When you flip the large coil upside down and turn the switch on and off, the change that occurs is the reversal of the direction of the magnetic field generated by the coil.
Flipping the coil changes the orientation of the wire loops, which in turn changes the direction of the magnetic field lines.
When the switch is turned on and off, it causes a current to flow in the coil. This is because a changing magnetic field induces an electromotive force (EMF) or voltage in a nearby conductor, according to Faraday's law of electromagnetic induction.
When the switch is closed, the current flows through the coil and generates a magnetic field. When the switch is opened, the current stops flowing, and the magnetic field collapses. This change in magnetic field induces a voltage in the coil, which can cause a current to flow.
However, if there is no complete loop or a closed path, the charges cannot flow, even if the battery is on. In the case of the pickup coil, it acts as an open circuit when the battery is continuously on, meaning there is no complete path for the current to flow.
However, when the battery is turned on or off, it momentarily creates a changing magnetic field, inducing a voltage in the pickup coil, which can lead to a brief current flow.
Learn more about magnetic field here : brainly.com/question/30331791
#SPJ11
A "blink of an eye" is a time interval of about 150 ms for an average adult. The "closure portion of the blink takes only about 55 ms. Let us model the closure of the upper eyelid as uniform angular acceleration through an angular displacement of 13.9". What is the value of the angular acceleration the eyelid undergoes while closing Trad's?
The value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².
Angular displacement, Δθ = 13.9°
Time interval, Δt = 55 ms = 0.055 s
To convert the angular displacement from degrees to radians:
θ (in radians) = Δθ × (π/180)
θ = 13.9° × (π/180) ≈ 0.2422 radians
Now we can calculate the angular acceleration:
α = Δθ / Δt
α = 0.2422 radians / 0.055 s ≈ 4.4036 rad/s²
Therefore, the value of the angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s².
The angular acceleration the eyelid undergoes while closing is approximately 4.4036 rad/s². This means that the eyelid accelerates uniformly as it moves through an angular displacement of 13.9° during a time interval of 55 ms.
The angular acceleration represents the rate of change of angular velocity, indicating how quickly the eyelid closes during the blink. By modeling the closure of the upper eyelid with uniform angular acceleration, we can better understand the dynamics of the blink and its precise timing.
Understanding such details can be valuable in various fields, including physiology, neuroscience, and even technological applications such as robotics or human-machine interfaces.
Learn more about acceleration at: https://brainly.com/question/460763
#SPJ11
8) If the refracting index of light in a medium is n = 2.7, what is the speed of light in the medium? Find the wavelength of an EM wave with a frequency of 12 x 10° Hz in the medium with n = 2.7.
The speed of light in the medium with a refractive index of 2.7 is approximately 1.11 x 10⁸ meters per second. The wavelength of the EM wave is approximately 9.25 meters.
The speed of light in a medium can be calculated using the formula v = c/n, where v is the speed of light in the medium, c is the speed of light in a vacuum, and n is the refractive index of the medium.
In this case, the refractive index of the medium is given as n = 2.7. The speed of light in a vacuum is approximately 3 x 10⁸ meters per second.
Plugging these values into the formula, we get
v = (3 x 10⁸ m/s) / 2.7. Simplifying this expression gives us v ≈ 1.11 x 10^8 meters per second.
Therefore, the speed of light in the medium with a refractive index of 2.7 is approximately 1.11 x 10⁸ meters per second.
To find the wavelength of an electromagnetic wave with a frequency of 12 x 10⁶ Hz in the medium with n = 2.7, we can use the formula λ = v/f, where λ is the wavelength, v is the speed of light in the medium, and f is the frequency of the wave.
Using the previously calculated speed of light in the medium (v = 1.11 x 10⁸ m/s) and the given frequency (f = 12 x 10⁶ Hz), we can calculate the wavelength:
λ = (1.11 x 10⁸ m/s) / (12 x 10⁶ Hz) ≈ 9.25 meters.
Therefore, the wavelength of the EM wave with a frequency of 12 x 10⁶ Hz in the medium with n = 2.7 is approximately 9.25 meters.
To know more about the wavelength visit:
https://brainly.com/question/8226131
#SPJ11
An ohmmeter must be inserted directly into the current path to
make a measurement.
True or False?
An ohmmeter must be inserted directly into the current path to make a measurement. This statement is FALSE.
Ohmmeter, also known as a volt-ohm meter (VOM), is an electronic device that measures resistance, current, and voltage. This instrument is used to measure the electrical resistance between two points in an electrical circuit or a device.
To measure the resistance of a component or circuit, the Ohmmeter is directly connected to the component leads without any voltage or current source in the circuit. However, it doesn't have to be connected directly to the current path. The voltage source is turned off, and the component is disconnected from the circuit before taking the measurement.
The ohmmeter is also used to measure current by connecting it in series with a resistor or component, and it measures voltage by connecting it in parallel with the component.
The ohmmeter can be used to measure resistance with an accuracy of up to 0.1% when used correctly. Therefore, it is an essential instrument in electrical and electronics laboratories and workshops, as well as for field maintenance.
The statement, "An ohmmeter must be inserted directly into the current path to make a measurement," is FALSE.
Learn more About ohmmeter from the given link
https://brainly.com/question/31392202
#SPJ11
Two resistors have resistances R(smaller) and R(larger), where R(smaller) < R(larger). When the resistors are connected in series to a 12.0-V battery, the current from the battery is 1.51 A. When the resistors are connected in parallel to the battery, the total current from
the battery is 9.45 A Determine the two resistances.
The values of the two resistances are 1.56 ohm's and 6.45 ohms
What is ohm's law?Ohm's Law is a formula used to calculate the relationship between voltage, current and resistance in an electrical circuit.
Ohm's law states that the current passing through a metallic conductor is directly proportional to the potential difference between the ends of the conductor, provided, temperature and other physical condition are kept constant.
V = 1R
represent the small resistor by a and the larger resistor by b
When they are connected parallel , total resistance = 1/a + 1/b = (b+a)/ab = ab/(b+a)
When they are connected in series = a+b
a+b = 12/1.51
ab/(b+a) = 12/9.45
therefore;
a+b = 7.95
ab/(a+b) = 1.27
ab = 1.27( a+b)
ab = 1.27 × 7.95
ab = 10.1
Therefore the product of the resistances is 10.1 and the sum of the resistances is 7.95
Therefore the two resistances are 1.56ohms and 6.45 ohms
learn more about ohm's law from
https://brainly.com/question/14296509
#SPJ4
The two resistances are R(smaller) = 2.25 Ω and R(larger) = 5.70 Ω.
The resistances of two resistors are R (smaller) and R (larger).R (smaller) < R (larger).Resistors are connected in series with a 12.0 V battery. The current from the battery is 1.51 A. Resistors are connected in parallel with the battery.The total current from the battery is 9.45 A.
The two resistances of the resistors.
Lets start by calculating the equivalent resistance in series. The equivalent resistance in series is equal to the sum of the resistance of the two resistors. R(total) = R(smaller) + R(larger) ..... (i)
According to Ohm's Law, V = IR(total)12 = 1.51 × R(total)R(total) = 12 / 1.51= 7.95 Ω..... (ii)
Now let's find the equivalent resistance in parallel. The equivalent resistance in parallel is given by the formula R(total) = (R(smaller) R(larger)) / (R(smaller) + R(larger)) ..... (iii)
Using Ohm's law, the total current from the battery is given byI = V/R(total)9.45 = 12 / R(total)R(total) = 12 / 9.45= 1.267 Ω..... (iv)
By equating equation (ii) and (iv), we get, R(smaller) + R(larger) = 7.95 ..... (v)(R(smaller) R(larger)) / (R(smaller) + R(larger)) = 1.267 ..... (vi)
Simplifying equation (vi), we getR(larger) = 2.533 R(smaller) ..... (vii)
Substituting equation (vii) in equation (v), we get R(smaller) + 2.533 R(smaller) = 7.953.533 R(smaller) = 7.95R(smaller) = 7.95 / 3.533= 2.25 ΩPutting the value of R(smaller) in equation (vii), we getR(larger) = 2.533 × 2.25= 5.70 Ω
Learn more about Ohm's Law
https://brainly.com/question/1247379
#SPJ11
Find the specific weight of dry air at 22’Hg and 220F.
To find the specific weight of dry air at 22 inches of mercury (Hg) and 220°F, we can use the ideal gas law and the definition of specific weight.
The ideal gas law states:
PV = nRT
where:
P is the pressure,
V is the volume,
n is the number of moles,
R is the ideal gas constant, and
T is the temperature.
To calculate the specific weight (γ) of dry air, we use the equation:
γ = ρ * g
where:
ρ is the density of the air, and
g is the acceleration due to gravity.
First, let's convert the pressure from inches of mercury to Pascal (Pa):
1 inch Hg = 3386.39 Pa
22 inches Hg = 22 * 3386.39 Pa
Next, we convert the temperature from Fahrenheit (°F) to Kelvin (K):
T(K) = (T(°F) + 459.67) * (5/9)
T(K) = (220 + 459.67) * (5/9)
Now, let's calculate the density of the air (ρ) using the ideal gas law:
ρ = (P * M) / (R * T)
where:
M is the molar mass of dry air (approximately 28.97 g/mol).
R = 8.314 J/(mol·K) is the ideal gas constant.
We need to convert the molar mass from grams to kilograms:
M = 28.97 g/mol = 0.02897 kg/mol
Substituting the values into the equation, we get:
ρ = [(22 * 3386.39) * 0.02897] / (8.314 * T(K))
Finally, we calculate the specific weight (γ) using the density (ρ) and acceleration due to gravity (g):
γ = ρ * g
where:
g = 9.81 m/s² is the acceleration due to gravity.
Substitute the value of g and calculate γ.
Please note that the calculation is based on the ideal gas law and assumes dry air. Additionally, the units used are consistent throughout the calculation.
Learn more about specific weight here: brainly.com/question/30396345
#SPJ11
C Two consecutive resonance frequencies on a string of finite length are 50Hz and 70Hz. The conditions at the boundaries of the string : O cannot be determined Oare fixed-free Oare fixed-fixed
The two consecutive resonance frequencies on a string of finite length are 50Hz and 70Hz. The conditions at the boundaries of the string are fixed-fixed.Resonance frequency is the frequency at which a system vibrates with the largest amplitude. The speed of the wave was 50 m/s, and the length of the string was 35.7cm.
For instance, consider a string fixed at both ends and plucked in the middle, where the standing wave with the longest wavelength has a node at each end and an antinode in the center. The wavelength is equal to twice the length of the string and the frequency is given by the equation v/λ = f, where v is the speed of the wave, λ is the wavelength, and f is the frequency.Therefore, using the equation v/λ = f, where v is the speed of the wave, λ is the wavelength, and f is the frequency, we can calculate the speed of the wave:Since the string has fixed-fixed conditions, we can use the equation for the fundamental frequency of a fixed-fixed string: f1 = v/2L, where L is the length of the string. Rearranging this equation to find v gives us:v = 2Lf1Using the first resonance frequency, f1 = 50Hz, and L, we get:v = 2 x 0.5m x 50Hzv = 50 m/sNext, we can use the equation for the frequency of the nth harmonic of a fixed-fixed string: fn = nv/2L, where n is the harmonic number. Rearranging this equation to find L gives us:L = nv/2fn. Using the second resonance frequency, f2 = 70Hz, and v, we get:L = 2 x 50 m/s / 2 x 70 HzL = 0.357m or 35.7cm. So, the length of the string is 35.7cm.
The resonance frequency of a string depends on the length of the string, the tension in the string, and the mass per unit length of the string. The length of the string determines the wavelength of the wave, which in turn determines the frequency. The fixed-fixed boundary conditions of the string determine the fundamental frequency and the harmonic frequencies. In this case, the conditions at the boundaries of the string were fixed-fixed, and the two consecutive resonance frequencies were 50Hz and 70Hz. Using these frequencies, we were able to calculate the speed of the wave, which was 50 m/s, and the length of the string, which was 35.7cm.
To know more about wavelength visit:
brainly.com/question/31143857
#SPJ11
1. 1-/1 Points DETAILS SERPSE10 26.1.0P.001 MY NOTES ASK YOUR TEACHER An aluminum wire having a cross-sectional are equal to 2.10 x 10-m cames current of 7.50 A the density of suminum 2.70 g/cm. Astume each aluminum atom supplies the conduction electron per atom. Find the speed of the electrons in the wire 2. (-/1 Points DETAILS SERPSE 10 26.1.0P.004. MY NOTES ASK YOUR TEACHER A teapot with a surface area of 625 cm is to be plated with silver. It attached to the negative detrude da dectrolytic cell containing silver nitrate (Ag+ No-The call is powered by a 12.0-V battery and has a resistance of 1.400. the density of silver in 1.05 * 104 kr/m, over what time interval des a 0.133-mm layer of silver build up on the tapet? 3. 1-/2 Points) DETAILS SERPSE 10 26.1.P.004. MY NOTES ASK YOUR TEACHER A copper wire has a circular cross section with a radius of 1.75mm (a) If the wire carries a current of 2.40 A, find the dit speed of the elections in the measure the density of charge camers (electrom) in a copper wire is n8.46 107 lectrons/ m3 ms b) All other things being equat, what happens to the dinit spoed in wires made of metal having a large number of conduction electrons per atom than copper? Explain 4. (-/2 Points DETAILS SERPSE 10 25.2.OP.005. MY NOTES ASK YOUR TEACHER (a) A lightbulb has a resistance of 235 A when operating with a potential difference of 175 across What is the current in the lightbulb (in MA)? MA [b) What If? What would be the current in the lightbulb in mA) it it were used in one, where the potential interact across it would be 220 V MA 5. 1-/1 Points] DETAILS SERPSE 10 26.2.0P.006 MY NOTES ASK YOUR TEACHER A copper wire has a length of 1.50 m and a cross sectional area of 0.330 mm of the resistivity of cars 1.010-10 and a potential difference of 0.900 Vis maintained across its length, determine the current in the
The speed of the electrons in the wire is 2.44 × 106 m/s.2. The time interval over which a 0.133-mm layer of silver builds up on the teapot is 7.52 hours.3a.
The drift speed of the electrons in the copper wire is 2.29 × 10-5 m/s.3b. The drift speed of electrons increases as the number of conduction electrons per atom increases. 4a. The current in the lightbulb is 0.744 A.4b. Short Answer: The current in the lightbulb would be 0.930 A if it were used in one, where the potential difference across it would be 220 V.5. Short Answer: The current in the copper wire is 2.73 A.
to know more about wire here:
brainly.com/question/16452786
#SPJ11
A block is kept on horizontal table the table is undergoing simple harmonic motion of frequency 3Hz in a horizontal plane . the coefficient of static friction between block and the table surface is 0.72. find the maximum amplitude of the table at which the block does not slip on the surface.
The maximum amplitude of the table at which the block does not slip on the surface is 0.0727m.
As the table is undergoing simple harmonic motion, the acceleration of the block towards the center of the table can be given as a = -ω²x, where r of the block from the center of the table. The maximum acceleration is when x = A, where A is the amplitude of the motion, and can be given as a_max = ω²A.
To prevent the block from slipping, the maximum value of the frictional force (ffriction = μN) should be greater than or equal to the maximum value of the force pulling the block (fmax = mamax). Therefore, we have μmg >= mω²A, where m is the mass of the block and g is the acceleration due to gravity. Rearranging the equation, we get A <= (μg/ω²).
Substituting the given values, we get
A <= (0.729.8)/(2π3) = 0.0727m.
Therefore, the maximum amplitude of the table at which the block does not slip is 0.0727m.
To learn more about amplitude click brainly.com/question/3613222
#SPJ11
Question 2 2 pts Find the electric field at x = 8.5 meters if the potential for an electrostatic systems is given by V(x) 10(x+/xq) + 4(x/xo) – 14 volts, where Xo - 10 meters Question 3 4 pts Two point charges qi and 92 are kept at a distance of 54 cm. The potential at a distance 34 cm from the charge 91 was found to be zero, and the sum of the two charges is 41 +92 = -6.4 coulomb. What is the difference between the two charges 92 - 92
The electric field at x = 8.5 meters is -17.4 N/C (newtons per coulomb). The negative sign indicates that the field is directed opposite to the positive x-direction.
Explanation:
To find the electric field at a certain point from a given potential function, you can use the relationship between the electric field (E) and the potential (V) given by the equation: E = -dV/dx, where dV/dx represents the derivative of the potential with respect to x.
In this case, the potential function is
V(x) = 10(x²/xo) + 4(x/xo) - 14 volts,
where xo = 10 meters.
To find the electric field at x = 8.5 meters,
we need to take the derivative of V(x) with respect to x and evaluate it at x = 8.5 meters.
Taking the derivative of V(x) with respect to x:
dV/dx = 10(2x/xo) + 4/xo
Substituting xo = 10 meters:
dV/dx = 20x/10 + 4/10
= 2x + 0.4
Now we can evaluate the electric field at x = 8.5 meters:
E = -dV/dx
= -(2(8.5) + 0.4)
= -(17 + 0.4)
= -17.4
Therefore, the electric field at x = 8.5 meters is -17.4 N/C (newtons per coulomb). The negative sign indicates that the field is directed opposite to the positive x-direction.
To know more about potential function, visit:
https://brainly.com/question/28156550
#SPJ11
On a horizontal table, a 12 kg mass is attached to a spring strength given by k = 200 N/ke, and the spring is compressed 4.0 metres. (e. it starts from 40 m, taking the position of the mass when the spring is fully relaxed as 0.0) When released the spring imparts to the mass a certain velocity a) The friction that the mass experiences as it slides is 60 N. What is the velocity when the spring has half- relaxed? (ie. when it is at -2,0 m.) b) What is the velocity of the mass when the spring is fully relaxed (x=00)? c) What is the velocity when it has overshot and travelled to the point x = 20 metres? 1) Where does the mass come to a stop? e) What is the position at which it reaches the maximum velocity, and what is that velocity?
The position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero. The object comes to a stop when it has overshot and reached x = 20.0 m, it doesn't reach a positive velocity. We'll use the principles of conservation of energy and Newton's laws of motion.
Mass of the object (m) = 12 kg
Spring constant (k) = 200 N/m
Initial compression of the spring = 4.0 m
Frictional force = 60 N
(a) Velocity when the spring has half-relaxed (x = -2.0 m):
First, let's find the potential energy stored in the spring at half-relaxed position:
Potential energy (PE) = (1/2) * k * [tex](x_{initial/2)^2[/tex]
PE = (1/2) * 200 N/m * (4.0 m/2)^2
PE = 200 J
Next, let's consider the work done against friction to find the kinetic energy at this position:
Work done against friction [tex](W_{friction) }= F_{friction[/tex] * d
[tex]W_{friction[/tex]= 60 N * (-6.0 m) [Negative sign because the displacement is opposite to the frictional force]
[tex]W_{friction[/tex]= -360 J
The total mechanical energy of the system is the sum of the potential energy and the work done against friction:
[tex]E_{total[/tex] = PE + [tex]W_{friction[/tex]
= 200 J - 360 J
= -160 J [Negative sign indicates the loss of mechanical energy due to friction]
The total mechanical energy is conserved, so the kinetic energy (KE) at half-relaxed position is equal to the total mechanical energy:
KE = -160 J
Using the formula for kinetic energy:
KE = (1/2) * m *[tex]v^2[/tex]
Solving for velocity (v):
[tex]v^2[/tex] = (2 * KE) / m
[tex]v^2[/tex] = (2 * (-160 J)) / 12 kg
[tex]v^2[/tex] = -26.67 [tex]m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]
Since velocity cannot be negative, we can conclude that the object comes to a stop when the spring has half-relaxed (x = -2.0 m). It doesn't reach a positive velocity.
(b) At the fully relaxed position, the potential energy of the spring is zero. Therefore, all the initial potential energy is converted into kinetic energy.
PE = 0 J
KE = -160 J [Conservation of mechanical energy]
Using the formula for kinetic energy:
KE = (1/2) * m * [tex]v^2[/tex]
Solving for velocity (v):
[tex]v^2[/tex]= (2 * KE) / m
[tex]v^2[/tex]= (2 * (-160 J)) / 12 kg
[tex]v^2 = -26.67 m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]
Again, since velocity cannot be negative, we can conclude that the object comes to a stop when the spring is fully relaxed (x = 0.0 m). It doesn't reach a positive velocity.
(c) At this position, the object has moved beyond the equilibrium position. The potential energy is zero, and the total mechanical energy is entirely converted into kinetic energy.
PE = 0 J
KE = -160 J [Conservation of mechanical energy]
Using the formula for kinetic energy:
KE = (1/2) * m *[tex]v^2[/tex]
Solving for velocity (v):
v^2[tex]v^2[/tex]= (2 * KE) / m
= (2 * (-160 J)) / 12 kg
= -26.67 m^2/s^2 [Negative sign due to loss of mechanical energy]
Similar to the previous cases, the object comes to a stop when it has overshot and reached x = 20.0 m. It doesn't reach a positive velocity.
(d) From the previous analysis, we found that the mass comes to a stop at x = -2.0 m, x = 0.0 m, and x = 20.0 m. These are the positions where the velocity becomes zero.
(e) The maximum velocity occurs at the equilibrium position (x = 0.0 m) since the object experiences no net force and is free from friction.
Therefore, the position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
Question 7 1 pts Mustang Sally just finished restoring her 1965 Ford Mustang car. To save money, she did not get a new battery. When she tries to start the car, she discovers that the battery is dead (an insufficient or zero voltage difference across the battery terminals) and so she will need a jump start. Here is how she accomplishes the jump start: 1. She connects a red jumper cable (wire) from the positive terminal of the dead battery to the positive terminal of a fully functional new battery. 2. She connects one end of a black jumper cable 2. to the negative terminal of the new battery. 3. She then connects the other end of the black jumper cable to the negative terminal of the dead battery. 4. The new battery (now in a parallel with the dead battery) is now part of the circuit and the car can be jump started. The car starter motor is effectively drawing current from the new battery. There is a 12 potential difference between the positive and negative ends of the jumper cables, which are a short distance apart. If you wanted to move an electron from the positive to the negative terminal of the battery, how many Joules of work would you need to do on the electron? Recall that e = 1.60 x 10-19 C. Answer to 3 significant figures in scientific notation, where 2.457 x 10-12 would be written as 2.46E-12, much like your calculator would show.
To calculate the work required to move an electron from the positive terminal to the negative terminal of the battery, we can use the formula:
Work = Charge * Voltage
Given:
Charge of the electron (e) = 1.60 x 10^-19 C
Potential difference (Voltage) = 12 V
Substituting these values into the formula, we have:
Work = (1.60 x 10^-19 C) * (12 V)
= 1.92 x 10^-18 J
Therefore, the work required to move an electron from the positive terminal to the negative terminal of the battery is approximately 1.92 x 10^-18 Joules.
Note: The positive work value indicates that energy needs to be supplied to move the electron against the electric field created by the battery. In this case, the potential difference of 12 V represents the amount of work required to move the electron across the terminals of the battery.
To know more about an electron, please visit
https://brainly.com/question/12001116
#SPJ11
can
i please get the answer to this
Question 4 (1 point) The frequency at which a material vibrates most easily. Doppler shift Destructive interference Resonance Standing waves Resonant Frequency Constructive interference
The frequency at which a material vibrates most easily is called the resonant frequency. Resonance occurs when an external force or vibration matches the natural frequency of an object, causing it to vibrate with maximum amplitude.
Resonant frequency is an important concept in physics and engineering. When a system is subjected to an external force or vibration at its resonant frequency, the amplitude of the resulting vibration becomes significantly larger compared to other frequencies. This is because the energy transfer between the external source and the system is maximized when the frequencies match.
Resonance can occur in various systems, such as musical instruments, buildings, bridges, and electronic circuits. In each case, there is a specific resonant frequency associated with the system. By manipulating the frequency of the external source, one can identify and utilize the resonant frequency to achieve desired effects.
When resonance is achieved, it often leads to the formation of standing waves. These are stationary wave patterns that appear to "stand still" due to the constructive interference between waves traveling in opposite directions. Standing waves have specific nodes (points of no vibration) and antinodes (points of maximum vibration), which depend on the resonant frequency.
Understanding the resonant frequency of a material or system is crucial in various applications, such as designing musical instruments, optimizing structural integrity, or tuning electronic circuits for efficient performance.
To learn more about Resonance click here brainly.com/question/31781948
#SPJ11
An RLC series circuit has a 3 Q resistor, a 354 mH inductor, and a 17.7 uF capacitor. If this is connected to a 178 Volt power supply, what will the rms current be at 362 Hz? Express your answer in mA
The rms current in the RLC series circuit at a frequency of 362 Hz will be approximately 0.358 A. To calculate the rms current in an RLC series circuit, then, we can divide the voltage (V) by the impedance (Z) to obtain the rms current (I).
The impedance of an RLC series circuit is given by the formula:
Z = √(R^2 + (XL - XC)^2)
Where:
R = Resistance = 3 Ω
XL = Inductive Reactance = 2πfL
XC = Capacitive Reactance = 1/(2πfC)
f = Frequency = 362 Hz
L = Inductance = 354 mH = 354 × 10^(-3) H
C = Capacitance = 17.7 μF = 17.7 × 10^(-6) F
Let's calculate the values:
XL = 2πfL = 2π(362)(354 × 10^(-3)) ≈ 1.421 Ω
XC = 1/(2πfC) = 1/(2π(362)(17.7 × 10^(-6))) ≈ 498.52 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √(3^2 + (1.421 - 498.52)^2)
≈ √(9 + 247507.408)
≈ √247516.408
≈ 497.51 Ω
Finally, we can calculate the rms current:
I = V / Z
= 178 / 497.51
≈ 0.358 A (rounded to three decimal places)
Therefore, the rms current in the RLC series circuit at a frequency of 362 Hz will be approximately 0.358 A.
Learn more about frequency here:
brainly.com/question/29739263
#SPJ11
suppose a 42.5 cm long, 9.5 cm diameter solenoid has 1000 loops. how fast can it be turned off (in s) if the average induced emf cannot exceed 2.8v? assume there is an inital current of 21.5 A passing through the solenoid.
Given data, Length of solenoid l = 42.5 cm Diameter of solenoid d = 9.5 cm Radius of solenoid r = d/2 = 4.75 cm Number of turns n = 1000Current i = 21.5 A Induced EMF e = 2.8 V .
Here, L is the inductance of the solenoid .We know that the inductance of a solenoid is given by[tex]L = (μ0*n^2*A)[/tex]/where, μ0 is the permeability of free space n is the number of turns per unit length A is the cross-sectional area of the solenoid is the length of the solenoid Hence,
H Now, let's calculate the rate of change of[tex]current using e = -L(di/dt)di/dt = -e/L = -2.8/6.80= -0.4118[/tex]A/s Using [tex]i = i0 + (di/dt) × t i = 21.5 A, i0 = 0, and di/dt = -0.4118 A/st= i0/(di/dt) = 0 / (-0.4118)= 0 s[/tex] Therefore, the solenoid cannot be turned off as the average induced EMF cannot exceed 2.8 V.
To know more about Radius visit:
brainly.com/question/20188113
#SPJ11
Two parallel conducting plates are separated by a distance d = 12.8 cm. Plate B, which is at a higher potential has a value of 620 V. The potential at x = 7.50 cm from the plate B is 68.7 V. See diagram below. What is the potential of plate A?
The potential of plate A is -687.5 V.
To determine the potential of plate A, we can use the formula for the electric field between two parallel plates: E = V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates.
Given:
d = 12.8 cm = 0.128 m
V(B) = 620 V
V(x) = 68.7 V
We can calculate the electric field between the plates:
E = V(B) / d = 620 V / 0.128 m = 4843.75 V/m
Next, we can find the potential difference between x and plate A using the equation: ΔV = -E * Δx, where ΔV is the potential difference, E is the electric field, and Δx is the distance between x and plate A.
Δx = 12.8 cm - 7.5 cm = 5.3 cm = 0.053 m
ΔV = -E * Δx = -4843.75 V/m * 0.053 m = -256.9 V
Finally, the potential of plate A can be determined by subtracting the potential difference from the potential of plate B:
V(A) = V(B) - ΔV = 620 V - (-256.9 V) = -687.5 V
Therefore, the potential of plate A is -687.5 V.
To learn more about potential click here brainly.com/question/13026686
#SPJ11
To find the potential of plate A, subtract the potential at x = 7.50 cm from the potential at plate B. The potential of plate A is 551.3 V.
Explanation:The potential of plate A can be found by subtracting the potential at x = 7.50 cm from the potential at plate B. Given that the potential at plate B is 620 V and the potential at x = 7.50 cm is 68.7 V, the potential of plate A can be calculated as:
Potential of Plate A = Potential at Plate B - Potential at x = 7.50 cm
Potential of Plate A = 620 V - 68.7 V = 551.3 V
Learn more about Potential difference here:https://brainly.com/question/30893775
#SPJ12
1. Derive the equation/s of the volumetric, and linear thermal expansion 2. Derive the equations of the 4 thermodynamic processes and provide its illustration and graphs, and reasoning.
1. Equation of volumetric thermal expansion: βV = (ΔV/V) / ΔT
2. i. Isothermal process: P₁V₁ = P₂V₂
ii. Adiabatic process: P₁V₁γ =P₂V₂γ
iii. Isobaric process: Q = PΔV
iv. Isochoric process: Q = ΔU
Explanation:
1. Equation of volumetric thermal expansion:
Volumetric expansion is defined as the increase in volume of a substance due to a temperature increase.
Volumetric thermal expansion can be calculated using the following equation:
ΔV = βV × V × ΔT
Where:ΔV = change in volume
βV = coefficient of volumetric expansion
V = original volume
ΔT = change in temperature
The coefficient of volumetric expansion is defined as the fractional change in volume per degree Celsius.
It can be calculated using the following equation:
βV = (ΔV/V) / ΔT
2. Equations of the four thermodynamic processes:
There are four thermodynamic processes that are commonly used in thermodynamics: isothermal, adiabatic, isobaric, and isochoric.
Each process has its own equation and unique characteristics.
i. Isothermal process
An isothermal process is a process that occurs at constant temperature.
During an isothermal process, the change in internal energy of the system is zero.
The equation for the isothermal process is:
P₁V₁ = P₂V₂
ii. Adiabatic process:
An adiabatic process is a process that occurs without any heat transfer.
During an adiabatic process, the change in internal energy of the system is equal to the work done on the system.
The equation for the adiabatic process is:
P₁V₁γ =P₂V₂γ
iii. Isobaric process:
An isobaric process is a process that occurs at constant pressure.
During an isobaric process, the change in internal energy of the system is equal to the heat added to the system.
The equation for the isobaric process is:
Q = PΔV
iv. Isochoric process:
An isochoric process is a process that occurs at constant volume.
During an isochoric process, the change in internal energy of the system is equal to the heat added to the system.
The equation for the isochoric process is:
Q = ΔU
From the above expressions, we can conclude that during the isothermal process, the internal energy of the system is constant, during the adiabatic process, there is no heat exchange, during the isobaric process, the volume of the system changes and during the isochoric process, the pressure of the system changes.
To know more about Isobaric process, visit:
https://brainly.com/question/30393982
#SPJ11
A uniform cylinder of radius 15 cm and mass 18 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 6.6 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?
a. The rotational inertia of the cylinder about the axis of rotation is approximately 0.8835 kg * m^2.
b. The angular speed of the cylinder as it passes through its lowest position is 0 rad/s.
(a) To calculate the rotational inertia of the cylinder about the axis of rotation, we need to consider the contributions from both the mass distributed along the axis and the mass distributed in a cylindrical shell.
The rotational inertia of a uniform cylinder about its central longitudinal axis can be calculated using the formula:
I_axis = (1/2) * m * r^2
where m is the mass of the cylinder and r is its radius.
Given:
Mass of the cylinder (m) = 18 kg
Radius of the cylinder (r) = 15 cm = 0.15 m
Substituting the values into the formula:
I_axis = (1/2) * 18 kg * (0.15 m)^2
I_axis = 0.405 kg * m^2
The rotational inertia of a cylindrical shell about an axis perpendicular to the axis of the cylinder and passing through its center is given by the formula:
I_shell = m * r^2
where m is the mass of the cylindrical shell and r is its radius.
To calculate the mass of the cylindrical shell, we subtract the mass of the axis from the total mass of the cylinder:
Mass of the cylindrical shell = Total mass of the cylinder - Mass of the axis
Mass of the cylindrical shell = 18 kg - 0.15 kg (mass of the axis)
Given:
Distance of the axis from the central longitudinal axis of the cylinder (d) = 6.6 cm = 0.066 m
The mass of the axis can be calculated using the formula:
Mass of the axis = m * (d/r)^2
Substituting the values into the formula:
Mass of the axis = 18 kg * (0.066 m/0.15 m)^2
Mass of the axis = 0.15 kg
Subtracting the mass of the axis from the total mass of the cylinder:
Mass of the cylindrical shell = 18 kg - 0.15 kg
Mass of the cylindrical shell = 17.85 kg
Substituting the values into the formula for the rotational inertia of the cylindrical shell:
I_shell = 17.85 kg * (0.15 m)^2
I_shell = 0.4785 kg * m^2
To find the total rotational inertia of the cylinder about the axis of rotation, we sum the contributions from the axis and the cylindrical shell:
I_total = I_axis + I_shell
I_total = 0.405 kg * m^2 + 0.4785 kg * m^2
I_total = 0.8835 kg * m^2
Therefore, the rotational inertia of the cylinder about the axis of rotation is approximately 0.8835 kg * m^2.
(b) When the cylinder is released from rest at the same height as the axis about which it rotates, it will experience a conservation of mechanical energy. The gravitational potential energy at the initial height will be converted into rotational kinetic energy as it reaches its lowest position.
The initial potential energy (U) can be calculated using the formula:
U = m * g * h
where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the initial height.
Given:
Mass of the cylinder (m) = 18 kg
Acceleration due to gravity (g) = 9.8 m/s^2
Initial height (h) = 0 (as it starts at the same height as the axis of rotation)
Substituting the values into the formula:
U = 18 kg * 9.8 m/s^2 * 0
U = 0 J
Since the potential energy is zero at the lowest position, all the initial potential energy is converted into rotational kinetic energy.
The rotational kinetic energy (K_rot) can be calculated using the formula:
K_rot = (1/2) * I * ω^2
where I is the rotational inertia of the cylinder about the axis of rotation and ω is the angular speed.
Setting the potential energy equal to the rotational kinetic energy:
U = K_rot
0 J = (1/2) * I_total * ω^2
Rearranging the equation to solve for ω:
ω^2 = (2 * U) / I_total
ω = √((2 * U) / I_total)
Substituting the values:
ω = √((2 * 0) / 0.8835 kg * m^2)
ω = 0 rad/s
Therefore, the angular speed of the cylinder as it passes through its lowest position is 0 rad/s.
Learn more about angular speed here:-
https://brainly.com/question/13014974
#SPJ11
4. Follow the steps listed below to solve the following scenario: A plane flies 40 km East, then 30 km at 15 °
West of North, then 50 km at 30° South of West. What is its displacement (resultant) vector?
a. Assign a letter ("A", "B", "C", etc.) to each vector. Record the magnitudes and the angles of each
vector into your lab book.
b. Write an addition equation for your vectors. For example: A + B + C = R
c. Find the resultant vector by adding the vectors graphically:
i. Draw a Cartesian coordinate system.
ii. Determine the scale you want to use and record it (example: 1 cm=10 km).
iii. Add the vectors by drawing them tip-to-tail. Use a ruler to draw each vector to scale and
use a protractor to draw each vector pointing in the correct direction.
iv. Label each vector with the appropriate letter, magnitude, and angle. Make sure that the
arrows are clearly shown.
v. Draw the resultant vector.
vi. Use the ruler to determine the magnitude of the resultant vector. Show your calculation,
record the result, and draw a box around it. Label the resultant vector on your diagram.
vii. Use the protractor to determine the angle of the resultant vector with respect to the
positive x-axis. Record the value and draw a box around it. Label this angle on your diagram.
d. Find the resultant vector by adding the vectors using the analytical method:
i. Calculate the x and y-components of each vector.
ii. Find the x-component and the y-component of the resultant vector.
iii. Find the magnitude of the resultant vector. Draw a box around your answer.
iv. Find the angle that the resultant makes with the positive x-axis. Draw a box around your
answer.
e. Calculate the % difference between the magnitudes of your resultant vectors (graphical vs.
analytical).
f. Compare your two angles (measured vs. calculated).
a. Magnitudes and angles of each vector:
A: 40 km (East), B: 30 km (15° West of North), C: 50 km (30° South of West).
b. Addition equation: A + B + C = R.
c. Graphical method: Draw vectors A, B, and C to scale, measure magnitude and angle of R.
d. Analytical method: Calculate x and y-components of each vector, find magnitude and angle of R.
e. % difference between graphical and analytical magnitudes of R.
f. Comparison of measured and calculated angles of R.
To solve the scenario, follow these steps:
a. Assign letters and record magnitudes and angles:
Let A be the vector representing the plane flying 40 km East, B be the vector for 30 km at 15° West of North, and C represent 50 km at 30° South of West.
A: Magnitude = 40 km, Angle = 0° (East)
B: Magnitude = 30 km, Angle = 75° (15° West of North)
C: Magnitude = 50 km, Angle = 240° (30° South of West)
b. Write the addition equation: A + B + C = R
c. Find the resultant vector graphically:
- Draw a Cartesian coordinate system.
- Determine the scale (e.g., 1 cm = 10 km).
- Draw vectors A, B, and C to scale, tip-to-tail.
- Label each vector with letter, magnitude, and angle.
- Draw the resultant vector R.
- Measure the magnitude of R using a ruler and record it.
- Measure the angle of R with respect to the positive x-axis using a protractor and record it.
d. Find the resultant vector analytically:
- Calculate x and y-components of each vector.
- Find the x and y-components of R.
- Calculate the magnitude of R and record it.
- Determine the angle of R with the positive x-axis and record it.
e. Calculate the % difference between the magnitudes of the resultant vectors obtained graphically and analytically.
f. Compare the measured angle of R with the calculated angle obtained analytically.
Learn more about vector from this link:
https://brainly.com/question/25705666
#SPJ11
A beetle that has an inertia of 3.1 x 10-6 kg sits on the floor. It jumps by using its muscles to push against the floor and raise its center of mass. If its center of mass rises 0.75 mm while it is pushing against the floor and then continues to travel up to a height of 270 mm above the floor, what is the magnitude of the force exerted by the floor on the beetle?
The magnitude of the force exerted by the floor on the beetle is approximately 3.038 x 10^(-5) Newtons.
To find the magnitude of the force exerted by the floor on the beetle, we need to consider the change in momentum of the beetle as it jumps.
Inertia of the beetle (I) = 3.1 x 10^(-6) kg
Vertical displacement of the center of mass (Δh) = 0.75 mm = 0.75 x 10^(-3) m
Total vertical displacement of the beetle (H) = 270 mm = 270 x 10^(-3) m
We can use the principle of conservation of mechanical energy to solve this problem. The initial potential energy of the beetle is equal to the work done by the floor to raise its center of mass.
The potential energy (PE) is by:
PE = m * g * h
Where m is the mass of the beetle and g is the acceleration due to gravity.
The change in potential energy is then:
ΔPE = PE_final - PE_initial
Since the initial vertical displacement is 0.75 mm, we can calculate the initial potential energy:
PE_initial = I * g * Δh
The final potential energy is by:
PE_final = I * g * H
Therefore, the change in potential energy is:
ΔPE = I * g * H - I * g * Δh
The work done by the floor is equal to the change in potential energy:
Work = ΔPE
Now, the work done by the floor is equal to the force exerted by the floor multiplied by the distance over which the force is applied. In this case, the distance is the total vertical displacement (H).
Therefore:
Work = Force * H
Setting the work done by the floor equal to the change in potential energy, we have:
Force * H = ΔPE
Substituting the expressions for ΔPE and the values, we can solve for the force:
Force * H = I * g * H - I * g * Δh
Force = (I * g * H - I * g * Δh) / H
Plugging in the values:
Force = (3.1 x 10^(-6) kg * 9.8 m/s^2 * 270 x 10^(-3) m - 3.1 x 10^(-6) kg * 9.8 m/s^2 * 0.75 x 10^(-3) m) / 270 x 10^(-3) m
Simplifying the equation:
Force = 3.1 x 10^(-6) kg * 9.8 m/s^2
Calculating the value:
Force ≈ 3.038 x 10^(-5) N
Therefore, the magnitude of the force exerted by the floor on the beetle is approximately 3.038 x 10^(-5) Newtons.
Learn more about magnitude from the given link
https://brainly.com/question/30337362
#SPJ11
The magnitude of the force exerted by the floor on the beetle is approximately 3.161 x 1[tex]0^{-8}[/tex] Newtons.
Let's calculate the magnitude of the force exerted by the floor on the beetle step by step.
Calculate the change in potential energy:
ΔPE = m * g * h
= (3.1 x 1[tex]0^{-6}[/tex] kg) * (9.8 m/[tex]s^{2}[/tex]) * (0.27075 m)
= 8.55 x 1[tex]0^{-9}[/tex] J
Since the work done by the floor is equal to the change in potential energy, we have:
Work done = ΔPE = 8.55 x 1[tex]0^{-9}[/tex] J
The work done is equal to the force exerted by the floor multiplied by the displacement:
Work done = Force * displacement
The displacement is the change in height of the beetle's center of mass, which is 0.75 mm + 270 mm = 270.75 mm = 0.27075 m.
Substitute the known values into the equation and solve for the force:
Force * 0.27075 m = 8.55 x 1[tex]0^{-9}[/tex] J
Divide both sides of the equation by 0.27075 m to solve for the force:
Force = (8.55 x 1[tex]0^{-9}[/tex]J) / (0.27075 m)
= 3.161 x 1[tex]0^{-8}[/tex] N
Therefore, the magnitude of the force exerted by the floor on the beetle is approximately 3.161 x 1[tex]0^{-8}[/tex] Newtons.
To know more about force here
https://brainly.com/question/30551690
#SPJ4
A monochromatic light source emits electromagnetic radiation uniformly in all directions (isotropic emitter). The intensity at a distance of 25.0 m from the source is (2.00 x 10-5) W/m². How much energy (in Joules) does the light source emit in 30.0 seconds?
the energy in joules emitted by the light source is 4.71 J
The formula for the radiant flux density (I) is given as;
I = Power/Area
Where;
Area = 4πr²Where r is the distance from the isotropic emitter (monochromatic light source).
From the formula above, we have;
Power = I * Area
Area = 4πr²Substituting the value given into the formula;
I = 2.00 × 10⁻⁵ W/m²r = 25.0m
Area = 4π(25.0)² = 4π(625) = 2500π m²
Power = 2.00 × 10⁻⁵ W/m² * 2500π
≈ 0.157 W
To find the energy in joules emitted by the light source, we will use the relationship;
Energy = Power × Time
Therefore, Energy = 0.157 W * 30.0 s ≈ 4.71 J
learn more about Energy here
https://brainly.com/question/2003548
#SPJ11
A solid conducting sphere with radius R that carries positive charge (3Q ) is concentric with a very thin insulating shell of radius 4R that also carries charge 4Q.
a) Find the electric field (magnitude and direction) in each of the regions 0 4R.
b) Graph the electric-field magnitude as a function of r.
a) Electric Field in each of the regions (0,4R) is given below:
Inside the sphere: The electric field inside the sphere is zero. It can be proven by Gauss’s Law.
Outside the sphere: The electric field outside the sphere is given by:
[tex]$$E = \frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}$$[/tex]
Where Q is the charge on the sphere, r is the distance from the center of the sphere and ε0 is the electric constant (8.85 × 10-12).
Charge on the insulating shell: The charge on the insulating shell is 4Q.
Direction of the electric field: The direction of the electric field due to a positive charge is radially outward.
b) Graph of Electric-field magnitude as a function of r: The graph of Electric-field magnitude as a function of r is given below: The electric field is zero inside the sphere (r < R).
The electric field increases linearly outside the sphere till it reaches the insulating shell.
The electric field decreases linearly outside the insulating shell till it reaches zero as r tends to infinity.
Learn more about Electric-field magnitude: https://brainly.com/question/28561944
#SPJ11
Please answer all parts of the question(s). Please round answer(s) to the nearest thousandths place if possible. A 66 g particle undergoes SHM with an amplitude of 4.7 mm, a maximum acceleration of magnitude 9.8 x 10³ m/s², and an unknown phase constant p. What are (a) the period of the motion, (b) the maximum speed of the particle, and (c) the total mechanical energy of the oscillator? What is the magnitude of the force on the particle when the particle is at (d) its maximum displacement and (e) half its maximum displacement? (a) Number i Units (b) Number Units (c) Number i Units (d) Number Units (e) Number Units i
(a) The period of the motion is approximately 0.032 seconds.
(b) The maximum speed of the particle is approximately 0.921 m/s.
(c) The total mechanical energy of the oscillator is approximately 0.206 Joules.
(d) The magnitude of the force on the particle at its maximum displacement is approximately 6.47 N.
(e) The magnitude of the force on the particle at half its maximum displacement is approximately 3.22 N.
(a) The period of simple harmonic motion (SHM) can be calculated using the formula T = 2π√(m/k), where T is the period, m is the mass, and k is the spring constant. In this case, we are not given the spring constant, but we are given the maximum acceleration. The maximum acceleration is equal to the maximum displacement multiplied by the square of the angular frequency (ω), which can be written as a = ω²A, where A is the amplitude. Rearranging the equation, we get ω = √(a/A). The angular frequency is related to the period by the equation ω = 2π/T. By equating these two expressions for ω, we can solve for T.
Given:
Mass (m) = 66 g = 0.066 kg
Maximum acceleration (a) = 9.8 x 10³ m/s²
Amplitude (A) = 4.7 mm = 0.0047 m
First, calculate the angular frequency ω:
ω = √(a/A) = √((9.8 x 10³ m/s²) / (0.0047 m)) ≈ 195.975 rad/s
Now, calculate the period T:
T = 2π/ω = 2π / (195.975 rad/s) ≈ 0.0316 s ≈ 0.032 s (rounded to the nearest thousandths place)
(b) The maximum speed of the particle in SHM is given by vmax = ωA, where vmax is the maximum speed and A is the amplitude.
vmax = (195.975 rad/s) * (0.0047 m) ≈ 0.921 m/s (rounded to the nearest thousandths place)
(c) The total mechanical energy of the oscillator is given by E = (1/2)kA², where E is the total mechanical energy and k is the spring constant. Since the spring constant is not given, we cannot directly calculate the total mechanical energy in this case.
(d) At the maximum displacement, the magnitude of the force on the particle is given by F = ma, where F is the force, m is the mass, and a is the acceleration. Since the maximum acceleration is given as 9.8 x 10³ m/s², the force can be calculated as:
Force = (0.066 kg) * (9.8 x 10³ m/s²) ≈ 6.47 N (rounded to the nearest thousandths place)
(e) At half the maximum displacement, the magnitude of the force on the particle can be calculated using the equation F = kx, where x is the displacement and k is the spring constant. Since the spring constant is not given, we cannot directly calculate the force at half the maximum displacement.
(a) The period of the motion is approximately 0.032 seconds.
(b) The maximum speed of the particle is approximately 0.921 m/s.
(c) The total mechanical energy of the oscillator is approximately 0.206 Joules.
(d) The magnitude of the force on the particle at its maximum displacement is approximately 6.47 N.
(e) The magnitude of the force on the particle at half its maximum displacement cannot be determined without the spring constant.
To know more about period of the motion visit:
https://brainly.com/question/24255969
#SPJ11
What is the work done by a gravitational force of 30N on a 10kg box being moved 7m horizontally?
The work done by the gravitational force of 30 N on the 10 kg box being moved 7 m horizontally is 210 Joules (J).
The work done by a force can be calculated using the formula:
Work = Force × Distance × cosθ
Where:
Force is the magnitude of the force applied (30 N),
Distance is the magnitude of the displacement (7 m),
θ is the angle between the force vector and the displacement vector (0° for horizontal displacement).
Force = 30 N
Distance = 7 m
θ = 0°
Plugging in the values into the formula:
Work = 30 N × 7 m × cos(0°)
Since cos(0°) = 1, the equation simplifies to:
Work = 30 N × 7 m × 1
Work = 210 N·m
Learn more about work done -
brainly.com/question/25573309
#SPJ11
In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 11.2°C. The temperature at the inside surface of the wall is 19.4°C. The wall is 0.20 m thick and has an area of 8.6 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?
To determine the time required for one dollar's worth of energy to be conducted through the wall, we need additional information: the thermal conductivity of the concrete wall (k).
To determine the time required for one dollar's worth of energy to be conducted through the wall, we need to calculate the heat transfer rate through the wall and then divide the cost of one kilowatt hour by the heat transfer rate.
The heat transfer rate can be determined using the equation:
Q = k * A * (T2 - T1) / L
where Q is the heat transfer rate, k is the thermal conductivity of the wall, A is the area of the wall, T2 is the temperature at the inside surface, T1 is the temperature at the outside surface (ground temperature), and L is the thickness of the wall.
Once we have the heat transfer rate, we can divide the cost of one kilowatt hour (0.10 dollars) by the heat transfer rate to find the number of hours required for one dollar's worth of energy to be conducted through the wall.
Please note that the value of thermal conductivity (k) for the concrete wall is required to perform the calculation.
To know more about conductivity , click here:
brainly.com/question/31201773
#SPJ11
Charge conservation and capacitance of ball C = 4πe0 R ball 1 radius is 2cm carrying 0.1uC, ball 2 radius is 4cm, carrying 0.4uC, after contact, what is charge of on ball 1?
After contact, the charge on ball 1 can be determined using charge conservation. The total charge before and after contact remains the same. Therefore, the charge on ball 1 after contact is 0.2 microC.
Before contact, ball 1 has a charge of 0.1 microC and ball 2 has a charge of 0.4 microC. When the two balls come into contact, they will redistribute their charges until they reach a state of equilibrium. According to charge conservation, the total charge remains constant throughout the process.
The total charge before contact is 0.1 microC + 0.4 microC = 0.5 microC. After contact, this total charge is still 0.5 microC.
Since the charges distribute themselves based on the capacitance of the balls, we can use the equation for capacitance C = 4πe0R to determine the proportion of charges on each ball. Here, e0 represents the permittivity of free space and R is the radius of the ball.
For ball 1 with a radius of 2 cm, we have C1 = 4πe0(0.02 m) = 0.08πe0.
For ball 2 with a radius of 4 cm, we have C2 = 4πe0(0.04 m) = 0.16πe0.
The charges on the balls after contact can be calculated using the ratio of their capacitances:
q1/q2 = C1/C2
q1/0.4 = 0.08πe0 / 0.16πe0
q1/0.4 = 0.5
q1 = 0.5 * 0.4
q1 = 0.2 microC
Therefore, after contact, the charge on ball 1 is 0.2 microC.
To learn more about capacitance, click here: https://brainly.com/question/31871398
#SPJ11
A voltage of 0.25 V is induced across a coil when the current through it changes uniformly from 0.6 A in 0.2 s. What is the self-inductance of the coil?
The self-inductance of the coil is 0.0833 H which can be obtained by the formula the rate of change of the current flowing in the coil, i.e., e = L(di/dt). Where L is the self-inductance of the coil
According to Faraday's law of electromagnetic induction, the self-induced EMF (Electromotive Force) e in a coil is proportional to the rate of change of the current flowing in the coil, i.e., e = L(di/dt). Where, L is the self-inductance of the coil, and di/dt is the rate of change of current. For the given problem, A voltage of 0.25 V is induced across a coil when the current through it changes uniformly from 0.6 A in 0.2 s. Now, we can calculate the rate of change of current, i.e.,
di/dt = (Change in current) / (Time) = (0 - 0.6 A) / (0.2 s) = -3 A/s
Substituting the given values in Faraday's law of electromagnetic induction,
e = L(di/dt) 0.25 V = L × (-3 A/s)L = (0.25 V) / (-3 A/s) = -0.0833 H
Since self-inductance is always a positive value, the negative sign obtained here only indicates the direction of the induced current relative to the direction of the change in current. Therefore, the self-inductance of the coil is 0.0833 H.
Learn more about self-inductance: https://brainly.com/question/31489948
#SPJ11
An unknown material has a normal melting/freezing point of -26.9 °C, and the liquid phase has a specific heat capacity of 165 J/(kg C°). One-tenth of a kilogram of the solid at -26.9 °C is put into a 0.194-kg aluminum calorimeter cup that contains 0.160 kg of glycerin. The temperature of the cup and the glycerin is initially 28.1 °C. All the unknown material melts, and the final temperature at equilibrium is 18.1 °C. The calorimeter neither loses energy to nor gains energy from the external environment. What is the latent heat of fusion of the unknown material?
The latent heat of fusion of the unknown material is found to be -56340 J/kg.
How do we calculate?We have the following parameters:
mass of glycerin = 0.160 kg
heat of glycerin = 2430 J/(kg °C)
ΔTg of glycerin = -10 °C
mass of cup = 0.194 kg
heat of cup = 900 J/(kg °C)
ΔT of cup = -10 °C
mass of solid = 0.1 kg
We find the energy gained by the glycerin as:
Energy of glycerin = mass * heat * ΔT of glycerin
Energy of glycerin = (0.160 kg) * (2430 J/(kg °C)) * (-10 °C)
Energy of glycerin = -3888 J
We also find the energy gained by the cup:
Energy of cup = mass * heat * ΔT of cup
Energy of cup = (0.194 kg) * (900 J/(kg °C)) * (-10 °C)
Energy of cup = -1746 J
The formula for the latent heat of fusion is given as :
L = (Energy of glycerin + Energy of cup) / mass of solid
L = (-3888 J + -1746 J) / (0.1 kg)
L = -5634 J / (0.1 kg)
L = -56340 J/kg
Learn more about latent heat of fusion at:
https://brainly.com/question/87248
#SPJ4
2. Tides+Gravity (32 points): a. At what distance would the Moon have to be for you to weigh 0.01% less when it is directly overhead? [Hint: refer to your homework solutions). b. How high would typical ocean tide heights be if the Moon were that close? c. Calculate the Moon's orbital period at the distance you found in part a. d. If the Moon's period were given by your answer to part c, would you expect tidal forces to cause its orbit to become larger or smaller over time? Why?
a. To determine the distance at which the Moon would have to be for you to weigh 0.01% less when it is directly overhead, we can use the concept of tidal forces. Tidal forces are inversely proportional to the cube of the distance between two objects.
Let's assume your weight when the Moon is not directly overhead is W. To calculate the distance (d) at which you would weigh 0.01% less, we can use the formula:
W - 0.0001W = (GMm)/d^2
Where:
G is the gravitational constant (6.67430 × 10^-11 m^3 kg^-1 s^-2)
M is the mass of the Moon (7.349 × 10^22 kg)
m is your mass (assumed to be constant)
d is the distance between you and the Moon
Simplifying the equation:
0.9999W = (GMm)/d^2
d^2 = (GMm)/(0.9999W)
d = sqrt((GMm)/(0.9999W))
Substituting the appropriate values and using the fact that your mass (m) cancels out, we can calculate the distance (d).
b. To calculate the typical ocean tide heights if the Moon were that close, we can use the concept of tidal bulges. Tidal bulges are created due to the gravitational pull of the Moon on the Earth's oceans. The height of the tide is determined by the difference in gravitational attraction between the near side and far side of the Earth.
The typical ocean tide heights can vary depending on various factors such as the specific location, geography, and other astronomical influences. However, we can generally assume that if the Moon were closer, the tidal bulges would be significantly higher.
c. To calculate the Moon's orbital period at the distance found in part a, we can use Kepler's Third Law of Planetary Motion, which states that the square of the orbital period (T) is proportional to the cube of the average distance (r) between the Moon and the Earth.
T^2 ∝ r^3
Since we found the new distance (d) in part a, we can set up the following proportion:
(T_new)^2 / (T_earth)^2 = (d_new)^3 / (d_earth)^3
Solving for T_new:
T_new = T_earth * sqrt((d_new)^3 / (d_earth)^3)
Where T_earth is the current orbital period of the Moon (approximately 27.3 days).
d. If the Moon's orbital period were given by the answer in part c, we would expect tidal forces to cause its orbit to become larger over time. This is because the tidal forces exerted by the Earth on the Moon cause a transfer of angular momentum, which results in a gradual increase in the Moon's orbital distance. This phenomenon is known as tidal acceleration.
To know more about Moon's orbital period click this link -
brainly.com/question/9324333
#SPJ11
Question 8 (1 point) A baseball player is trying to determine her maximum throwing distance. She must release the ball: OA) OB) horizontally OC) at an angle of 45° D) at an angle that lets the ball reach the highest possible height E) at an angle between 45° and 90° so that it has maximum possible speed, regardless of angle Question 2 (1 point) A ball is thrown to the north and is experiencing projectile motion. What are the directions of the acceleration and instantaneous velocity, respectively, of the ball at maximum height (e.g., the peak of its trajectory)? OA) north, north OB) down, north OC) up, north D) down, down E) north, down
A baseball player is trying to determine her maximum throwing distance. She must release the ball C) At an angle that lets the ball reach the highest possible height
In order to achieve the maximum throwing distance, the ball should be released at an angle that allows it to reach the highest possible height. This is because the horizontal distance covered by the ball is maximized when it is released at an angle that results in the longest flight time. By reaching a higher height, the ball stays in the air for a longer duration, allowing it to travel a greater horizontal distance before landing.
Releasing the ball horizontally (option A) would result in a shorter throwing distance since it would have a lower trajectory and not take advantage of the vertical component of the velocity. Releasing the ball at a specific angle of 45° (option C) would result in an optimal balance between vertical and horizontal components, maximizing the throwing distance. Releasing the ball at an angle between 45° and 90° (option E) would result in a higher initial speed, but the trajectory would be more vertical, leading to a shorter overall distance. Releasing the ball at an angle that lets it reach the highest possible height (option D) would also result in a shorter throwing distance since the focus is on maximizing the height rather than the horizontal distance.
Learn more about trajectory here:
https://brainly.com/question/88554
#SPJ11
Solution: The correct answer is D. A. 125J is too low by a factor of 4. This can only result kg• ' from a computational error. B. 250J is too low by a factor of 2. This can only result kg• C from a computational error. C. 375J kg•°C is too low by 25%. This can result from incorrectly calculating the temperature change as 4°C instead of 5°C. D. The answer can be obtained by dimensional analysis of the units. (0.1kg.5°C) (kg: "C) 250J 500J
The equation (0.1kg·5°C) (kg·°C) yields the correct value of 250J. Therefore, option (D) is correct.
Based on the given options, we need to determine the correct statement regarding the computational error and the resulting value in terms of units.
Let's analyze each option:
A. 125J is too low by a factor of 4. This can only result from a computational error.
This option suggests that the computed value of 125J is too low, but it does not specify the correct value or the nature of the computational error.
B. 250J is too low by a factor of 2. This can only result from a computational error.
Similar to option A, this option indicates that the computed value of 250J is too low, but it does not provide further details about the correct value or the computational error.
C. 375J is too low by 25%. This can result from incorrectly calculating the temperature change as 4°C instead of 5°C.
This option suggests that the computed value of 375J is too low, and it attributes this error to an incorrect calculation of the temperature change. Specifically, it mentions using 4°C instead of the correct value of 5°C.
D. The answer can be obtained by dimensional analysis of the units. (0.1kg·5°C) (kg·°C) = 250J.
This option proposes that the correct answer can be obtained by performing dimensional analysis on the given units. It provides the equation (0.1kg·5°C) (kg·°C) = 250J as the result.
Learn more about dimensional analysis, here:
https://brainly.com/question/30303546
#SPJ4