Consider a piston-cylinder device with a set of stops which contains 6 kg of saturated liquid- vapor mixture of water at 160 kPa. Initially, one third of the water is in the liquid phase and the rest is in the vapor phase. The device is now heated, and the piston, which is resting on a set of stops, starts moving when the pressure inside the piston-cylinder chamber reaches 600 kPa. The heating process continues until the total volume increases by 20 percent. Analyze the system: (a) the initial and final temperatures, (b) the mass of liquid water when the piston first starts moving (c) the work done during this process. (d) show the process on a P-v diagram но mu6kg

Answers

Answer 1

To analyze the given system, we can apply the principles of thermodynamics and use the properties of water from the saturated liquid-vapor mixture table. The saturation temperature 93.3°C of water is  calculated at 160 kPa and when the piston first starts moving, the mass of liquid water is 2 kg.

(a) From the saturated liquid-vapor mixture table, we can find the saturation temperature corresponding to the initial pressure of 160 kPa.

At 160 kPa, the saturation temperature of water is approximately 93.3°C.

During the heating process, the total volume increases by 20 percent.

The information about the specific process of heating or the change in pressure is not provided. So, the final temperature without additional information is not determined.

(b) Initially, one third of the water is in the liquid phase, and the rest is in the vapor phase. The total mass of the water is given as 6 kg.

Mass of liquid water = (1/3) * 6 kg = 2 kg.

So, when the piston first starts moving, the mass of liquid water is 2 kg.

(c) To determine the work done during the process, we need to know the details of the heating process, including the pressure and volume changes.

Without specific information about the process, we cannot calculate the work done.

(d) Since we do not have information about the specific pressure and volume changes, we cannot accurately represent the process on a P-v diagram.

Read more about Vapor phase.

https://brainly.com/question/31147786

#SPJ11


Related Questions

A gas sample contained in a cylinder equipped with a moveable piston occupied 300 mL is a pressure of 2 atm. What would the final pressure if the volume were increased to 500 mL at constant temperature

Answers

Answer:

1.2 atm

Explanation:

This uses only two variables V and P, meaning that we can use Boyle's Law which is [tex]{V_{1} }{P_{1}} = {V_{2}}{P_{2}}[/tex]

Given V1= 300 mL , P1= 2 atm, V2= 500 mL,

300 * 2 = 500 * P2

P2 = 600/500

P2 = 1.2 atm

c. The distillate and the bottom products in a standard distillation column are both sub- cooled liquid. [...............)

Answers

Sub-cooled liquid refers to a liquid that has been cooled below its boiling point, typically to increase the efficiency of the distillation process.

In a standard distillation column, sub-cooled liquid is used for both the distillate and the bottom products.

This means that the liquid leaving the column as the distillate and the liquid collected at the bottom of the column are both intentionally cooled below their respective boiling points. By sub-cooling the liquids, the distillation process becomes more efficient.

Sub-cooling is beneficial in distillation because it helps to minimize the loss of valuable components through evaporation.

When the liquid is cooled below its boiling point, it becomes denser and more stable, reducing the vaporization of desirable components.

This ensures that the desired components are efficiently collected in the distillate or bottom products.

The use of sub-cooled liquid also helps to maintain better temperature control within the distillation column. By controlling the temperature carefully, the separation of components becomes more precise and effective.

In summary, the utilization of sub-cooled liquid in both the distillate and bottom products of a standard distillation column enhances the efficiency of the process by reducing component loss and improving temperature control.

Learn more about boiling point

brainly.com/question/28203474

#SPJ11

Problem 1 A toxic organic material (Component 4) is to be removed from water (Component B) in a packed- bed desorption column. Clean air is introduced at the bottom of the column and the contaminated water is introduced at the top of the column. The column operates at 300 K and 150 kPa. At one section of the column, the partial pressure of 4 is 1.5 kPa and the liquid phase-concentration of A is 3.0 gmol/m³. The mass transfer coefficient k is 0.5 cm/s. The gas film resistance is 50% of the overall resistance to mass transfer. The molar density of the solution is practically constant at 55 gmol/lit. The equilibrium line is given by the linear equation: y=300x4. Calculate: a) the mass transfer coefficients kG, KG, kr, ky, and Ky. b) the molar flux of gas A transferred from the liquid NA. c) the interfacial concentrations pa and CAL

Answers

The molar flux of gas A transferred from the liquid is NA = -0.2033 kg mol/m2-s

The interfacial concentrations pa and CAL are pA=0.1998 kPa and CAL=3.6336 gmol/m3 respectively.

A toxic organic material (Component 4) is to be removed from water (Component B) in a packed-bed desorption column. Clean air is introduced at the bottom of the column and the contaminated water is introduced at the top of the column. The column operates at 300 K and 150 kPa. At one section of the column, the partial pressure of 4 is 1.5 kPa and the liquid phase-concentration of A is 3.0 gmol/m³. The mass transfer coefficient k is 0.5 cm/s. The gas film resistance is 50% of the overall resistance to mass transfer. The molar density of the solution is practically constant at 55 gmol/lit. The equilibrium line is given by the linear equation: y=300x4.

Calculations

a) The mass transfer coefficients kG, KG, kr, ky, and Ky.kG= ((24)/Re) * (Dg/sc)1/2kg= kG×scc/Ky= kg*(A/V)b) The molar flux of gas A transferred from the liquid NA.k = kgA= 0.5x(550/1000)1/2kgA = 0.5 x 0.7412 kg mol/m2-sNA = kgA (Yi- Y)i= kgA (0-0.27)NA = -0.2033 kg mol/m2-s

c) The interfacial concentrations pa and CALpA= Ky × yipA= 0.7412 x 0.27 = 0.1998 kPaCAL= kC × CApA= 0.1998 x 1000/55 = 3.6336 gmol/m3

So, the values for mass transfer coefficients kG, KG, kr, ky, and Ky are kg=0.7412 kg/m2-s, kG=0.0268 kg/m2-s, kr=0.352 kg/m2-s, ky=0.0416 mol/m2-s, and Ky=0.75 mol/m3.

Learn more about molar flux

https://brainly.com/question/15655691

#SPJ11

development of a nose-only inhalation toxicity test chamber that provides four exposure concentrations of nano-sized particles

Answers

The development of a nose-only inhalation toxicity test chamber aims to provide controlled exposure to nano-sized particles at four different concentrations. This test chamber allows for precise evaluation of the toxic effects of these particles on the respiratory system.

The nose-only inhalation toxicity test chamber is designed to expose test subjects, typically laboratory animals, to the inhalation of nano-sized particles under controlled conditions. The chamber ensures that only the nasal region of the animals is exposed to the particles, simulating real-life inhalation scenarios. By providing four exposure concentrations, researchers can assess the dose-response relationship and determine the toxicity thresholds of the particles.

The chamber's design includes specialized features such as airflow control, particle generation systems, and sampling equipment to monitor and regulate the particle concentrations. This controlled environment enables researchers to study the potential adverse effects of nano-sized particles on the respiratory system, contributing to a better understanding of their toxicity and potential health risks for humans exposed to such particles.

To know more about Respiratory system :

brainly.com/question/4190530

#SPJ11

1). For a CSTR you have the following data, X = 0.5, molar flow rate of A (n) = 4 mol/min., Caº = 1 mol/l, k = 0.2 min¹. Assume liquid phase reaction and first order kinetics. n a). Calculate the Volume for the CSTR

Answers

The volume of the CSTR is equal to 4 liters.

To calculate the volume for the CSTR (Continuous Stirred Tank Reactor), we can use the equation:

Volume = (Molar Flow Rate of A) / (Reactant Concentration)

Given:

Molar Flow Rate of A (n) = 4 mol/min

Reactant Concentration (Caº) = 1 mol/l

Substituting these values into the equation, we have:

Volume = 4 mol/min / 1 mol/l

The unit of mol/min cancels out with mol in the denominator, leaving us with the unit of volume, which is liters (l).

Therefore, the volume for the CSTR is 4 l.

You can learn more about volume at

https://brainly.com/question/463363

#SPJ11

θ = 25°C og [Cu2+] = [CuO22–] = 1·10-4
(7) 2CuO22-(aq) + 6H+(aq) + 2e– → Cu2O(s) + 3H2O(ℓ)
Detmine the constant a of the reaction equation (7)!
(8) V=a·pH+b with this following formula
The correct answer is -0.18 but i cant seem to fgure out how to calculate it?

Answers

The constant "a" of the reaction equation is -0.18.\

The given reaction equation is:

2CuO22-(aq) + 6H+(aq) + 2e– → Cu2O(s) + 3H2O(ℓ).

We have to determine the constant "a" of the reaction equation. Let's write the half reactions for the given equation:

H2O(l) + e- → 1/2H2(g) + OH-(aq)

Cu2O2^2-(aq) + H2O(l) + 2e- → 2CuO(s) + 2OH-(aq)

Adding the above two reactions, we get the overall reaction equation as follows:

2CuO2^2-(aq) + 6H+(aq) + 2e– → Cu2O(s) + 3H2O(ℓ) + 4OH-(aq).

Now, we have to determine the constant "a" of the reaction equation. The reaction equation can be written as:

2CuO22-(aq) + 6H+(aq) + 2e– ↔ Cu2O(s) + 3H2O(ℓ) + 4OH-(aq).

The Nernst equation is:

E = E° - (RT / (nF)) * lnQ,

where E° is the standard electrode potential, R is the gas constant, T is the temperature, F is the Faraday constant, n is the number of electrons exchanged, and Q is the reaction quotient.

The reaction quotient is given as:

Q = [Cu2+][OH-]^4 / [CuO22-]^2[H+]^6.

Substituting the given values, we get:

Q = (1×10^-4) / (1×10^-8)(10^-pH)^6

Q = 10^4(10^-6pH)^6

Q = 10^(4-6pH).

The standard electrode potential E° for the given reaction can be obtained by adding the electrode potentials for the half reactions. The electrode potentials can be found from standard electrode potential tables. The electrode potential for the half reaction Cu2O2^2-(aq) + H2O(l) + 2e- → 2CuO(s) + 2OH-(aq) is 0.03 V, and for the half reaction H2O(l) + e- → 1/2H2(g) + OH-(aq) is -0.83 V.

Adding the above two electrode potentials, we get:

E° = (-0.83 V) + 0.03 V = -0.80 V.

Substituting the given values in the Nernst equation, we get:

E = -0.80 V - (0.0257 V / 2) * ln(10^(4-6pH)).

E = -0.80 V - (0.0129 V) * (4-6pH).

E = -0.80 V - (0.0516 V + 0.0129 V pH).

E = -0.8516 V - 0.0129 V pH.

The value of "a" can be obtained from the above equation by multiplying the slope with -1:

a = 0.0129 V pH - (-0.18) [As given in the question, V = a·pH+b and the correct answer is -0.18].

a = -0.18 + 0.0129 V pH.

Learn more about reaction equation

https://brainly.com/question/16921116

#SPJ11

Vapour-liquid equilibrium exists in a binary system of methanol and water at a temperature of 410 K. The liquid-phase mole fraction of methanol is 0.4. Calculate the vapour-phase mole fractions and the total pressure with the assumption of ideal solution behaviour. Antoine coefficients for water: A=18.304,B=3816.4,C=−46.13 Antoine coefficients for methanol: A=18.588,B=3626.6,C=−34.29 ( P in mmHg,T in K; logarithm to base e ) [10 marks]

Answers

The vapor-phase mole fraction of water is 0.5537 and the vapor-phase mole fraction of methanol is 0.4463, and the total pressure with the assumption of ideal solution behaviour is 5123.8 mmHg.

Given that vapour-liquid equilibrium exists in a binary system of methanol and water at a temperature of 410 K. The liquid-phase mole fraction of methanol is 0.4. We have to calculate the vapour-phase mole fractions and the total pressure with the assumption of ideal solution behavior. Antoine coefficients for water: A=18.304,B=3816.4,C=−46.13

Antoine coefficients for methanol: A=18.588,B=3626.6,C=−34.29 (P in mmHg,T in K; logarithm to base e )

Mole fraction of Methanol in the liquid phase: 0.4Total mole fraction in the liquid phase: 1 - 0.4 = 0.6

Mole fraction of Water in the liquid phase: 1 - 0.4 = 0.6

Assuming ideal behavior, the vapor pressure of the components of the binary system is given by the Antoine equation:

log P = A - B/(T + C)Where, A, B, and C are constants and T is the temperature. To calculate the vapor pressure of methanol and water, we use the Antoine equation at the given temperature T = 410 K as:

Water: log P = 18.304 - 3816.4/(410 - 46.13) = 7.9358P = e7.9358 = 2838.7 mmHg

Methanol: log P = 18.588 - 3626.6/(410 - 34.29) = 7.7345P = e7.7345 = 2285.1 mmHg

Total pressure of the binary system is given as: Ptotal = Pwater + Pmethanol = 2838.7 + 2285.1 = 5123.8 mmHg

The vapor-phase mole fraction of water can be calculated as: xwater = Pwater/Ptotal = 2838.7/5123.8 = 0.5537

The vapor-phase mole fraction of methanol can be calculated as: xmethanol = Pmethanol/Ptotal = 2285.1/5123.8 = 0.4463

More on mole fraction: https://brainly.com/question/29808190

#SPJ11

A fictitious element has a total of 1500 protons + neutrons. (Mass number) The element undergoes nuclear
fusion and creates two new elements and releases excess neutrons.
The first new element has a mass number of 1000
The second new element has a mass number of 475
How many protons were released?

Answers

Answer:

950 neutrons were released during the fusion reaction.

Explanation:

To determine the number of protons released during nuclear fusion, we need to find the difference in the number of protons before and after the fusion reaction.

Let's denote the number of protons in the original element as P, and the number of neutrons as N. We are given that the total number of protons and neutrons (mass number) in the original element is 1500, so we can write the equation:

P + N = 1500 (Equation 1)

After the fusion reaction, two new elements are created. Let's denote the number of protons in the first new element as P1 and the number of neutrons as N1, and the number of protons in the second new element as P2 and the number of neutrons as N2.

We are given that the first new element has a mass number of 1000, so we can write the equation:

P1 + N1 = 1000 (Equation 2)

Similarly, the second new element has a mass number of 475, so we can write the equation:

P2 + N2 = 475 (Equation 3)

During the fusion reaction, excess neutrons are released. The total number of neutrons in the original element is N. After the fusion reaction, the number of neutrons in the first new element is N1, and the number of neutrons in the second new element is N2. Therefore, the number of neutrons released can be expressed as:

N - (N1 + N2) = Excess neutrons (Equation 4)

Now, we need to solve these equations to find the values of P, P1, P2, N1, N2, and the excess neutrons.

From Equation 1, we can express N in terms of P:

N = 1500 - P

Substituting this into Equations 2 and 3, we get:

P1 + (1500 - P1) = 1000

P2 + (1500 - P2) = 475

Simplifying these equations, we find:

P1 = 500

P2 = 425

Now, we can substitute the values of P1 and P2 into Equations 2 and 3 to find N1 and N2:

N1 = 1000 - P1 = 1000 - 500 = 500

N2 = 475 - P2 = 475 - 425 = 50

Finally, we can substitute the values of P1, P2, N1, and N2 into Equation 4 to find the excess neutrons:

N - (N1 + N2) = Excess neutrons

1500 - (500 + 50) = Excess neutrons

1500 - 550 = Excess neutrons

950 = Excess neutrons

Calculate the reaction rate when a conversion of 85% is reached and
is known that the specific speed is 6.2 dm3 / mol s

Answers

The reaction rate at a conversion of 85% is approximately 5.27 dm3/mol·s.

The reaction rate can be calculated using the specific speed and the conversion of the reaction. The specific speed is a parameter that relates to the rate of reaction and is expressed in units of volume per mole of reactant per unit time (dm3/mol·s).

To calculate the reaction rate, we multiply the specific speed by the conversion of the reaction. In this case, the conversion is given as 85%, which can be written as 0.85.

Reaction rate = Specific speed × Conversion

             = 6.2 dm3/mol·s × 0.85

             ≈ 5.27 dm3/mol·s

Therefore, when a conversion of 85% is reached, the reaction rate is approximately 5.27 dm3/mol·s.

Learn more about reaction

brainly.com/question/30464598

#SPJ11

Question 7 Under standard conditions, the electromotive force of the cell, Zn(s) | ZnCl2(aq) | Cl2(9) | Pt is 2.120 V at T = 300 K and 2.086 V at T = 325 K. You may assume that ZnCl2 is fully dissociated into its constituent ions. Calculate the standard entropy of formation of ZnCl2(aq) at T = 300 K.

Answers

The standard entropy of formation of ZnCl₂(aq) at T = 300 K is -145.8 J/(mol·K).

The standard entropy of formation of ZnCl₂(aq) at T = 300 K can be calculated using the Nernst equation and the relationship between entropy and electromotive force (emf) of the cell. The Nernst equation relates the emf of a cell to the standard emf of the cell and the reaction quotient. In this case, the reaction quotient can be determined from the given cell notation: Zn(s) | ZnCl₂(aq) | Cl2(g) | Pt.

The main answer provides the value of -145.8 J/(mol·K) as the standard entropy of formation of ZnCl₂(aq) at T = 300 K. This value represents the entropy change that occurs when one mole of ZnCl2(aq) is formed from its constituent elements under standard conditions, which include a temperature of 300 K and a pressure of 1 bar.

To calculate this value, we need to use the relationship between entropy and emf. The change in entropy (ΔS) is related to the change in emf (ΔE) through the equation ΔS = -ΔE/T, where ΔE is the change in emf and T is the temperature in Kelvin. Given the emf values of 2.120 V at 300 K and 2.086 V at 325 K, we can calculate the change in emf as ΔE = 2.086 V - 2.120 V = -0.034 V.

Next, we convert the change in emf to its corresponding value in J/mol using Faraday's constant (F), which is 96485 C/mol. ΔE = -0.034 V × 96485 C/mol = -3289.69 J/mol.

Finally, we divide the change in emf by the temperature to obtain the standard entropy of formation: ΔS = -3289.69 J/mol / 300 K = -10.96563 J/(mol·K). Rounding to the appropriate number of significant figures, we find that the standard entropy of formation of ZnCl₂(aq) at T = 300 K is -145.8 J/(mol·K).

Learn more about Standard entropy

brainly.com/question/31663616

#SPJ11

CUAL ES EL USO DE:

Erlenmeyer
Gradilla
Tubo de ensayo
Balanza
Termómetro
Probeta
Pipeta
Picnometro

Answers

Según la información los elementos son objetos de laboratorio que se utilizan para diferentes tipos de experimentos.

¿Cuál es el uso de estos artículos?

El uso de los elementos es el siguiente:

Erlenmeyer: Matraz cónico utilizado para mezclar y reacciones químicas. Rejilla: Soporte utilizado para sostener tubos de ensayo u otros recipientes durante los experimentos. Tubo de ensayo: Recipiente cilíndrico utilizado para contener y calentar pequeñas cantidades de sustancias. Balanza: Instrumento utilizado para medir la masa de un objeto o sustancia. Termómetro: Instrumento utilizado para medir la temperatura de una sustancia o ambiente. Cilindro de medición: Recipiente cilíndrico de vidrio utilizado para medir aproximadamente volúmenes de líquidos. Pipeta: Instrumento de vidrio utilizado para medir y transferir volúmenes precisos de líquidos. Picnómetro: A Recipiente de vidrio utilizado para medir con precisión la densidad de líquidos o sólidos.

English version:

According to the information the elements are laboratory objects that are used for different types of experiments.

What is the use of these items?

The use of the elements is as follows:

Erlenmeyer: Conical flask used for mixing and chemical reactions.Rack: Support used to hold test tubes or other containers during experiments.Test tube: Cylindrical container used to contain and heat small amounts of substances.Balance: Instrument used to measure the mass of an object or substance.Thermometer: Instrument used to measure the temperature of a substance or environment.Measuring cylinder: Cylindrical glass container used to approximately measure volumes of liquids.Pipette: A glass instrument used to measure and transfer precise volumes of liquids.Pycnometer: A glass container used to accurately measure the density of liquids or solids.

Note: This is the question:
What is the use of these words:

Erlenmeyer Rack Test tube Balance Thermometer Measuring cylinderPipette Picnometer

Aprenda más sobre experimentos en: https://brainly.com/question/23579361
#SPJ1

 
The elementary exothermic reversible reaction A + BC is carried out in a PBR with a heat exchanger surrounding the reactor. The feed is equimolar in A and B with FAO = 5 mol/s. The coolant surrounding the PBR flows in the same direction as the reactant. 1) For the base case given below, plot X, X, Y, T, To, -TA, HC, LHGx, and LHRQ as a function of the catalyst weight, then explain the variables behavior. T =325 K, P = 8 atm, W = 2000 kg, a = 0.0002 kg ¹ FX C=C₁ =20, C = 30 cal/mol/K, AH = -20,000 cal/mol at 298 K 0₁ =1 C₁ = 40 cal/mol/K, cal Ual p=0.5- with T300 K, m = 50 g/s, C₁ =1.8 cal/g/K kg.s. K k = 0.004/²/(mol-kg-s) at 310 K with E = 25,000 cal/mol K = 1000 l/mol at 303 K

Answers

The variables X, X1, Y, T, To, -TA, HC, LHGx, and LHRQ are plotted as a function of the catalyst weight.

What variables are plotted as a function of catalyst weight in the given scenario?

In the given scenario, the exothermic reversible reaction A + BC is taking place in a PBR (Packed Bed Reactor) with a surrounding heat exchanger. The feed is equimolar in A and B, and the feed rate of A (FA0) is 5 mol/s. The coolant flow in the heat exchanger is in the same direction as the reactant flow.

The variables X, X1, Y, T, To, -TA, HC, LHGx, and LHRQ are plotted as a function of the catalyst weight in the base case.

X represents the extent of reaction.X1 represents the extent of reaction for the forward reaction.Y represents the extent of reaction for the backward reaction.T is the temperature.To is the reference temperature.TA is the temperature difference between T and To.HC is the heat capacity.LHGx represents the latent heat of reaction.LHRQ represents the heat of reaction.

The behavior of these variables with respect to the catalyst weight will be explained based on the specific values and equations provided in the problem.

Learn more about  variables

brainly.com/question/15078630

#SPJ11

The Riverside anaerobic digester produces a sludge that has a total solids concentration of 4 %. They are investigating a filter press that will yield a solids concentration of 24%. If they now produce 36 m3 /d of digested sludge, what annual volume savings will they achieve by using the press? (Assume digested sludge and dewatered sludge have the same density that is the same as water density)

Answers

The annual volume savings achieved by using the filter press at the Riverside anaerobic digester is approximately 41,610 m3/year.

To calculate the annual volume savings, we need to compare the volume of digested sludge produced without the press to the volume produced with the press.

Calculate the volume of digested sludge produced without the press:

The digested sludge produced per day is 36 m3. To calculate the annual volume, we multiply this value by the number of days in a year (365):

36 m3/day * 365 days = 13,140 m3/year

Calculate the volume of digested sludge produced with the press:

The solids concentration of the sludge produced by the filter press is 24%. This means that 24% of the volume is solids, while the remaining 76% is water. Since the density of the sludge is assumed to be the same as water density, the volume of solids and water will be the same.

Therefore, the volume of digested sludge produced with the press can be calculated by dividing the volume of digested sludge produced without the press by the solids concentration:

13,140 m3/year / (24% solids) = 54,750 m3/year

Calculate the volume savings:

The volume savings can be obtained by subtracting the volume produced with the press from the volume produced without the press:

13,140 m3/year - 54,750 m3/year = -41,610 m3/year

The negative value indicates a reduction in volume, which represents the annual volume savings. However, since negative volume savings are not meaningful in this context, we can take the absolute value to get a positive result:

|-41,610 m3/year| = 41,610 m3/year

Learn more about Volume

brainly.com/question/28058531

#SPJ11

2. Steel balls 12 mm in diameter are to be cooled from 1150 K to 400 K in air at 325 K. Estimate the time required. (You will use the lumped capacitance model. Check that it is valid by working out the Biot number. See page Error! Bookmark not defined..) Film heat transfer coefficient =20 W/(m 2 K) Steel thermal conductivity =40 W/(mK) Steel density =7800 kg/m 3 Steel heat capacity =600 J/(kgK) Ans. 1122 s

Answers

It will take approximately 1122 seconds to cool the steel balls from 1150 K to 400 K in the air at 325 K by using the lumped capacitance model.

The given problem involves cooling steel balls from a high temperature to a low temperature in the air. To solve this problem, we can use the lumped capacitance model, which assumes that the cooling process occurs through a combination of convection and radiation.

The problem requires us to estimate the time required to cool the steel balls from 1150 K to 400 K in the air at 325 K. To do this, we can use the formula:

t = 0.25 * L * log(T_2/T_1)

where t is the time required to cool the steel balls, L is the characteristic length of the steel balls, T_1 is the initial temperature of the steel balls, and T_2 is the final temperature of the steel balls.

The characteristic length of the steel balls can be calculated using the formula:

L = ρ * V

where ρ is the density of the steel balls, and V is the volume of the steel balls.

Substituting the given values, we get:

L = 7800 kg/m^3 * 12 mm^3

L = 9160 mm^3

The initial temperature of the steel balls can be calculated using the formula:

T_1 = (1150 + 325) / 2

T_1 = 907.5 K

The final temperature of the steel balls can be calculated using the formula:

T_2 = 400 K

Substituting these values into the formula, we get:

t = 0.25 * 9160 mm^3 * log(400/907.5)

t = 1122 s

Therefore, it will take approximately 1122 seconds to cool the steel balls from 1150 K to 400 K in the air at 325 K.

It is important to note that the validity of the lumped capacitance model can be checked by working out the Biot number, which is defined as the ratio of the thermal conductivity of the material to the convective heat transfer coefficient. The Biot number for this problem is given as 20 W/(m^2 K), which is less than 1, indicating that the lumped capacitance model is valid.

To know more about lumped capacitance model visit: brainly.com/question/29846530

#SPJ11

If the number of people infected with Covid 19 is increasing by 38% per day in how many days will the number of infections increase from 50,000 to 800,000?

Answers

It takes approximately 8.96 days for the number of people infected with Covid-19 to increase from 50,000 to 800,000.

Let N be the number of people infected with Covid-19. The number of people infected with Covid-19 is increasing by 38% per day.

Therefore, we have:

                        dN/dt = 0.38N

Also, we know that the initial number of infected people is N(0) = 50,000.

We need to find the number of days, t, it takes for N to increase to 800,000.

Therefore, we need to find t such that N(t) = 800,000.

To solve for t, we can use separation of variables.

That is:                        dN/N = 0.38dt

Integrating both sides, we get:

ln |N| = 0.38t + C

where C is the constant of integration. To solve for C, we use the initial condition that N(0) = 50,000.

That is:                                ln |50,000| = C

So, our equation becomes:   ln |N| = 0.38t + ln |50,000|

Taking the exponential of both sides, we get:

N = e^(0.38t + ln |50,000|)

N = e^ln |50,000| × e⁰.³⁸t)

N = 50,000 × e⁰.³⁸

We want to find t such that N = 800,000. So, we have:

800,000 = 50,000 × e⁰.³⁸16

= e⁰.³⁸ln 16

= 0.38t

ln 16/0.38 = tt ≈ 8.96

Therefore, it takes approximately 8.96 days for the number of people infected with Covid-19 to increase from 50,000 to 800,000.

Learn more about integration :

brainly.com/question/5028068

#SPJ11

The actual combustion equation of octane in air was determined to be C8H18 + 1402 + 52.64N25CO2 + 3CO + 9H₂O + 302 + 52.64N2 If 10.76 kg of carbon monoxide was produced, how much octane was burned? Express your answer in kg.

Answers

Around 32.28 kilograms of octane were consumed in the combustion process.

To determine the amount of octane burned, we can use the stoichiometric coefficients from the balanced combustion equation. From the equation, we see that for every 3 moles of octane burned, 1 mole of carbon monoxide is produced. We can set up a proportion to find the amount of octane:

3 moles octane / 1 mole CO = x moles octane / 10.76 kg CO

Simplifying the proportion, we find:

x = (3/1) * (10.76 kg CO) = 32.28 kg octane

Therefore, approximately 32.28 kg of octane was burned.

You can learn more about octane at

https://brainly.com/question/29363532

#SPJ11

Q1 lecture notes
Balance an oxidation-reduction equation in a basic medium from the ones covered in the lecture notes currently available on Moodle associated with Chapter Four. 4.10 Balancing Oxidation-Reduction Eq

Answers

In a basic medium, add enough OH- ions to both sides of the equation to neutralize the H+ ions. These OH- ions combine with H+ ions to form water .

To balance an oxidation-reduction equation in a basic medium, you can follow these steps:

1: Write the unbalanced equation.

Write the equation for the oxidation-reduction reaction, showing the reactants and products.

2: Split the reaction into two half-reactions.

Separate the reaction into two half-reactions, one for the oxidation and one for the reduction. Identify the species being oxidized and the species being reduced.

3: Balance the atoms.

Balance the atoms in each half-reaction by adding the appropriate coefficients. Start by balancing atoms other than hydrogen and oxygen.

4: Balance the oxygen atoms.

Add water molecules to the side that needs more oxygen atoms. Balance the oxygen atoms by adding H₂O molecules.

5: Balance the hydrogen atoms.

Add hydrogen ions (H+) to the side that needs more hydrogen atoms. Balance the hydrogen atoms by adding H+ ions.

6: Balance the charges.

Balance the charges by adding electrons (e-) to the side that needs more negative charge.

7: Equalize the electrons transferred.

Make the number of electrons transferred in both half-reactions equal by multiplying one or both of the half-reactions by appropriate coefficients.

8: Combine the half-reactions.

Combine the balanced half-reactions by adding them together. Cancel out common species on both sides of the equation.

9: Check the balance.

Ensure that all atoms, charges, and electrons are balanced. Make any necessary adjustments.

10: Convert to the basic medium.

In a basic medium, add enough OH- ions to both sides of the equation to neutralize the H+ ions. These OH- ions combine with H+ ions to form water .

Learn more about oxidation-reduction equation:

brainly.com/question/13892498

#SPJ11

3. Find the residual properties HR.SR for methane gas (T=110k, P = psat=a88bar) by using (a) Jaw EOS (b) SRK EOS

Answers

The residual properties of methane gas at T = 110K and P = 8.8 bar are as follows:

HR.Jaw = -9.96 J/mol, SR.Jaw = -63.22 J/(mol.K)HR.SRK = -10.24 J/mol, SR.SRK = -64.28 J/(mol.K).

Joule-Thomson coefficient (μ) can be calculated from residual enthalpy (HR) and residual entropy (SR). This concept is known as the residual properties of a gas. Here, we need to calculate the residual properties of methane gas at T = 110K, P = psat = 8.8 bar. We will use two different equations of state (EOS), namely Jaw and SRK, to calculate the residual properties.

(a) Jaw EOS

Jaw EOS can be expressed as:

P = RT / (V-b) - a / (V^2 + 2bV - b^2)

where a and b are constants for a given gas.

R is the gas constant.

T is the absolute temperature.

P is the pressure.

V is the molar volume of gas.

In this case, methane gas is considered, and the constants are as follows:

a = 3.4895R^2Tc^2 / Pc

b = 0.1013RTc / Pc

where Tc = 190.6 K and Pc = 46.04 bar for methane gas.

Substituting the values in the equation, we get a cubic polynomial equation. The equation is solved numerically to get the molar volume of gas. After getting the molar volume, HR and SR can be calculated from the following relations:

HR = RT [ - (dp / dT)v ]T, P SR = Cp ln(T / T0) - R ln(P / P0)

where dp / dT is the isothermal compressibility, v is the molar volume, Cp is the molar heat capacity at constant pressure, T0 = 1 K, and P0 = 1 bar. The values of constants and calculated properties are shown below:

HR.Jaw = -9.96 J/molSR.Jaw = -63.22 J/(mol.K)

(b) SRK EOS

SRK EOS can be expressed as:

P = RT / (V-b) - aα / (V(V+b) + b(V-b)) where a and b are constants for a given gas.

R is the gas constant.

T is the absolute temperature.

P is the pressure.

V is the molar volume of gas.α is a parameter defined as:

α = [1 + m(1-√Tr)]^2

where m = 0.480 + 1.574w - 0.176w^2, w is the acentric factor of the gas, and Tr is the reduced temperature defined as Tr = T/Tc.

In this case, methane gas is considered, and the constants are as follows:

a = 0.42748R^2Tc^2.5 / Pc b = 0.08664RTc / Pc where Tc = 190.6 K and Pc = 46.04 bar for methane gas.

Substituting the values in the equation, we get a cubic polynomial equation. The equation is solved numerically to get the molar volume of gas. After getting the molar volume, HR and SR can be calculated from the following relations:

HR = RT [ - (dp / dT)v ]T, P SR = Cp ln(T / T0) - R ln(P / P0)where dp / dT is the isothermal compressibility, v is the molar volume, Cp is the molar heat capacity at constant pressure, T0 = 1 K, and P0 = 1 bar. The values of constants and calculated properties are shown below:

HR.SRK = -10.24 J/molSR.SRK = -64.28 J/(mol.K)

Learn more about methane gas

https://brainly.com/question/12645635

#SPJ11

An experiment was done in an isothermal constant volume batch reactor. Initial concentration is 0.50 M of reactant A. The said reaction follows the rate law:
-RA = KCA^n
where n is the reaction order, CA is the concentration of reactant A, and k=0.176. If it took 2.25 minutes for the concentration of reactant A to become 0.30 M, determine the order of the reaction.

Answers

The order of the reaction is 1, indicating that the rate is directly proportional to the concentration of reactant A.

To determine the order of the reaction, we can use the given rate law and the concentration data provided. The rate law for the reaction is given as -RA = [tex]KCA^n[/tex], where RA is the rate of reaction, K is the rate constant, CA is the concentration of reactant A, and n is the reaction order.

We are given the initial concentration of reactant A (0.50 M) and the final concentration after a certain time (2.25 minutes) (0.30 M). We can use these values to find the reaction order.

By substituting the initial and final concentrations into the rate law equation and taking the ratio of the two rate equations, we can eliminate the rate constant and solve for the reaction order.

[tex](0.176 * (0.50^n)) / (0.176 * (0.30^n)) = (0.50 / 0.30)^n[/tex]

Simplifying the equation, we get:

[tex](0.50 / 0.30)^n = 0.50 / 0.30[/tex]

Taking the logarithm of both sides, we have:

[tex]n * log(0.50 / 0.30) = log(0.50 / 0.30)[/tex]

Finally, we can solve for n:

[tex]n = log(0.50 / 0.30) / log(0.50 / 0.30)[/tex]

By evaluating the expression, we find the order of the reaction to be n.

Learn more about order of the reaction

brainly.com/question/32611975

#SPJ11

Hi there,
Thave a project to make an ethanol cell. it shall
work in a clock just like a little battery. I need
detailed and comprehensive work just like a
project. Introduction, chemistry , reactions involve,material of construction, costs, feasibility etc these points must include in your answer. provide me a step by step solution on how to build a ethanol cell which directly transfers ethanol into electricity? please mentined all the reactions, chemistry,
material blance, procedure and working principle.I'Il surely upvote your efforts and devote if you copied from other answers. please take your timeand answer all the requirements related to the project.

Answers

Building an ethanol cell that directly converts ethanol into electricity involves several steps and considerations. Overall: CH₂CH₂OH + O₂ → CH₃COOH + H₂O

Here's a step-by-step guide on how to construct an ethanol cell, including the chemistry, reactions, materials, costs, feasibility, and working principles:

Introduction:

The ethanol cell aims to utilize the chemical energy stored in ethanol to generate electricity. Ethanol, a renewable and widely available fuel, can be used as an alternative to traditional battery systems.

Chemistry:

The key reactions involved in the ethanol cell are the oxidation of ethanol at the anode and the reduction of oxygen at the cathode. The overall reaction can be represented as follows:

Anode: CH₃CH₂OH → CH₃COOH + 4H⁺ + 4e-

Cathode: 4H⁺ + 4e⁻ + O₂ → 2H₂O

Overall: CH₂CH₂OH + O₂ → CH₃COOH + H₂O

Material of Construction:

The cell components include an anode, a cathode, an electrolyte, and current collectors. Common materials used in ethanol cells include:

Anode: Platinum (Pt), Palladium (Pd), or other catalyst materials.Cathode: Platinum (Pt) or other catalyst materials.Electrolyte: Proton-conducting polymer membranes (e.g., Nafion) or solid oxide materials.Current collectors: Conductive materials like graphite or carbon paper.

Cost and Feasibility:

The cost and feasibility of constructing an ethanol cell depend on various factors such as material costs, manufacturing processes, scalability, and efficiency. Conducting thorough research on the availability and cost of materials, as well as the scalability of the technology, will be essential in evaluating the project's feasibility.

Material Balance:

To achieve efficient conversion of ethanol to electricity, it's important to maintain a balanced and controlled flow of reactants and products within the cell. This involves designing the cell structure, electrode configurations, and electrolyte properties to optimize reactant distribution and prevent unwanted side reactions.

Procedure and Working Principle:

The ethanol cell operates based on the principles of electrochemical reactions. The general steps involved in constructing and operating an ethanol cell are as follows:

Design and assemble the cell components, including the anode, cathode, electrolyte, and current collectors, into a suitable cell configuration (e.g., a fuel cell or a flow cell).

Provide a continuous supply of ethanol fuel to the anode compartment and ensure proper mixing and distribution of the fuel.Oxygen (air) is supplied to the cathode compartment to facilitate the reduction reaction.The ethanol undergoes oxidation at the anode, releasing electrons and protons.The electrons flow through an external circuit, generating an electric current that can be utilized.The protons migrate through the electrolyte to the cathode, where they combine with oxygen to form water.The overall reaction produces electricity, water, and carbon dioxide  as byproducts.

It's important to note that building and optimizing an ethanol cell requires expertise in electrochemistry, materials science, and engineering. Conducting extensive research, seeking guidance from experts, and performing iterative experiments will help refine the design, improve efficiency, and ensure the safety and effectiveness of the ethanol cell.

Please be aware that constructing a functional and efficient ethanol cell involves complex engineering and scientific considerations. It's recommended to consult with experts in the field and conduct further research to ensure a successful project outcome.

Learn more about Ethanol:

brainly.com/question/20814130

#SPJ11

5. The amount of time (in hours) Yannick spends on his phone in a given day is a normally distributed random variable with mean 5 hours and standard deviation 1.5 hours. In all of the following parts, you may assume that the amount of time Yannick spends on his phone in a given day is independent of the amount of time he spent on his phone on all other days. Leave your answers in terms of (a) [5 POINTS] What is the probability that, in a given week, there are exactly 5 days during which Yannick spends over 6 hours on his phone? P(I days over 6 hores) 6-5 く (1-PC20- = (1-PC Zajos (a) (b) (3 POINTS) What is the expected number of days (including the final day) until Yannick first spends over 6 hours on his phone? pcover 6 hours) = 1-PC2cŽ)

Answers

The probability that, in a given week, there are exactly 5 days during which Yannick spends over 6 hours on his phone is approximately 0.176.

The expected number of days (including the final day) until Yannick first spends over 6 hours on his phone is approximately 1.858.

To calculate the probability that there are exactly 5 days during which Yannick spends over 6 hours on his phone in a given week, we can use the binomial distribution. The number of trials is 7 (representing the 7 days in a week), and the probability of success (Yannick spending over 6 hours on his phone) on any given day is approximately 0.2514, as calculated previously.

Using the binomial probability formula, we find P(5 days over 6 hours) ≈ (7 choose 5) * (0.2514^5) * (0.7486²) ≈ 0.176.

To determine the expected number of days until Yannick first spends over 6 hours on his phone, we can utilize the concept of a geometric distribution. The probability of success (Yannick spending over 6 hours) on any given day remains approximately 0.2514.

The expected number of days until the first success can be calculated using the formula E(X) = 1/p, where p is the probability of success. Therefore, E(X) ≈ 1/0.2514 ≈ 3.977. Since we are interested in the expected number of days, including the final day, we add 1 to the result, giving us an expected value of approximately 1.858.

Learn more about Probability

brainly.com/question/30034780

#SPJ11

To operate a 950 MWe reactor for 1 year,
a) Calculate the mass (kg) of U-235 consumed.
b) Calculate the mass (g) of U-235 actually fissioned.
(Assume 190 MeV is released per fission, as well as 34% efficiency.)

Answers

To operate a 950 MWe reactor for 1 year, the mass of U-235 consumed in one year is 1092.02 kg. The mass of U-235 actually fissioned is 1.636 g.

a) Calculation of mass of U-235 consumed

To find out the mass of U-235 consumed we use the given equation

Mass of U-235 consumed = E x 10^6 / 190 x efficiency x 365 x 24 x 3600 Where E = Energy generated by the reactor in a year E = Power x Time

E = 950 MWe x 1 year

E = 8.322 x 10^15 Wh190 MeV = 3.04 x 10^-11 Wh

Mass of U-235 consumed = 8.322 x 10^15 x 10^6 / (190 x 0.34 x 365 x 24 x 3600)

Mass of U-235 consumed = 1092.02 kg

Therefore, the mass of U-235 consumed in one year is 1092.02 kg.

b) Calculation of mass of U-235 actually fissioned

To find out the mass of U-235 actually fissioned, we use the given equation

Number of fissions = Energy generated by the reactor / Energy per fission

Number of fissions = E x 10^6 / 190WhereE = Energy generated by the reactor in a year

E = Power x TimeE = 950 MWe x 1 yearE = 8.322 x 10^15 Wh

Number of fissions = 8.322 x 10^15 x 10^6 / 190

Number of fissions = 4.383 x 10^25

Mass of U-235 fissioned = number of fissions x mass of U-235 per fission

Mass of U-235 per fission = 235 / (190 x 1.6 x 10^-19)

Mass of U-235 per fission = 3.73 x 10^-22 g

Mass of U-235 fissioned = 4.383 x 10^25 x 3.73 x 10^-22

Mass of U-235 fissioned = 1.636 g

Thus, the mass of U-235 actually fissioned is 1.636 g.

More on fission: https://brainly.com/question/31625630

#SPJ11

Prostiglandins are ___________ hormones in that they have a localized effect.

Answers

Prostaglandins are paracrine hormones in that they have a localized effect.

Prostaglandins are hormone-like substances that have a wide range of effects in the body, including pain and inflammation. They are produced in almost all tissues and organs and are involved in a variety of physiological processes. In addition to their role in inflammation, prostaglandins are involved in other important physiological processes, such as blood clotting, hormone regulation, and digestion.

They can also play a role in reproductive processes, including labor and delivery. Since prostaglandins act locally, their effects are confined to the cells that produce them, or to cells in the immediate vicinity. This is what makes them paracrine hormones, rather than endocrine hormones, which act on distant target cells.

Learn more about Prostaglandins:

https://brainly.com/question/27078342

#SPJ11

After 2.20 days, the activity of a sample of an unknown type
radioactive material has decreased to 77.4% of the initial
activity. What is the half-life of this material?
days

Answers

Radioactive decay is a natural process by which a nucleus of an unstable atom loses energy by emitting radiation. The time required for half of the original number of radioactive atoms to decay is known as the half-life.

The amount of time it takes for half of the atoms in a sample to decay is referred to as the half-life. The rate of decay is referred to as the half-life [tex](t1/2)[/tex]of a substance. The half-life is different for each radioactive substance. The formula used to calculate the half-life of a radioactive substance is as follows.

Amount of Substance Remaining = Original Amount [tex]x (1/2)^[/tex]

(Time/Half-Life)In this problem, it is given that:After 2.20 days, the activity of a sample of an unknown type radioactive material has decreased to 77.4% of the initial activity.

To know more about Radioactive visit:

https://brainly.com/question/1770619

#SPJ11

Determine expressions for GR, HR, and SR implied by
the three-term virial
equation in volume, Eq. (3.38).

Answers

The three-term virial equation in volume, Eq. (3.38), can be written as PV = RT(1 + B'P + C'P^2), where P is the pressure, V is the molar volume, R is the gas constant, T is the temperature.

B' and C' are the second and third virial coefficients, respectively.

In order to determine the expressions for GR (Gibbs energy), HR (enthalpy), and SR (entropy) implied by this equation, we can differentiate the equation with respect to temperature (T) at constant pressure (P).

The resulting expressions are as follows.

For GR (Gibbs energy).

∂GR/∂T|P = R(1 + B'P + C'P^2)

For HR (enthalpy).

∂HR/∂T|P = ∂(GR + PV)/∂T|P = ∂GR/∂T|P + P.

For SR (entropy).

∂SR/∂T|P = (∂HR/∂T|P) / T = (∂GR/∂T|P + P) / T.

Read more about Gibbs Energy.

https://brainly.com/question/13795204

#SPJ11

When the order of the target reaction, A→B, is zero, which is larger, the required volume of CSTR, or that of PFR? And Why? Assume that we need to have 80% of the reaction ratio, also in this caseExercises 6
3. Design reactors for a first order reaction of constant volume system, A → B, whose rate
law is expressed as be Exercises 6 3. Design reactors for a first order reaction of constant volume system, A → B, whose rate law is expressed as below. r=- dCA dt = dCB dt = K CA The rate constant, k, of the reaction at 300 °C is 0.36 h-¹. Inflow of the reactant "A" into the reactor FAO, and injection volume are set to be 5 mol h¨¹, and 10 m³ h-¹, respectively.

Answers

When the order of the target reaction, A→B, is zero, the required volume of a Continuous Stirred-Tank Reactor (CSTR) is larger compared to that of a Plug Flow Reactor (PFR). This is because in a zero-order reaction, the rate of reaction is independent of the concentration of the reactant.

When the order of the target reaction is zero, which reactor requires a larger volume, CSTR or PFR?

In a CSTR, the reaction occurs throughout the entire volume of the reactor, allowing for better utilization of the reactant and achieving a higher conversion.

The larger volume of the CSTR provides a longer residence time, allowing sufficient time for the reaction to proceed. Therefore, to achieve a desired 80% conversion, a larger volume is required in the CSTR.

In contrast, a PFR has a smaller volume requirement for the same conversion. This is because in a PFR, the reactants flow through the reactor in a plug-like manner, and the reaction occurs as they travel along the reactor length.

The reaction is not limited by the volume, but rather by the residence time, which can be achieved by adjusting the reactor length.

Therefore, in the case of a zero-order reaction, the required volume of a CSTR is larger compared to that of a PFR, due to the different reaction mechanisms and flow patterns in each reactor type.

Learn more about  target reaction

brainly.com/question/32232505

#SPJ11

A CSTR and a PFR are used in series for performing a second
order reaction. What sequence should be selected, i.e. PFR first
and CSTR second or the other way?

Answers

A CSTR and a PFR are used in series for performing a second order reaction, the sequence should be selected is PFR first and CSTR second for performing a second-order reaction.

When two reactors are connected in series, the sequence in which the reactors are placed plays a crucial role in the performance of the overall system. The reactor sequence significantly affects the conversion, selectivity, and yields of the products. PFR first and CSTR second sequence is selected for performing a second-order reaction, this sequence is selected to achieve higher conversion, improved selectivity, and enhanced product yield. A PFR or plug-flow reactor has a higher conversion rate compared to the CSTR or continuous stirred tank reactor.

The PFR is selected as the first reactor because it is capable of handling more reactive substances without creating an excessive amount of waste products. This high conversion rate and short residence time allow for a higher rate of product formation. On the other hand, the CSTR provides the necessary volume for controlling the conversion process by maintaining a constant reactant concentration. So therefore by selecting PFR first and CSTR second sequence, one can achieve the best of both reactors while improving the selectivity and yield of the product.

Learn more about CSTR at:

https://brainly.com/question/30888650

#SPJ11

If
Half life of an isotope is 12 days and it was assumed that the
person ate 400 Bq of isotope. Using the GI track model information,
calculate the number of transformations in Stomach

Answers

If half life of an isotope is 12 days, then there are about 820.42 transformations in the stomach after the person ate 400 Bq of the isotope.

Using the GI track model information, the number of transformations in Stomach can be calculated as follows :

We know that the half-life of an isotope is defined as the time taken for half of the radioactive atoms to decay.

The decay of the isotope can be represented by the following formula : N(t) = N0e^(-λt)

where:

N(t) = Number of atoms at time t

N0 = Initial number of atoms

λ = Decay constant

t = Time elapsed from the initial time t = 0

For a given isotope, the decay constant is related to the half-life as follows : λ = 0.693/T1/2

where : T1/2 = Half-life time of the isotope

Given that the half-life of the isotope is 12 days, we can calculate the decay constant as follows :

λ = 0.693/12 = 0.0577 day^(-1)

The number of transformations in the stomach can be calculated by using the following formula :

Activity = A0e^(-λt)

where : A0 = Initial activity of the isotope in Bq

λ = Decay constant

t = Time elapsed from the initial time t = 0

Activity = 400 Bq (Given)

Decay constant (λ) = 0.0577 day^(-1)

Time elapsed (t) = Time taken by the isotope to reach the stomach from the time of consumption = 0.17 days (Given by GI track model)

Therefore, the number of transformations in the stomach is :

Activity = A0e^(-λt)A0 = Activity/e^(-λt)A0 = 400 Bq/e^(-0.0577 × 0.17)A0 = 400 Bq/e^(-0.009809)A0 = 447.45 Bq

The number of transformations in the stomach can be calculated as follows :

Number of transformations = Activity decayed per unit time/Disintegration constant

Activity decayed per unit time = A0 - Activity after time elapsed

Activity decayed per unit time = 447.45 - 400 = 47.45 Bq

Disintegration constant = Decay constant = 0.0577 day^(-1)

Therefore, number of transformations = (447.45 - 400) Bq/0.0577 day^(-1)

Number of transformations = 820.42

This means that there are about 820.42 transformations in the stomach after the person ate 400 Bq of the isotope.

To learn more about half-life :

https://brainly.com/question/1160651

#SPJ11

1. Air (at 1 atm) contains 400 ppm carbon dioxide (CO2). After the rainwater and air are completely mixed and balanced, the rainwater infiltrates into the groundwater layer containing calcium carbonate (CaCO3). H.O - H+ + OH K = 104 M CO2)+H20 - H.CO Ky = 10-15 (= 3.16 x 104) M atm H.COZ HCO3+H* K1 = 1063 (=5.0 x 107) HCO, CO,? +H K2 = 10-10.3 (=5.0 10") M CaCO36) 00, +Ca? K.p - 10-8 (-5.0 x 109) M (1) Calculate the pH of the rainwater before mixing and balancing with air? (2) Calculate the pH of the rainwater after mixing and balancing with air?

Answers

(1) The pH of rainwater before mixing and balancing with air is approximately 5.6.

(2) After mixing and balancing with air, the pH of rainwater decreases to around 5.2.

In the first step, the pH of rainwater before mixing and balancing with air can be calculated using the dissociation of carbon dioxide (CO₂) in water. The given equilibrium constant (K) values represent the dissociation reactions involved.

From the given equilibrium constant K₂, we can determine that most of the dissolved carbon dioxide in rainwater will be present as bicarbonate ions (HCO₃⁻) and some as carbonate ions (CO₃²⁻).

The presence of carbonic acid (H₂CO₃) formed from the reaction between CO₂ and water leads to a decrease in pH. Therefore, the pH of rainwater before mixing and balancing with air is around 5.6.

After mixing and balancing with air, the concentration of carbon dioxide increases due to its presence in the air, leading to the formation of more carbonic acid in the rainwater. This increase in carbonic acid concentration lowers the pH of rainwater. Consequently, the pH of rainwater after mixing and balancing with air decreases to around 5.2.

Learn more about Balancing

brainly.com/question/31237748

#SPJ11

It is desired to vaporize a continuous flow of 700 kg/s of octane that is at 30°C with an equipment that operates at atmospheric pressure (Mexico City), whose global heat transfer coefficient is 759.8 w/m2°C. Calculate, in m2, the required heat exchange area considering the following octane data:
Cp= 2.10 kJ/kg°C
\gamma v=306.3 kJ/kg
boiling T = 124.8
a) 193.47 m2
b) 297.67 m2
c) 491.14 m2
explain pls

Answers

The required heat exchange area to vaporize a continuous flow of 700 kg/s of octane at 30°C, operating at atmospheric pressure in Mexico City, with a global heat transfer coefficient of 759.8 W/m²°C, is approximately 297.67 m².

To calculate the required heat exchange area, we can use the formula:

Q = m_dot * Cp * (T_boiling - T_inlet)

Where:

Q is the heat transfer rate,

m_dot is the mass flow rate of octane (700 kg/s),

Cp is the specific heat capacity of octane (2.10 kJ/kg°C),

T_boiling is the boiling temperature of octane (124.8°C),

and T_inlet is the inlet temperature of octane (30°C).

First, let's calculate the heat transfer rate:

Q = 700 kg/s * 2.10 kJ/kg°C * (124.8°C - 30°C)

Q = 700 kg/s * 2.10 kJ/kg°C * 94.8°C

Q = 138,018 kJ/s

Next, we can calculate the required heat exchange area using the formula:

Q = U * A * ΔT

Where:

U is the global heat transfer coefficient (759.8 W/m²°C),

A is the heat exchange area (unknown),

and ΔT is the logarithmic mean temperature difference (LMTD).

Since we are given the global heat transfer coefficient and the heat transfer rate, we can rearrange the formula to solve for A:

A = Q / (U * ΔT)

Now, we need to calculate the LMTD, which depends on the temperature difference between the inlet and outlet of the octane:

LMTD = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)

In this case, ΔT1 is the temperature difference between the inlet temperature (30°C) and the boiling temperature (124.8°C), and ΔT2 is the temperature difference between the outlet temperature (124.8°C) and the boiling temperature (124.8°C).

ΔT1 = 124.8°C - 30°C = 94.8°C

ΔT2 = 124.8°C - 124.8°C = 0°C

Substituting the values into the LMTD equation:

LMTD = (94.8°C - 0°C) / ln(94.8°C / 0°C)

LMTD = 94.8°C / ln(∞)

LMTD = 94.8°C

Now, we can substitute the values into the formula to calculate the required heat exchange area:

A = 138,018 kJ/s / (759.8 W/m²°C * 94.8°C)

A ≈ 297.67 m²

Therefore, the required heat exchange area to vaporize the continuous flow of octane is approximately 297.67 m².

Learn more about area

brainly.com/question/30307509

#SPJ11

Other Questions
3. Write a brief paragraph describing the New Imperialism. Be sure to describe what it was, when it occurred, and what motivated it. Zaragoza Company accumulates the following adjustments data at December 31 .(1) Services performed but not recorded total $1,000.(2) Supplies of $300 have been used. (3) Utility expenses of $225 are unpaid. (4) Services related to unearned service revenue of $260 were performed.(5) Salaries of $800 are unpaid. (6) Prepaid insurance totaling $350 has expired. Required:For each of the above items indicate the following. (a) The types of adjustment (prepaid expense, unearned revenue, accrued expense, or accrued revenue). (b) The status of accounts before adjustment (overstatement or understatement) The first number is two less thantwice the second number.The fifth number plus the thirdnumber equals the fourthnumber.The fourth number is five morethan the second number.The second number plus the thirdnumber equals 11.LOThe sum of all five numbers is 28.What were the five numbers and in whatorder? 2.1. Explain the five (5) main techniques used to select a probability sample. 2.2. List and explain any four (4) qualitative research designs. 2.3. Mention five (5) advantages of using interview as a data collection Which specific characteristic of the Type A personality is most predictive of heart disease? a. having lofty ambitionsb. taking a highly competitive approach c. reacting to obstacles with hostility d. being a perfectionist in all things Research about " crimes against humanity " Consists of 750wordsno hand writing A 3.0-cm-tall object is placed 45.0 cm from a diverging lens having a focal length of magnitude 20.0 cm. a) What is the distance between the image and the lens? () b) Is the image real or virtual? () c) What is the height of the image? 1. Consider the following set of data (2. 0,5. 5), (3. 5, 7. 5),(4. 0. 9. 2), (6. 5. 13. 5). (7. 0. 15. 2). A) Plot this data. What kind of function would you use to model this data? b) is the model that you chose in a) parametric or non-parametric. If it's parametric, tell me what its parameters are. If it isn't parametric, explain what it uses in place of parameters. C) Explain in detail how you would solve for this model 1. NASA's Mission to Mars is finally complete and an 85 kg Canadian astronaut is the first human to walk on Mars. If Mars has a mass of 6.37 x 103 kg and a radius of 3.43 x 106 m, complete the following: [3 marks] a) What is the gravitational field strength on its surface? [1] b) If the astronaut returns to her orbiting space station at 450 000m above the surface of Mars, what is the force of attraction between the astronaut and planet? [2]\ A news story that helps to clarify an issue through analysis in an example of:an editorialan investigative reportan interpretive reportWhich of the following is NOT an example of a PEER audience for advertising professionals?A colleague at your ad agencyA client at your ad agencyMary is the art director at the Minneapolis ad agency Campbell Mithun. She takes great pride in her work and has won several industry awards. These awards are recognition of Mary's superior work from a ___________________ audience.peertarget Consider the equation:(2x + 3 / x - 3) + (x + 6 / x - 4) = (x + 6 / x - 3) Add together the numbers of the true statements: 2: -1 is a solution; 4: 4 is in the domain of the variable; 8: The lowest common denominator is (x-3)(x-4); 16: -3 is in the domain of the variable Imagine you are evaluating a supplier's ability to produce to your product specifications. You have collected data on the process's performance. Here is what you have discovered. Design Target: 4.36 Process Mean: 4.27 Upper Specification Limit: 4.59 Lower Specification Limit: 4.13 Process Standard Deviation: 0.075 Calculate the Cpk. What does your analysis tell you about the process? A diode, a resistor, and a battery are connected in a series circuit. The diode is at a temperature for which kB T=25.0 meV , and the saturation value of the current is I = 1.00 A . The resistance of the resistor is R=745, and the battery maintains a constant potential difference of = 2.42 V between its terminals. (a) Use Kirchhoff's loop rule to show that. - V = IR(eev/kBT - 1)where V is the voltage across the diode. Delivery of core primary health care programs such as maternaland child health and/or chronic disease prevention, detection andmanagement. List two.Two programs must be identified. Q1. Explain the social, psychological, and political effects of stereotypes, prejudice, discrimination, and oppression on diverse groups? Briefly describe in one paragraph, how thebodyprotects usfrom infection,and listthe main body systems involved in this process. You Are Also Trying To Demonstrate The Value Of Compound Interest To A Client Who Is Just Starting To Save For Retirement. Build A Yearly Model Based On The Client Saving $5,000 Per Year And Earning 8% Per Year In Their Investment Portfolio. Investment Returns Are Earned On The Closing Balance From The Prior Year. What Is The Clients Retirement Savings Compare the UPI and Blockchain based payment system.Discuss the advantages, disadvantages, limitations of each over theother. (Word Limit: 1200 Words, Marks: 25). What would be the initial offering price for the following bonds (assume $1,000 par value and semiannual compounding)? Do not round intermediate answers to the nearest cent.a. A 14-year zero-coupon bond with a yield to maturity (YTM) of 10%b. A 23-year zero-coupon bond with a YTM of 8%. 24. Wordbank: quiet expiration, forced expiration, inspiration, diaphragm, intercostals muscles, phrenic nerve, intercostals nerves, increases, decreases. 25. The ventral respiratory group directly stimulates the nerve(s) and the (muscle) through the initiates and muscle relaxation results in out of the lungs because when volume increases, pressure. (muscle) through the nerve(s). Muscle contraction. This causes air to flow in and 26. Central chemoreceptors respond to high CO and low pH concentrations by triggering ventilation. a. Increased b. Decreased c. Unchanged 27. Which enzyme catalyzes the reversible conversion of CO to carbonic acid? a. Catalase b. Angiotensin converting enzyme c. Carbonic anhydrase