t) = 0

y_p(t) = 0

The general solution for the system is then the sum of the homogeneous and particular solutions:

x(t) = x_h(t) + x_p(t) = c₁cos(2t) + c₂sin(2t)

y(t) = y_h(t) + y_p(t) = c₃cos(√3t) + c₄sin(√3t)

Therefore, the solution to the given system of differential equations is:

x(t) = c₁cos(2t) + c₂sin(2t)

y(t) = c₃cos(√3t) + c₄sin(√3t)

Please note that the constants c₁, c₂, c₃, and c₄ can be determined by the initial conditions or additional information provided.

Learn more about differential equations

https://brainly.com/question/32645495

#SPJ11

Some learners in the Intermediate Phase struggle to make sense of the relations between numbers in an arithmetic pattern (where a constant number is added or subtracted each time to form consecutive terms). Give four crucial steps in the process of helping learners to build the relational skill that can help them to be efficient in making sense of the numbers in the arithmetic pattern 4, 7, 10, 13.... (8)

Answers

Here are four crucial steps in the process of helping learners to build the relational skill that can help them to make sense of the numbers in an arithmetic pattern:

Look for the constant difference: In an arithmetic pattern, a constant number is added or subtracted each time to form consecutive terms. Encourage learners to identify this constant difference by subtracting any two adjacent numbers in the sequence. In this case, subtracting 4 from 7 gives 3, and subtracting 7 from 10 also gives 3. Therefore, the constant difference is 3.

Use the constant difference to predict future terms: Once the constant difference is identified, learners can use it to predict future terms in the sequence. For example, adding 3 to the last term (13) gives 16. This means that the next term in the sequence will be 16.

Check the prediction: Predicting the next term is not enough. Learners should also check their prediction by verifying it against the actual pattern. In this case, the next term in the sequence is indeed 16.

Generalize the pattern: Finally, encourage learners to generalize the pattern by expressing it in a formulaic way. In this case, the formula would be: nth term = 3n + 1. Here, n represents the position of the term in the sequence. For example, the fourth term (position n=4) would be 3(4) + 1 = 13.

By following these four crucial steps, learners can build their relational skills and be more efficient in making sense of arithmetic patterns like the one given.

Learn more about numbers here:

https://brainly.com/question/3589540

#SPJ11

Identify the term that does not belong with the other three. Explain your reasoning.

square

circle

triangle

pentagon

Answers

The term circle does not belong among the other three terms.

The reason is that "square," "triangle," and "pentagon" are all geometric shapes that are classified based on the number of sides they have. A square has four sides, a triangle has three sides, and a pentagon has five sides. These shapes are polygons.

On the other hand, a "circle" is not a polygon and does not have sides. It is a two-dimensional shape with a curved boundary. Circles are defined by their radii and can be described in terms of their circumference, diameter, or area. Unlike squares, triangles, and pentagons, circles do not fit within the same classification based on the number of sides.

To learn more about polygons , refer here:

https://brainly.com/question/28276384

#SPJ11

THANK YOU THUMBS UP FOR CORRECT
Given f(x) = x ^ 2 - 3x + 2 find the value(s) for x such that
f(x) = 20
Given \( f(x)=x^{2}-3 x+2 \), find the value \( (5) \) for \( x \) such that \( f(x)=20 \). The solution set is______.

Answers

Given `f(x) = x^2 - 3x + 2`, we are supposed to find the value(s) for `x` such that

`f(x) = 20`.

Therefore,`

x^2 - 3x + 2 = 20`

Moving `20` to the left-hand side of the equation:

`x^2 - 3x + 2 - 20 = 0`

Simplifying the above equation:`

x^2 - 3x - 18 = 0`

We will now use the quadratic formula to solve for `x`.

`a = 1`, `b = -3` and `c = -18`.

Quadratic formula: `

x = (-b ± sqrt(b^2 - 4ac)) / 2a`

Substituting the values of `a`, `b` and `c` in the quadratic formula, we get:`

x = (-(-3) ± sqrt((-3)^2 - 4(1)(-18))) / 2(1)`

Simplifying the above equation:

`x = (3 ± sqrt(9 + 72)) / 2`

=`(3 ± sqrt(81)) / 2`

=`(3 ± 9) / 2`

Therefore, `x = -3` or `x = 6`.

Hence, the solution set is `{-3, 6}`.

Answer: `{-3, 6}`.

To know more about quadratic formula  visit:

https://brainly.com/question/22364785

#SPJ11

D² = ( ) x + (0) Find the general solution of Dx= 2t D² = (1 1)² is A(1) - Ge²¹ (1) + 0₂ (1). = C2 You may use that the general solution of D

Answers

The general solution of the given differential equation Dx = 2t, with D² = (1 1)², is A(1) - Ge²¹(1) + 0₂(1) = C2.

To find the general solution of the differential equation Dx = 2t, we start by integrating both sides of the equation with respect to x. This gives us the antiderivative of Dx on the left-hand side and the antiderivative of 2t on the right-hand side. Integrating 2t with respect to x yields t² + C₁, where C₁ is the constant of integration.

Next, we apply the operator D² = (1 1)² to the general solution we obtained. This operator squares the derivative and produces a new expression. In this case, (1 1)² simplifies to (2 2).

Now we have D²(t² + C₁) = (2 2)(t² + C₁). Expanding this expression gives us D²(t²) + D²(C₁) = 2t² + 2C₁.

Since D²(t²) = 0 (the second derivative of t² is zero), we can simplify the equation to D²(C₁) = 2t² + 2C₁.

At this point, we introduce the solution A(1) - Ge²¹(1) + 0₂(1) = C₂, where A, G, and C₂ are constants. This is the general solution to the differential equation Dx = 2t, with D² = (1 1)².

Learn more about: differential equation

brainly.com/question/32645495

#SPJ11

What is the minimum monthly payment to pay off $5500 loan with a
5% interest rate for a term of 2 years?

Answers

The minimum monthly payment to pay off a $5500 loan with a 5% interest rate for a term of 2 years is $247.49.

To calculate the minimum monthly payment to pay off a $5500 loan with a 5% interest rate for a term of 2 years, you can use the formula for calculating the monthly payment on a loan, which is:

P = (L[i(1 + i)ⁿ])/([(1 + i)ⁿ] - 1) where:

P = monthly payment

L = loan amount

i = interest rate per month

n = number of months in the loan term

Given:

L = $5500

i = 0.05/12 (5% annual interest rate divided by 12 months)

= 0.0041667

n = 2 years x 12 months/year

= 24 months

Plugging these values into the formula, we get:

P = ($5500[0.0041667(1 + 0.0041667)²⁴])/([(1 + 0.0041667)²⁴] - 1)

P = $247.49

To know more about interest rate visit:

https://brainly.com/question/32457439

#SPJ11

Shawn has a coupon that reduced their total bill from 31.58 to 26.58.what percentage of the original bill did they save with the coupon?

Answers

Answer: 15.83%

Step-by-step explanation: To find the percentage of the original bill saved with the coupon, you need to find how much of the original bill is reduced by. 31.58 - 26.58 = 5. And 5 is what percentage of 31.58. So you do 5/31.58 and multiply by 100% to get the answer in percent.



The fuse of a three-break firework rocket is programmed to ignite three times with 2-second intervals between the ignitions. When the rocket is shot vertically in the air, its height h in feet after t seconds is given by the formula h(t)=-5 t²+70 t . At how many seconds after the shot should the firework technician set the timer of the first ignition to make the second ignition occur when the rocket is at its highest point?

(A) 3 (B) 9(C) 5 (D) 7

Answers

The fuse of the firework should be set for 5` seconds after launch. the correct option is (C) 5.

The height of a rocket launched vertically is given by the formula `h(t) = −5t² + 70t`.The fuse of a three-break firework rocket is programmed to ignite three times with 2-second intervals between the ignitions. Calculation:To find the highest point of the rocket, we need to find the maximum of the function `h(t)`.We have the function `h(t) = −5t² + 70t`.

We know that the graph of the quadratic function is a parabola and the vertex of the parabola is the maximum point of the parabola.The x-coordinate of the vertex of the parabola `h(t) = −5t² + 70t` is `x = -b/2a`.

Here, a = -5 and b = 70.So, `x = -b/2a = -70/2(-5) = 7`

Therefore, the highest point is reached 7 seconds after launch.The second ignition should occur at the highest point.

Therefore, the fuse of the firework should be set for `7 - 2 = 5` seconds after launch.

Thus, the correct option is (C) 5.

Know more about quadratic function here,

https://brainly.com/question/18958913

#SPJ11

Q2) a) The function defined by f(x, y) = e² x² + xy + y² = 1 takes on a minimum and a maximum value along the curve Give two extreme points (x,y).

Answers

The extreme points (x, y) along the curve of the function f(x, y) = e²x² + xy + y² = 1 are (-1, 0) and (1, 0).

To find the extreme points of the function f(x, y) = e²x² + xy + y² = 1, we can use calculus. First, we need to calculate the partial derivatives of the function with respect to x and y. Taking the partial derivative with respect to x, we get:

∂f/∂x = 2e²x² + y

And taking the partial derivative with respect to y, we get:

∂f/∂y = x + 2y

To find the extreme points, we need to set both partial derivatives equal to zero and solve the resulting system of equations. From ∂f/∂x = 0, we have:

2e²x² + y = 0

From ∂f/∂y = 0, we have:

x + 2y = 0

Solving these equations simultaneously,

Equation 1: 2e²x² + y = 0

Equation 2: x + 2y = 0

We can use substitution or elimination method.

Using the elimination method:

Multiply Equation 2 by 2 to make the coefficients of y equal in both equations:

2(x + 2y) = 2(0)

2x + 4y = 0

Now we have the following system of equations:

2e²x² + y = 0

2x + 4y = 0

We can solve this system of equations by substituting Equation 2 into Equation 1:

2e²x² + (-2x) = 0

2e²x² - 2x = 0

Factoring out 2x:

2x(e²x - 1) = 0

Setting each factor equal to zero:

2x = 0 --> x = 0

e²x - 1 = 0

e²x = 1

Taking the square root of both sides:

e^x = ±1

Taking the natural logarithm of both sides:

x = ln(±1)

The natural logarithm of a negative number is undefined, so we consider only the case when x = ln(1):

x = 0

Now substitute the value of x = 0 into Equation 2 to find y:

0 + 2y = 0

2y = 0

y = 0

Therefore, the solution to the system of equations is (x, y) = (0, 0).

We find that x = -1 and y = 0, or x = 1 and y = 0. These are the two extreme points along the curve.

Learn more about extreme points

brainly.com/question/29153384

#SPJ11

Let p and q represent the following simple statements. p: I'm there. q: You're here. Write the following compound statement in symbolic form. You're here, but I'm not there. The symbolic form is

Answers

The symbolic form of the compound statement "You're here, but I'm not there" is q ∧ ¬p.

In symbolic logic, we use symbols to represent simple statements and logical connectives to express compound statements. The given compound statement states "You're here, but I'm not there." Let's assign p as the statement "I'm there" and q as the statement "You're here."

To represent the compound statement symbolically, we use the logical connective ∧ (conjunction) to denote "but." The symbol ¬ (negation) represents "not." Therefore, the symbolic form of the compound statement is q ∧ ¬p, which translates to "You're here, but I'm not there."

In this symbolic representation, the ∧ symbolizes the logical conjunction, indicating that both q and ¬p must be true for the compound statement to be true. q represents "You're here," and ¬p represents "I'm not there." So, the symbolic form accurately captures the meaning of the original statement.

Learn more about Symbolic logic

brainly.com/question/30195021

#SPJ11

Help
The function \( f \) is defined below. \[ f(x)=\frac{x-8}{x^{2}+6 x+8} \] Find all values of \( x \) that are NOT in the domain of \( f \). If there is more than one value, separate them with commas.

Answers

The values of x that are not in the domain of the function f(x) = x - 8/(x² + 6x + 8), we need to identify any values of x that would make the denominator equal to zero. Hence the values are -2 and -4

Finding Domain

To find these values, we set the denominator x² + 6x + 8 equal to zero and solve for x:

x² + 6x + 8 = 0

Solve this quadratic equation by factoring or using the quadratic formula. Factoring does not yield integer solutions, so we will use the quadratic formula:

For this equation, a = 1 , b = 6 and c = 8 Substituting these values into the quadratic formula, we can solve for x :

Using a calculator:

This gives us two possible solutions for x:

x = -2 and x = -4

Therefore, the values of x that are not in the domain of the function f(x) are x = -2 and x = -4.

Learn more on domain :https://brainly.com/question/1942755

#SPJ4

what is the maximum height of the roads surface??

NEED HELP


Answers


It is one feet pls

A 1500-lb elevator is suspended on cables that together weigh 12lb/ft. How much work is done in raising the elevator from the basement to the top floor, a distance of 24ft ?

Answers

The work done in raising the elevator from the basement to the top floor, a distance of 24 feet, is 42,912 foot-pounds.

To calculate the work done, we need to consider the weight of the elevator and the weight of the cables. The weight of the elevator is given as 1500 pounds, and the weight of the cables is given as 12 pounds per foot. Since the total distance traveled by the elevator is 24 feet, the total weight of the cables is 12 pounds/foot × 24 feet = 288 pounds.

The total weight that needs to be lifted is the sum of the elevator weight and the cable weight, which is 1500 pounds + 288 pounds = 1788 pounds.

Work is defined as the force applied to an object multiplied by the distance over which the force is applied. In this case, the force applied is equal to the weight being lifted, and the distance is the height the elevator is raised.

So, the work done in raising the elevator is given by the equation:

Work = Force × Distance

In this case, the force is the weight of the elevator and cables, which is 1788 pounds, and the distance is 24 feet.

Work = 1788 pounds × 24 feet = 42,912 foot-pounds.

Therefore, the work done in raising the elevator from the basement to the top floor is 42,912 foot-pounds.

To know more about work and its calculation, refer here:

https://brainly.com/question/31112274#

#SPJ11



Perform the indicated operations.

(5y²+7 y) - (3 y²+9 y-8)

Answers

The simplified expression for (5y² + 7y) - (3y² + 9y - 8) is 2y² - 2y + 8. This is obtained by distributing the negative sign and combining like terms.

To perform the indicated operation of (5y² + 7y) - (3y² + 9y - 8), we need to simplify the expression by combining like terms.

First, let's distribute the negative sign to the terms inside the parentheses:

(5y² + 7y) - (3y² + 9y - 8) = 5y² + 7y - 3y² - 9y + 8

Now, we can combine like terms by adding or subtracting coefficients of the same degree:

(5y² + 7y) - (3y² + 9y - 8) = (5y² - 3y²) + (7y - 9y) + 8

= 2y² - 2y + 8

Therefore, the simplified expression is 2y² - 2y + 8.

Learn more about expression here:

https://brainly.com/question/29809800

#SPJ11

i need only d and e please Consider the following simultaneous-move game.
Player 2
A B C
X 2,5 7,1 5,7 Player 1 Y 3,6 6,7 9,10
Z 3,3 8,2 5,3
(a) Find all Nash equilibria in pure strategies.
Suppose now the game is played sequentially. First, player 1 chooses an action. Then, player 2 observes player 1's move, and chooses an action.
(b) Draw the extensive-form game. How many pure strategies does each playerhave?
(c) Find all subgame-perfect Nash equilibria of the sequential game.
Suppose, as in the beginning, the game is played simultaneously. However, now, players play the game twice in a row and observe each other's first-stage action before choosing actions in the second stage. Both players discount second-stage payoffs using a common discount factor 8 € [0,1].
(d) How many pure strategies does each player have in the two-stage game?
(e) What is the smallest & for which profile (Y,B) can be played in the first stage of a subgame perfect equilibrium?

Answers

(a) The Nash equilibria in pure strategies are (X, A), (X, C), (Y, B), and (Z, A).

In a simultaneous-move game, players make their decisions without knowing the actions chosen by other players. To find the Nash equilibria in pure strategies, we look for combinations of actions where no player has an incentive to unilaterally deviate.

(a) In the given game, the Nash equilibria in pure strategies are (X, A), (X, C), (Y, B), and (Z, A). In each of these equilibria, no player can improve their payoff by unilaterally changing their action.

In a simultaneous-move game, players choose their actions simultaneously without knowing what actions the other players will take. To find the Nash equilibria in pure strategies, we need to examine all possible combinations of actions and determine if any player has an incentive to deviate.

In this particular game, we have three actions for Player 1 (X, Y, Z) and three actions for Player 2 (A, B, C). By comparing the payoffs for each combination of actions, we can identify the Nash equilibria.

After evaluating all possible combinations, we find that there are four Nash equilibria in pure strategies: (X, A), (X, C), (Y, B), and (Z, A). These equilibria indicate that, at these action combinations, no player has an incentive to unilaterally switch to a different action, as it would result in a lower payoff for them.

Learn more about Nash equilibria

brainly.com/question/29585810

#SPJ11

A lake is stocked with 359 fish of a new variety. The size of the lake, the availability of food, and the number of in the lake after time t, in months, is given by the function P(t)=2,243/1+4.82e^−0.24t​ Find the population after 1 months. A. 458 B. 478 C. 468 D. 483

Answers

To find the population after 1 month using the given function, we substitute t = 1 and calculate the expression to be approximately 466. Rounded to the nearest whole number, the population after 1 month is 466. The closest correct option is C.

To find the population after 1 month using the given function P(t) = 2,243 / (1 + 4.82e^(-0.24t)), we substitute t = 1 into the function:

P(1) = 2,243 / (1 + 4.82e^(-0.24*1))

P(1) = 2,243 / (1 + 4.82e^(-0.24))

Calculating the expression further:

P(1) ≈ 2,243 / (1 + 4.82 * 0.7916)

P(1) ≈ 2,243 / (1 + 3.8140)

P(1) ≈ 2,243 / 4.8140

P(1) ≈ 465.86

Rounded to the nearest whole number, the population after 1 month is approximately 466.

Therefore, the correct answer is C. 468 (rounded).

To know more about function, refer to the link below:

https://brainly.com/question/31062578#

#SPJ11

An equipment is being sold now for $66,000. It was bought 4 years ago for $110,000 and has a current book value of $11,000 for tax purposes. How much capital gain tax will the seller pay, if the tax rate is 17%? A. $5,610 B. $16,830 C. $11,220 D. $7,480 E. $9,350

Answers

IF the tax rate is 17% then capital gain tax will the seller pay is $0 , The correct answer would be Option F, $0.

The capital gains tax that the seller would pay is as follows:

In order to determine the capital gain, subtract the cost basis from the sales price: $66,000 − $11,000 = $55,000.

Since the equipment is being sold at a loss ($55,000 < $110,000), it cannot be depreciated. Therefore, the entire $55,000 would be treated as a capital loss for tax purposes.

If the tax rate is 17%, then the capital gain tax will be 17% of $0, which is $0.

Therefore, the answer is none of the choices. The correct answer would be Option F, $0.

Learn more about tax rate

https://brainly.com/question/30629449

#SPJ11

Use the procedures developed in this chapter to find the general solution of the differential equation. y′′−2y′+y=x^2e^x
y=

Answers

To find the general solution of the given differential equation, let's follow the procedures developed in this chapter. The differential equation is y′′−2y′+y=x^2e^x.



Step 1: Solve the homogeneous equation
To start, let's find the solution to the homogeneous equation y′′−2y′+y=0. The characteristic equation is r^2-2r+1=0, which can be factored as (r-1)^2=0. This gives us a repeated root of r=1.

The general solution to the homogeneous equation is y_h=c_1e^x+c_2xe^x, where c_1 and c_2 are constants.

Step 2: Find a particular solution
To find a particular solution to the non-homogeneous equation y′′−2y′+y=x^2e^x, we can use the method of undetermined coefficients. Since the right side of the equation is a polynomial multiplied by an exponential function, we assume a particular solution of the form y_p=(Ax^2+Bx+C)e^x, where A, B, and C are constants to be determined.

Differentiating y_p twice, we have y_p′′=(2A+2Ax+B)e^x and y_p′=(2A+2Ax+B)e^x+(Ax^2+Bx+C)e^x.

Substituting these derivatives into the original differential equation, we get:
(2A+2Ax+B)e^x-2[(2A+2Ax+B)e^x+(Ax^2+Bx+C)e^x]+(Ax^2+Bx+C)e^x=x^2e^x.

Simplifying the equation, we have 2Ax^2e^x+(2B-4A+2A)x+(B-2B+C+2A)=x^2e^x.

By comparing coefficients, we can determine the values of A, B, and C:
2A=1 (from the coefficient of x^2e^x)
2B-4A+2A=0 (from the coefficient of xe^x)
B-2B+C+2A=0 (from the constant term)

Solving these equations, we find A=1/2, B=1, and C=-2.

Therefore, a particular solution to the non-homogeneous equation is y_p=(1/2)x^2e^x+x^e^x-2e^x.

Step 3: Write the general solution
The general solution to the non-homogeneous equation is the sum of the homogeneous solution and the particular solution:
y=y_h+y_p=c_1e^x+c_2xe^x+(1/2)x^2e^x+x^e^x-2e^x.

So, the general solution of the given differential equation is y=c_1e^x+c_2xe^x+(1/2)x^2e^x+x^e^x-2e^x.

To learn more about "Differential Equation" visit: https://brainly.com/question/1164377

#SPJ11

Explain what you must do to show that a set V, together with an addition operation and a scalar multiplication operation form a vector space. Not a Vector Space? Explain what you must do to show that a set V, together with an addition operation and a scalar multiplication operation DO NOT form a vector space. Does the set of all integers together with standard addition and scalar multiplication form a vector space? Explain your answer.

Answers

To show that a set V, together with an addition operation and a scalar multiplication operation, forms a vector space, we need to verify that it satisfies the following properties:

Closure under addition: For any vectors u and v in V, their sum u + v is also in V.

Associativity of addition: For any vectors u, v, and w in V, (u + v) + w = u + (v + w).

Commutativity of addition: For any vectors u and v in V, u + v = v + u.

Identity element of addition: There exists an element 0 in V such that for any vector u in V, u + 0 = u.

Inverse element of addition: For every vector u in V, there exists a vector -u in V such that u + (-u) = 0.

Closure under scalar multiplication: For any scalar c and vector u in V, their scalar product c * u is also in V.

Associativity of scalar multiplication: For any scalars c and d and vector u in V, (cd) * u = c * (d * u).

Distributivity of scalar multiplication over vector addition: For any scalar c and vectors u and v in V, c * (u + v) = c * u + c * v.

Distributivity of scalar multiplication over scalar addition: For any scalars c and d and vector u in V, (c + d) * u = c * u + d * u.

Identity element of scalar multiplication: For any vector u in V, 1 * u = u, where 1 denotes the multiplicative identity of the scalar field.

If all these properties are satisfied, then the set V, together with the specified addition and scalar multiplication operations, is a vector space.

On the other hand, to show that a set V, together with an addition operation and a scalar multiplication operation, does NOT form a vector space, we only need to find a counter example where at least one of the properties mentioned above is violated.

Regarding the set of all integers together with standard addition and scalar multiplication, it does not form a vector space. The main reason is that it does not satisfy closure under scalar multiplication.

For example, if we take the scalar c = 1/2 and the integer u = 1, the product (1/2) * 1 = 1/2 is not an integer. Therefore, the set of all integers with standard addition and scalar multiplication does not fulfill the requirement of closure under scalar multiplication and, hence, is not a vector space.

To know more about multiplication operation here

https://brainly.com/question/28335468

#SPJ11

.
Exercise 1 (3 points Let C be the positively oriented boundary of the triangle with vertices (0,0), (0, 1) and (-1,0). Evaluate the line integral [ F. dr = [² da ·√ y² dx + (2xy + x) dy. C

Answers

C is the positively oriented boundary of the triangle with vertices (0,0), (0, 1) and (-1,0). The line integral [ F. dr = [² da ·√ y² dx + (2xy + x) dy is 13/18.

The given line integral is as follows:[ F. dr = [² da ·√ y² dx + (2xy + x) dy.

Let C be the positively oriented boundary of the triangle with vertices (0,0), (0, 1) and (-1,0).

We have to evaluate the line integral.

Now, first we will consider the boundary of the triangle C. It can be represented as shown below:

Here, AB = √1²+0²=1AC = √1²+1²=√2BC = √1²+1²=√2

Using the concept of Green’s Theorem, we can write the line integral as follows:

[ F. dr =∬( ∂ Q ∂ x − ∂ P ∂ y )d A............................(1)

Here, F = (²√y, 2xy + x) and

P = ²√y, Q = 2xy + x[ ∂ Q ∂ x = 2y + 1∂ P ∂ y = 1 / 2 y^(-1/2)

Hence substituting these values in equation (1), we get:

[ F. dr = ∬( 2y + 1 - 1 / 2 y^(-1/2))d A

From the graph, we can see that the triangle C lies in the first quadrant.

Hence, the limits of integration can be written as below:0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 – x

Now substituting the above limits, we get:

⇒ [ F. dr = ∫₀¹ ∫₀¹⁻x ( 2y + 1 - 1 / 2 y^(-1/2)) dy dx

On integrating with respect to y, we get:

[ F. dr = ∫₀¹ (- 2/3 y^3/2 + y^2 + y ) |₀ (1 – x) dx

Substituting the limits, we get:

[ F. dr = ∫₀¹ (1 – 5/6 x^3/2 + x²) dx

On integrating, we get:

[ F. dr = (x – 5/18 x^5/2 / (5/2)) |₀¹[ F. dr = (1 – 5/18) – (0 – 0) = 13/18

Therefore, [ F. dr = 13/18. Hence, this is the final answer.

Learn more about integral here:

https://brainly.com/question/31109342

#SPJ11



Maggie and Mikayla want to go to the music store near Maggie's house after school. They can walk 3.5 miles per hour and ride their bikes 10 miles per hour.


a. Create a table to show how far Maggie and Mikayla can travel walking and riding their bikes. Include distances for 0,1,2,3 , and 4 hours.

Answers

The table below shows the distances Maggie and Mikayla can travel walking and riding their bikes for 0, 1, 2, 3, and 4 hours:

Concept of speed

| Time (hours) | Walking Distance (miles) | Biking Distance (miles) |

|--------------|-------------------------|------------------------|

| 0            | 0                       | 0                      |

| 1            | 3.5                     | 10                     |

| 2            | 7                       | 20                     |

| 3            | 10.5                    | 30                     |

| 4            | 14                      | 40                     |

The table displays the distances that Maggie and Mikayla can travel by walking and riding their bikes for different durations. Since they can walk at a speed of 3.5 miles per hour and ride their bikes at 10 miles per hour, the distances covered are proportional to the time spent.

For example, when no time has elapsed (0 hours), they haven't traveled any distance yet, so the walking distance and biking distance are both 0. After 1 hour, they would have walked 3.5 miles and biked 10 miles since the speeds are constant over time.

By multiplying the time by the respective speed, we can calculate the distances for each row in the table. For instance, after 2 hours, they would have walked 7 miles (2 hours * 3.5 miles/hour) and biked 20 miles (2 hours * 10 miles/hour).

As the duration increases, the distances covered also increase proportionally. After 3 hours, they would have walked 10.5 miles and biked 30 miles. After 4 hours, they would have walked 14 miles and biked 40 miles.

This table provides a clear representation of how the distances traveled by Maggie and Mikayla vary based on the time spent walking or riding their bikes.

Learn more about concepts of speed

brainly.com/question/30298721

#SPJ11

1.
The diagram shows existing roads (EG and GH) and a proposed road (FH) being considered.
a. If you drive from point E to point Hon existing
roads, how far do you travel?
b. If you were to use the proposed road as you drive
from Eto H, about how far do you travel? Round to
the nearest tenth of a mile.
c. About how much shorter is the trip if you were to
use the proposed road?
Distance (miles)
432AGSL8A
6
1
E
F
G

H
feb 0 1 2 3 4 5 6 7 8 9 10 11 12 x
Distance (miles)

Answers

The answers to the given questions are (a) 7 miles. (b) 7 miles (c) the trip is about 1 mile shorter if you were to use the proposed road.

a. If you drive from point E to point H on existing roads, the distance you travel would be: Distance EG + Distance GH= 6 + 1= 7 miles.

b. If you use the proposed road as you drive from E to H, how far you would travel would be: Distance EF + Distance FH + Distance GH= 2 + 4 + 1= 7 miles (rounded to the nearest tenth of a mile).

c. About how much shorter is the trip if you were to use the proposed road can be calculated as the difference between the distance on the existing roads and the distance using the proposed road.

Let's calculate it: Distance EG + Distance GH - Distance EF - Distance FH - Distance GH= 6 + 1 - 2 - 4 - 1= 1 mile. Therefore, the trip is about 1 mile shorter if you were to use the proposed road.

For more questions on: miles

https://brainly.com/question/29806974

#SPJ8      

A spherical surface encloses three charges q=4q, q= 5q, q, q=-7q. A fourth charge q= -5q is placed outside the sphere. How much is the flux of the electrical field through the spherical surface worth? let c the dielectric constant of vacuum

Answers

The flux of the electric field through the spherical surface is zero.

The flux of the electric field through a closed surface is given by the Gauss's law, which states that the flux is equal to the total charge enclosed divided by the dielectric constant of vacuum (ε₀).

In this case, the spherical surface encloses charges of magnitude 4q, 5q, q, and -7q, but the net charge enclosed is zero since the charges cancel each other out. Therefore, the flux through the spherical surface is zero in this case.

To know more about electric flux, visit,

https://brainly.com/question/26289097

#SPJ4

Other Questions
Find the center of mass of a thin wire lying along the curve r(t) = ti + tj + (2/3)t^3/2 k 0 t 2 if the density is a = 12+t(X,Y,Z) = We have all watched TV and uttered the statement, "There isnothing on!" If you had the power and the cash toCREATE ANY NEW TV SHOW, WHAT WOULD BE YOUR IDEA?(Please note that if you choose a reality If you don't see the PhET simulation, use this link: Spring Simulation You can try different parts of the simulation, but the questions are about the center option with the two springs icon. First, choose the case where the left ends of each spring are connected to the plate. This configuration is called parallel. Use the default spring constant value for each spring (200 N/m). Using the applied force scale, apply 100 N force on the combined spring. This should produce a displacement from equilibrium of about 0.250 m. Use these two values to calculate the equivalent spring constant of the two 200 N/m springs in parallel. The equivalent spring constant is N/m Switch to the other configuration with the springs connected so that the left end of one spring is connected to the right end of the other spring. The two 200 N/m springs are in series. Again, apply 100 N of force on the spring and determine the displacement from equilibrium. The equivalent spring constant is N/m When working with devices in series and parallel, there are two formulas that are commonly used: Kequ = k + K + k..., and 1 1 1 1 = + + + ... Kequ 1 2 3 The first produces an equilavent value larger than any of the individual values. The second produces an equivalent value smaller than any of the individual values. From these considerations and the previous results you should be able to determine which formula is for springs in series, and which is for springs in parallel. Choosing the appropriate formula for two springs in parallel, what would be the equivalent spring constant of a 130 N/m spring in parallel with a 250 N/m spring? You can use the simulation to see if your calculated answer is close to the results of the simulation. The equivalent parallel spring constant would be N/m. If the springs (130 N/m and 250 N/m) were in series, the equivalent spring constant would be N/m. Add and subtract the rational expression, then simplify 24/3q-12/4p In Proportional Representation (PR) systems, often a single party will not win a majority of seats. For example, in Israel, the biggest parties rarely get more than 1/4th to 1/3rd of the seats. This result forces them to make alliances with other parties called a ______.a. Treaty b. Multilateral Agreement c. Coalition d. Collective Security Agreement A state that allows any registered voters to participate in party primaries practices an _______. For example, you could be registered as a Green and still vote in the Republican primary. a. White Primaryb. Closed Primary c. Open Primary d. Blanket Primary Let's say that you are currently the head of a U.S. household that earns $20,000 per year. Let's also say that your neighbor earns $60,000 per year. Which of the following can we NOT conclude (is incorrect)?Group of answer choicesWhen the U.S. census bureau measures incomes (for income inequality measurement purposes), it does not include income from government transfer payments. This means that your $20,000 income most likely will be supplemented with government benefits.Despite your lower income, if you save more (in absolute dollars) than your neighbor each year until retirement, you will have gained more net wealth than your neighbor at retirement.There is currently income inequality between you and your neighbor. This means that your neighbor has more money (s)he can spend on groceries and other items.Income inequality and wealth inequality are the same. Your neighbor has more income, so he has more wealth also. Zane Corporation has an inventory conversion period of 51 days, an average collection period of 37 days, and a payables deferral period of 28 days. Assume 365 days in year for your calculationsWhat is the length of the cash conversion cycle? Round your answer to two decimal placesdaysh. If Zane's annual sales are $3,600,935 and all sales are on credit, what is the investment in acounts receivable? Do not round intermediate calculations Round your answer to the nearest centHow many times per year does Zane turs aver as inventory? Assume that the cost of goods sold is 75% of sales. Do not found internedute calculations. Round your answer to two decimal places If we drive 30 km to the east, then 48 km to the north. How far (in km) will we be from the point of origin? Give your answer in whole numbers. Why did so many people volunteer to fight in the Civil War? Horton v. California, 496 U.S. 128, 110 S.Ct. 2301, 110 L.Ed.2d 112 (1990).Please answer one of the following questions. Copy the questions and paste it to the top of your Intitial Response Post, then describe your answer in detail:Which court was this case reported from? Why is this important to know?What are the material facts of this case? Why is this important to know?What are the legal facts of this case? Why is this important to know?What is the legal issue in this case? Why is this important to know?What collateral issues are raised in this case? Why did the court discuss these issues?What was the court's ruling on this case? How did the court come to this conclusion?What was the court's legal reasoning in deciding this case?What is the long-term outcome of this case in today's criminal justice system?Apply this case's holding to a similar situation that has occurred in the recent past (0-12 months).How do landmark cases play a role in the Criminal Justice system Take a look at this Landmark Case of McCullough v. Maryland (1819). How does this case show the powers of our government? McCullough v. Maryland (1819 Diamagnets have the property that they "dampen" the effects of an external magnetic field by creating an opposing magnetic field. The diamagnet thus has an induced dipole moment that is anti-aligned, such that the induced north pole is closer to the north pole creating the external field. An application of this is that diamagnets can be levitated (Links to an external site.).Now, the mathematics of generally describing a force by a non-uniform field on a dipole is a little beyond the scope of this course, but we can still work through an approximation based on energy. Essentially, whenever the theoretical loss of gravitational potential energy from "falling" no longer can "pay the cost" of increasing the magnetic potential energy, the object no longer wants to fall.Suppose a diamagnetic object floats above the levitator where the magnitude of the magnetic field is 18 T, which is inducing* a magnetic dipole moment of 3.2 Am2 in the object. The magnetic field 2.0 mm below the object is stronger with a magnitude of 33 T. What is the approximate mass of the floating object?Give your answer in units of g (i.e., x10-3 kg), and use g = 9.81 m/s2. You may assume the object's size is negligible. Ann is an apparently healthy 70-year-old woman. Since the beginning of the current golf season, she has had increased shortness of breath and low levels of energy and enthusiasm. These symptoms seem worse during her menstrual cycle. Today, while playing poorly in a golf tournament at a high, mountainous course, she complained to her golfing partner, "I am lightheaded and it is hard for me to breathe." She was taken to a clinic of a multispecialty medical group.The attending physicians notes indicated a temperature of 98 F, elevated heart and respiratory rates, and low blood pressure. Ann stated, "Ive had a heavy menstrual flow for 10 to 12 years, and I take 1000 mg of aspirin every 3 to 4 hours for pain for 6 days during my periods." During the summer months while playing golf, she also takes aspirin to avoid "stiffness in the joints."Laboratory values are as follows:Hemoglobin = 8 g/dLHematocrit = 32%Erythrocyte count = 3.1 ~ 106/mm3Reticulocyte count = 1.5%What is the diagnosis?State your reasons for choosing the above diagnosis? A voltage source E-5V is connected in series to a capacitance of 1 x 10 farad and a resistance of 4 ohms. What is the appropriate equation to model the behavior of the charge. Q. 100+ 4Q = 5 4 + 10 "Q-5 540 +10Q = 4 de 04+109Q = 5 dr 5. The energy cost of ozone production from air is 10 eV per 03 molecule. Calculate daily ozone production (in kg/day) by 300 kW DBD discharge. plshelp asapWhat is the nominal annual rate of interest compounded monthly at which $660.00 will accumulate to $1265.44 in seven years and one month? The nominal annual rate of interest is %. (Round the final ans Which sleep disorder is associated with loud snoring? a. narcolepsy b. somnambulism c. sleep apnea d. sleep paralysis "Mr Johnson comes to your PACU with 1000mls IV infusion ofCompound Sodium Lactate. It should run over 180 minutes. Calculatethe rate in drips/min to ensure an accurate dose. The accounting break-even production quantity for a project is 7,209 units. The fixed costs are $34,780, and the contribution margin is $11. Assume a zero tax rate. What is the projected depreciation expense? Multiple Choice $43,600 $44,519 $47,053 $47,143 $45,050 Given the following information, what is the value of StarlightInc. (in millions)? Common Stock: 16.30 million shares outstandingwith a $10 par value. Market price is $47.10/share. Bond Issue 1:$58 54. Write formulas for each of the following: 54a. The charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents.