Using Ohm's law, we know that V = IR where V is voltage, I is current, and R is resistance.
In this problem, we are given the voltage and resistance of the resistor. So we can use the formula to calculate the current:
I = V/R So,
we can calculate the current in the 6.00 Ω resistor by dividing the voltage of 49.07 V by the resistance of 6.00 Ω.
I = 49.07 V / 6.00 ΩI = 8.18 A.
The current in the 6.00 Ω resistor is 8.18 A.
Learn more about resistors and current https://brainly.com/question/24858512
#SPJ11
8. A child in a boat throws a 5.30-kg package out horizon- tally with a speed of 10.0 ms, Fig. 7-31. Calculate the velocity of the boat immediately after, assuming it was initially at rest. The mass of the child is 24.0 kg and the mass of the boat is 35.0 kg. (Chapter 7)
The velocity of the boat immediately after the package is thrown is approximately -1.52 m/s in the opposite direction.
To solve this problem, we can apply the principle of conservation of momentum. The total momentum before the package is thrown is zero since the boat and the child are initially at rest. After the package is thrown, the total momentum of the system (boat, child, and package) must still be zero.
Given:
Mass of the package (m1) = 5.30 kg
Speed of the package (v1) = 10.0 m/s
Mass of the child (m2) = 24.0 kg
Mass of the boat (m3) = 35.0 kg
Let the velocity of the boat after the package is thrown be v3.
Applying the conservation of momentum:
(m1 + m2 + m3) * 0 = m1 * v1 + m2 * 0 + m3 * v3
(5.30 kg + 24.0 kg + 35.0 kg) * 0 = 5.30 kg * 10.0 m/s + 24.0 kg * 0 + 35.0 kg * v3
0 = 53.3 kg * m/s + 35.0 kg * v3
35.0 kg * v3 = -53.3 kg * m/s
v3 = (-53.3 kg * m/s) / 35.0 kg
v3 ≈ -1.52 m/s
The negative sign indicates that the boat moves in the opposite direction to the thrown package. Therefore, the velocity of the boat immediately after the package is thrown is approximately -1.52 m/s.
To know more about velocity, click here:
brainly.com/question/30559316
#SPJ11
What resistance R should be connected in series with an inductance L = 202 mH and capacitance C = 13.6F for the maximum charge on the capacitor to decay to 95.1% of its initial value in 52.0 cycles? (
For the maximum charge on the capacitor to decay to 95.1% of its initial value in 52.0 cycles is 3.64 Ω.
The expression to find the resistance R that should be connected in series with an inductance L = 202 mH and capacitance C = 13.6F for the maximum charge on the capacitor to decay to 95.1% of its initial value in 52.0 cycles is provided below. Let us first derive the formula that will aid us in calculating the resistance R and subsequently find the answer.
ExpressionR = 1/(2 * π * f * C) * ln(1/x)
Where, x = percentage of the charge remaining after n cycles= 95.1% (given),= 0.951n = number of cycles = 52.0 cycles, f = 1/T (T is the time period), L = 202 mH, C = 13.6F
Formula for the time period T:T = 2 * π * √(L * C)
From the above formula, T = 2 * π * √(202 × 10⁻⁶ * 13.6 × 10⁻⁶)≈ 0.0018 seconds = 1.8 ms
Formula to find frequency f:f = 1/T= 1/1.8 × 10⁻³≈ 555.5 Hz
Substitute the value of x, n, C, and f in the expression above.R = 1/(2 * π * f * C) * ln(1/x)R = 1/(2 * π * 555.5 * 13.6 × 10⁻⁶) * ln(1/0.951⁵²)≈ 3.64 Ω
Therefore, the resistance R that should be connected in series with an inductance L = 202 mH and capacitance C = 13.6F
To know more about capacitor :
https://brainly.com/question/31627158
#SPJ11
5.Assume Young's modulus for bone is 1.50 x 1010 N/m2. The bone breaks if stress greater than 1.50x 108 N/m2 is imposed on it. a. What is the maximum force that can be exerted on the femur bone in the leg if it has a minimum effective diameter of 2.50 cm? b.If this much force is applied compressively, by how much does the 25.0-cm-long bone shorten?
The maximum force that can be exerted on the femur bone in the leg if it has a minimum effective diameter of 2.50 cm is 2.95 x 10³ N. The change in length of the femur bone is [tex]$1.68 \times 10^{-6} m.[/tex]
The change in length of the femur bone can be found using the formula;
[tex]$$\Delta L = \frac{F\times L}{A\times Y}$$[/tex]
Where;ΔL is the change in length
F is the force applied
L is the original length of the bone
A is the cross-sectional area of the bone
Y is Young’s modulus
Rearranging the formula to solve for ΔL, we get:
[tex]$$\Delta L = \frac{F\times L}{A\times Y}$$$$\Delta L = \frac{F\times L}{\frac{\pi d^2}{4} \times Y}$$[/tex]
Substituting the given values:
[tex]ΔL = $\frac{2.95 \times 10^3 \text{N} \times 25.0 \text{ cm}}{\frac{\pi(2.50\text{ cm})^2}{4} \times 1.50 \times 10^{10} \text{N/m²}}[/tex]
[tex]$$\Delta L = 1.68 \times 10^{-4}\text{ cm}\\$$\Delta L = 1.68 \times 10^{-6}\text{ m}[/tex]
The bone shortens by [tex]$$\Delta L = 1.68 \times 10^{-6}\text{ m}[/tex]
To know more about femur visit:
https://brainly.com/question/28891315
#SPJ11
A particular solid can be modeled as a collection of atoms connected by springs (this is called the Einstein model of a solid). In each
direction the atom can vibrate, the effective spring constant can be taken to be 3.5 N/m. The mass of one mole of this solid is 750 g
How much energy, in joules, is in one quantum of energy for this solid?
A particular solid can be modeled as a collection of atoms connected by springs (this is called the Einstein model of a solid). In each direction the atom can vibrate, the effective spring constant can be taken to be 3.5 N/m.
The mass of one mole of this solid is 750 g. The aim is to determine how much energy, in joules, is in one quantum of energy for this solid. Therefore, according to the Einstein model, the energy E of a single quantum of energy in a solid of frequency v isE = hνwhere h is Planck's constant, v is the frequency, and ν = (3k/m)1/2/2π is the vibration frequency of the atoms in the solid. Let's start by converting the mass of the solid from grams to kilograms.
Mass of one mole of solid = 750 g or 0.75 kgVibration frequency = ν = (3k/m)1/2/2πwhere k is the spring constant and m is the mass per atom = (1/6.02 × 10²³) × 0.75 kgThe frequency is given as ν = (3 × 3.5 N/m / (1.6605 × 10⁻²⁷ kg))1/2/2π= 1.54 × 10¹² s⁻¹The energy of a single quantum of energy in the solid isE = hνwhere h = 6.626 × 10⁻³⁴ J s is Planck's constant.
To know more about collection visit:
https://brainly.com/question/32464115
#SPJ11
24). If you were to treat a maglev train (1 = 120 m, m= 75,000 kg)) as a long wire and wanted to levitate it with magnetic force, how strong would the magnetic field have to be to support the weight of the train? Assume the current running through the train is 500 A. 25). You have two polarizers that are tilted 45° w.ct each other. The initial intensity of light is 1050 W/m². What is / after light passes through the two polarizers? If you now put a third polarizer that is tilted at 23°w.rt the first polarizer, what is the final value of l?
The magnetic field has to be 122.5 × 10⁻⁴ T to support the weight of the maglev train. The final intensity of light is 57.9 W/m² after it passes through the three polarizers.
24) Maglev trains are those trains which work on the principle of magnetic levitation. Magnetic levitation is a phenomenon by which an object is suspended above a surface without any physical support from below. In the case of maglev trains, this is achieved by the use of strong electromagnets which repel the metal rails and keep the train afloat.
If we assume the maglev train to be like a long wire, then it is experiencing a force due to the magnetic field produced by the current flowing through it and the magnetic field of the earth. The magnetic force can be calculated as below:
F = BIL, where
F = magnetic force
B = magnetic field
I = current
L = length of the conductor
Substituting the values in the above formula, we get
F = B × 500 × 120= 60,000 B
As the train is levitating, the magnetic force experienced by the train is equal to its weight. Therefore,60,000 B = mg ⇒ B = \(\frac{mg}{60000}\)
where m = mass of the train = 75,000 kg, g = acceleration due to gravity = 9.8 m/s²B = \(\frac{75000 × 9.8}{60000}\) = 122.5 × 10⁻⁴ T
Thus, the magnetic field has to be 122.5 × 10⁻⁴ T to support the weight of the maglev train.
25)The intensity of light after it passes through the first polarizer is given by:
I₁ = I₀cos² θ, where, I₀ = initial intensity of the light, θ = angle between the polarizer and the plane of polarization,
I₀ = 1050 W/m²θ = 45°I₁ = 1050 × cos² 45°= 525 W/m²
The intensity of light after it passes through the second polarizer is given by:
I₂ = I₁cos² φ, where φ = angle between the second polarizer and the plane of polarization
I₁ = 525 W/m²φ = 45°I₂ = 525 × cos² 45°= 262.5 W/m²
Now, a third polarizer is added, which is tilted at 23° w.r.t the first polarizer.
Therefore, the angle between the third polarizer and the second polarizer is 68° (45° + 23°).
The intensity of light after it passes through the third polarizer is given by:
I₃ = I₂cos² ω, where ω = angle between the third polarizer and the plane of polarization
I₂ = 262.5 W/m²ω = 68°I₃ = 262.5 × cos² 68°= 57.9 W/m²
Therefore, the final intensity of light is 57.9 W/m² after it passes through the three polarizers.
Learn more about magnetic field at: https://brainly.com/question/14411049
#SPJ11
A U-shaped tube, open to the air on both ends, contains mercury. Water is poured into the left arm until the water column is 17.8 cm deep.
How far upward from its initial position does the mercury in the right arm rise?
Mercury in the right arm can rise upto [tex](1000 kg/m³ / 13600 kg/m³) *[/tex]0.178 m.
In a U-shaped tube open to the air, the pressure at any horizontal level is the same on both sides of the tube. This is due to the atmospheric pressure acting on the open ends of the tube.
When water is poured into the left arm, it exerts a pressure on the mercury column in the right arm, causing it to rise. The pressure exerted by the water column can be calculated using the hydrostatic pressure formula:
P = ρgh
where P is the pressure, ρ is the density of the liquid, g is the acceleration due to gravity, and h is the height of the liquid column.
In this case, the liquid in the left arm is water, and the liquid in the right arm is mercury. The density of water (ρ_water) is approximately 1000 kg/m³, and the density of mercury (ρ_mercury) is approximately 13600 kg/m³.
The water column is 17.8 cm deep, we can calculate the pressure exerted by the water on the mercury column:
[tex]P_water = ρ_water * g * h_water[/tex]
[tex]where h_water = 17.8 cm = 0.178 m.[/tex]
Now, since the pressure is the same on both sides of the U-shaped tube, the pressure exerted by the mercury column (P_mercury) can be equated to the pressure exerted by the water column:
P_mercury = P_water
Using the same formula for the pressure and the density of mercury, we can solve for the height of the mercury column (h_mercury):
P_mercury = ρ_mercury * g * h_mercury
Since P_mercury = P_water and ρ_water, g are known, we can solve for h_mercury:
[tex]ρ_water * g * h_water = ρ_mercury * g * h_mercury[/tex]
[tex]h_mercury = (ρ_water / ρ_mercury) * h_water[/tex]
Substituting the given values:
[tex]h_mercury = (1000 kg/m³ / 13600 kg/m³) * 0.178 m[/tex]
Now, we can calculate the numerical value of the height of the mercury column (h_mercury).
Learn more about numerical value from the given link
https://brainly.com/question/27922641
#SPJ11
Displacement vector À points due east and has a magnitude of 1.49 km. Displacement vector B points due north and has a magnitude of 9.31 km. Displacement vector & points due west and has a magnitude of 6.63 km. Displacement vector # points due south and has a magnitude of 2.32 km. Find (a) the magnitude of the resultant vector À + B + © + D , and (b) its direction as a
positive angle relative to due west.
(a) The magnitude of the resultant vector À + B + & + # is approximately 8.67 km.
(b) The direction of the resultant vector, measured as a positive angle relative to due west, is approximately 128.2 degrees.
To find the magnitude and direction of the resultant vector, we can use vector addition.
Magnitude of vector À = 1.49 km (due east)
Magnitude of vector B = 9.31 km (due north)
Magnitude of vector & = 6.63 km (due west)
Magnitude of vector # = 2.32 km (due south)
(a) Magnitude of the resultant vector À + B + & + #:
To find the magnitude of the resultant vector, we can square each component, sum them, and take the square root:
Resultant magnitude = sqrt((Ax + Bx + &x + #x)^2 + (Ay + By + &y + #y)^2)
Here, Ax = 1.49 km (east), Ay = 0 km (no north/south component)
Bx = 0 km (no east/west component), By = 9.31 km (north)
&x = -6.63 km (west), &y = 0 km (no north/south component)
#x = 0 km (no east/west component), #y = -2.32 km (south)
Resultant magnitude = sqrt((1.49 km + 0 km - 6.63 km + 0 km)^2 + (0 km + 9.31 km + 0 km - 2.32 km)^2)
Resultant magnitude = sqrt((-5.14 km)^2 + (6.99 km)^2)
Resultant magnitude ≈ sqrt(26.4196 km^2 + 48.8601 km^2)
Resultant magnitude ≈ sqrt(75.2797 km^2)
Resultant magnitude ≈ 8.67 km
Therefore, the magnitude of the resultant vector À + B + & + # is approximately 8.67 km.
(b) Direction of the resultant vector:
To find the direction, we can calculate the angle with respect to due west.
Resultant angle = atan((Ay + By + &y + #y) / (Ax + Bx + &x + #x))
Resultant angle = atan((0 km + 9.31 km + 0 km - 2.32 km) / (1.49 km + 0 km - 6.63 km + 0 km))
Resultant angle = atan(6.99 km / -5.14 km)
Resultant angle ≈ -51.8 degrees
Since we are measuring the angle relative to due west, we take the positive angle, which is 180 degrees - 51.8 degrees.
Resultant angle ≈ 128.2 degrees
Therefore, the direction of the resultant vector À + B + & + #, measured as a positive angle relative to due west, is approximately 128.2 degrees.
Learn more about Displacement vectors at https://brainly.com/question/12006588
#SPJ11
A semiconductor has a lattice constant a 5.45 Å. The maximum energy of the valence band occurs at k=0 (the I point). The minimum energy of the conduction band is 2.24 eV higher (at 300K) and occurs at the X point i.e. kx = /a. The conduction band minimum at k=0 is 2.78 eV higher (at 300K) than the valence band maximum at k=0. c) Show that an electron in the valence band at the I point cannot make a transition to the conduction band minimum at the X point by absorption of a 2.24 eV photon alone. {4}
The energy of a photon (1.14 x 10^3 eV) is higher than the required energy difference (0.54 eV), preventing the transition.
An electron in the valence band at the I point cannot transition to the conduction band minimum at the X point solely by absorbing a 2.24 eV photon. The energy difference between the valence band maximum at the I point and the conduction band minimum at the X point is 2.78 eV. However, the energy of the photon is 2.24 eV, which is insufficient to bridge this energy gap and promote the electron to the conduction band.
The energy required for the transition is determined by the energy difference between the initial and final states. In this case, the energy difference of 2.78 eV indicates that a higher energy photon is necessary to enable the electron to move from the valence band at the I point to the conduction band minimum at the X point.
Therefore, the electron in the valence band cannot undergo a direct transition to the conduction band minimum at the X point solely through the absorption of a 2.24 eV photon. Additional energy or alternative mechanisms are needed for the electron to reach the conduction band minimum.
To know more about electron, click here:
brainly.com/question/1255220
#SPJ11
The following three questions relate to the following information: The fundamental frequency of a string 2.40 m long, fixed at both ends, is 22.5 Hz. What is the wavelength
of the wave in the string at its fundamental frequency?
(a) 0.11 m
(b) 1.20 m
(c) 2.40 m
(d) 4.80 m
Wavelength of the wave in the string at its fundamental frequency is (c) 2.40 m.
The wave speed of the wave in a string can be written as v = fλ
where v is the velocity of the wave in the string, f is the frequency of the wave in the string, and λ is the wavelength of the wave in the string.
For a string with length L fixed at both ends, the fundamental frequency can be written as f = v/2L
where v is the velocity of the wave in the string, and L is the length of the string.
The wavelength of the wave in the string can be found using
v = fλ⟹λ = v/f
where λ is the wavelength of the wave in the string, v is the velocity of the wave in the string, and f is the frequency of the wave in the string.
The wavelength of the wave in the string at its fundamental frequency is
λ = v/f = 2L/f
Given: L = 2.40 m, f = 22.5 Hz
We know that,
λ = 2L/fλ = (2 × 2.40 m)/22.5 Hz
λ = 0.2133 m or 21.33 cm or 2.40 m (approx.)
Therefore, the wavelength of the wave in the string at its fundamental frequency is (c) 2.40 m.
Learn more about "fundamental frequency" refer to the link : https://brainly.com/question/31045817
#SPJ11
what is the force of gravitational attraction between a ball with
mass 86kg and hand with mass 4.4 kg given they are .57m away from
each other
The force of gravitational attraction between the ball and the hand is approximately 2.6348 x 10^-7 Newtons.
To calculate the force of gravitational attraction between the ball and the hand, we can use the formula:
F = (G * m1 * m2) / r^2
where F is the force of gravitational attraction, G is the gravitational constant (approximately 6.67430 x 10^-11 N*m^2/kg^2), m1 is the mass of the ball (86 kg), m2 is the mass of the hand (4.4 kg), and r is the distance between them (0.57 m).
Plugging in the values, we get:
F = (6.67430 x 10^-11 N*m^2/kg^2 * 86 kg * 4.4 kg) / (0.57 m)^2
Calculating this expression gives us:
F = 2.6348 x 10^-7 N
Therefore, the force of gravitational attraction between the ball and the hand is approximately 2.6348 x 10^-7 Newtons.
Learn more about gravitational attraction: https://brainly.com/question/15090289
#SPJ11
Required information Sheena can row a boat at 2.00 mi/h in still water. She needs to cross a river that is 1.20 mi wide with a current flowing at 1.80 mi/h. Not having her calculator ready, she guesses that to go straight across, she should head upstream at an angle of 25.0* from the direction straight across the river. In order to go straight across, what angle upstream should she have headed?
Sheena should have headed upstream at an angle of approximately 42.99° in order to go straight across the river.
Let's consider the velocities involved in this scenario. Sheena's velocity in still water is given as 2.00 mi/h, and the velocity of the river current is 1.80 mi/h.
To determine the resultant velocity required for the boat to move straight across the river, we can use vector addition. The magnitude of the resultant velocity can be found using the Pythagorean theorem:
Resultant velocity = [tex]\sqrt{(velocity of the boat)^2 + (velocity of the current)^2}[/tex].
Substituting the given values, we have:
Resultant velocity = [tex]\sqrt{(2.00^2 + 1.80^2)}\approx2.66 mi/h.[/tex]
Now, let's determine the angle upstream that Sheena should have headed. We can use trigonometry and the tangent function. The tangent of the angle upstream can be calculated as:
tan(angle upstream) = [tex]\frac{(velocity of the current) }{(velocity of the boat)}[/tex].
Substituting the given values, we have:
tan(angle upstream) = [tex]\frac{1.80}{2.00} = 0.9[/tex].
To find the angle upstream, we can take the inverse tangent (arctan) of both sides:
angle upstream ≈ arctan(0.9) ≈ 42.99°.
Therefore, Sheena should have headed upstream at an angle of approximately 42.99° in order to go straight across the river.
Learn more about upstream here: brainly.com/question/29574700
#SPJ11
Copper is a better conducting material than aluminum. If you had a copper wire and an aluminum wire that had the same resistance, what are two possible differences between the wires?
Copper is a better conducting material than aluminum. If you had a copper wire and an aluminum wire that had the same resistance, two possible differences between the wires are given below:
1. Copper wire is thicker than aluminum wire: If a copper wire has the same resistance as an aluminum wire, then the copper wire will have a smaller length and more cross-sectional area than the aluminum wire. This means that the copper wire will be thicker than the aluminum wire. Since the thickness of a wire is proportional to its ability to carry electrical current, the copper wire will be able to conduct more current than the aluminum wire.
2. Aluminum wire has more resistance per unit length than copper wire: It means that if two wires are of equal length, the aluminum wire will have a higher resistance than the copper wire. This is because aluminum is less conductive than copper, and its resistivity is higher than copper. Therefore, an aluminum wire of the same length and thickness as a copper wire will have a higher resistance than the copper wire.
Let's learn more about Copper :
https://brainly.com/question/13677872
#SPJ11
show work please! Also please answer all the questions they all
have to do with # 49!
49) (and the next 4 questions) In the figure the mass m (attached to a massless string) is traveling with speed u, in a circle of radius The angular momentum of the mass is a) mu?/ b) mur c) mu/ d) mu
The angular momentum of the mass traveling in a circle with radius r and speed u is given by mu*r, where m is the mass of the object and u is its linear velocity.Thus, the correct option is (a).
Angular momentum is a vector quantity defined as the cross product of the position vector and the linear momentum of an object. In the case of circular motion, the angular momentum can be calculated as the product of the linear momentum and the radius of the circular path.
The linear momentum of the object is given by mv, where m is the mass of the object and v is its linear velocity. Since the mass is traveling in a circle of radius r, the linear velocity can be related to the angular velocity ω using the equation v = ωr.
Substituting the expression for linear velocity into the equation for linear momentum, we have mv = m(ωr) = mu*r.
Therefore, the angular momentum of the mass traveling in a circle is given by mu*r.
Hence, the correct option is (a) mu*r.
Learn more about momentum here: brainly.com/question/18798405
#SPJ11
A 190,000 kg space probe is landing on an alien planet with a gravitational acceleration of 5.00. If its fuel is ejected from the rocket motor at 40,000 m/s what must the mass rate of change of the space ship (delta m)/( delta t ) be to achieve at upward acceleration of 2.50 m/s ^ 2 ?
A roller coaster cart of mass 114.0 kg is pushed against a launcher spring with spring constant 550.0 N/m compressing it by 11.0 m in the process. When the roller coaster is released from rest the spring pushes it along the track (assume no friction in cart bearings or axles and no rolling friction between wheels and rail). The roller coaster then encounters a series of curved inclines and declines and eventually comes to a horizontal section where it has a velocity 7.0 m/s. How far above or below (vertical displacement) the starting level is this second (flat) level? If lower include a negative sign with the magnitude.
The mass rate of change of the space ship is 190,000 kg/s and the required displacement is 8.88 m (upwards).
Question 1A The space probe lands on an alien planet with a gravitational acceleration of 5.00 m/s².
Now, the upward acceleration required is 2.50 m/s². Hence, the required acceleration can be calculated as:
∆v/∆t = a Where,
∆v = change in velocity = 40,000 m/s
a = acceleration = 2.50 m/s²
∆t can be calculated as:
∆t = ∆v/a
= 40,000/2.5
= 16,000 seconds
Therefore, the mass rate of change of the space ship is calculated as:
∆m/∆t = (F/a)
Where, F = force
= m × a
F = (190,000 kg) × (2.5 m/s²)
F = 475,000 N
∆m/∆t = (F/a)∆m/∆t
= (475,000 N) / (2.5 m/s²)
∆m/∆t = 190,000 kg/s
Question 2 Mass of the roller coaster, m = 114 kg
Spring constant, k = 550 N/m
Compression, x = 11.0 m
Initial velocity of the roller coaster, u = 0
Final velocity of the roller coaster, v = 7.0 m/s
At point A (Start)
Potential Energy + Kinetic Energy = Total Energy
[tex]1/2 kx^2+ 0 = 1/2 mv^2 + mgh[/tex]
[tex]0 + 0 = 1/2 \times 114 \times 7^2 + 114 \times g \times h[/tex]
[tex]1/2 \times 114 \times 7^2 + 0 = 114 \times 9.8 \times h[/tex]
h = 16.43 m
At point B (End)
Potential Energy + Kinetic Energy = Total Energy
[tex]0 + 1/2 \ mv^2 = 1/2 \ mv^2 + mgh[/tex]
[tex]0 + 1/2 \times 114 \times 7^2= 0 + 114 \times 9.8 \times h[/tex]
h = -7.55 m
So, the vertical displacement is 16.43 m - 7.55 m = 8.88 m (upwards)
Therefore, the required displacement is 8.88 m (upwards).
To know more about mass rate of change, visit:
https://brainly.com/question/25305859
#SPJ11
The vertical displacement from the starting level to the second (flat) level.
To determine the mass rate of change of the space ship (Δm/Δt) needed to achieve an upward acceleration of 2.50 m/s², we can use the rocket equation, which states:
Δv = (ve * ln(m0 / mf))
Where:
Δv is the desired change in velocity (2.50 m/s² in the upward direction),
ve is the exhaust velocity of the fuel (40,000 m/s),
m0 is the initial mass of the space probe (190,000 kg + fuel mass),
mf is the final mass of the space probe (190,000 kg).
Rearranging the equation, we get:
Δm = m0 - mf = m0 * (1 - e^(Δv / ve))
To find the mass rate of change, we divide Δm by the time it takes to achieve the desired acceleration:
(Δm / Δt) = (m0 * (1 - e^(Δv / ve))) / t
To determine the vertical displacement of the roller coaster from its starting level when it reaches the second (flat) level with a velocity of 7.0 m/s, we can use the conservation of mechanical energy. At the starting level, the only form of energy is the potential energy stored in the compressed spring, which is then converted into kinetic energy at the second level.
Potential energy at the starting level = Kinetic energy at the second level
0.5 * k * x^2 = 0.5 * m * v^2
where:
k is the spring constant (550.0 N/m),
x is the compression of the spring (11.0 m),
m is the mass of the roller coaster cart (114.0 kg),
v is the velocity at the second level (7.0 m/s).
Plugging in the values:
0.5 * (550.0 N/m) * (11.0 m)^2 = 0.5 * (114.0 kg) * (7.0 m/s)^2
Solving this equation will give us the vertical displacement from the starting level to the second (flat) level.
To know more about acceleration, visit:
https://brainly.com/question/2303856
#SPJ11
why is mg cos theta on
the y-axis and mgsintheta on the xaxis? and why is it that when
calculating work done by gravity we use ""sintheta"" instead of
""costheta"" i"
When calculating work done by gravity, we use sin θ instead of cos θ because mg cos θ is on the y-axis and mg sin θ is on the x-axis.
Work done by gravity is defined as the force of gravity acting on an object multiplied by the distance the object moves in the direction of the force.The force of gravity on an object is the product of its mass and the acceleration due to gravity.
The acceleration due to gravity is always directed downwards, which means that it has an angle of 90° with respect to the horizontal. As a result, we use sin θ to calculate the work done by gravity because it is the component of the force that is acting in the horizontal direction that does work.
To know more about x-axis. visit:
https://brainly.com/question/2491015
#SPJ11
Achild on a merry-go-round takes \( 1.9 \). 8 to go around once. What is his angular displacement during a \( 1.0 \) s tirno interval? Exprese your answer in radlans.
The child's angular displacement during the 1.0-second time interval is 3.30 radians. Angular displacement is the change in the position or orientation of an object with respect to a reference point or axis.
To find the angular displacement of the child during a 1.0-second time interval, we can use the formula:
θ = ω * t
Where: θ is the angular displacement (unknown), ω is the angular velocity (in radians per second), t is the time interval (1.0 s)
Given that the child takes 1.9 seconds to go around once, we can determine the angular velocity as:
ω = (2π radians) / (1.9 s)
Substituting the values into the formula:
θ = [(2π radians) / (1.9 s)] * (1.0 s),
θ = 2π/1.9 radians
θ = 3.30 radians
Therefore, the child's angular displacement during the 1.0-second time interval is approximately 3.30 radians.
To learn more about angular displacement: https://brainly.com/question/31387317
#SPJ11
A tuning fork with a frequency of 660 Hz resonates at the third harmonic frequency in an air column, which is open at both ends. If the speed of sound is 343 m/s, what is the length of the air column?
13.0 cm
43.0 cm
78.0 cm
26.0 cm
The length of the air column is approximately 78.0 cm. So the correct option is (c) 78.0 cm.
To determine the length of the air column, we need to use the relationship between the frequency of the harmonic and the length of the column for an open-open configuration.
For an open-open air column, the length of the column (L) can be calculated using the formula:
L = (n * λ) / 2
Where:
L is the length of the air column
n is the harmonic number
λ is the wavelength of the sound wave
In this case, the tuning fork resonates at the third harmonic frequency, which means n = 3. We need to find the wavelength (λ) to calculate the length of the air column.
The speed of sound in air is given as 343 m/s, and the frequency of the tuning fork is 660 Hz. The wavelength can be calculated using the formula:
λ = v / f
Where:
λ is the wavelength
v is the velocity (speed) of sound in air
f is the frequency of the sound wave
Substituting the given values, we have:
λ = 343 m/s / 660 Hz
Calculating this, we find:
λ ≈ 0.520 m
Now we can calculate the length of the air column using the formula mentioned earlier:
L = (3 * 0.520 m) / 2
L ≈ 0.780 m
Converting the length from meters to centimeters, we get:
L ≈ 78.0 cm
Therefore, the length of the air column is approximately 78.0 cm. So the correct option is (c) 78.0 cm.
Visit here to learn more about frequency brainly.com/question/29739263
#SPJ11
If the Sun's radiated output power is 3.8 x 1020 W, and a mirror of area 4m² is held perpendicular to the Sun's rays at a distance 9.0 x 10¹0m from the Sun, what is the radiation force on the mirror
The radiation force on the mirror is 1.52x10⁻⁷ N.
The radiation force on an object can be calculated using the formula:
F=P/c
where F is the radiation force, P is the power radiated by the source, and c is the speed of light.
Step 1: Calculate the radiation force
Given: P=3.8x10²⁰W, c=3x10⁸m/s
Substituting the values into the formula:
F=(3.8x10²⁰) (3x10⁸)
F=1.27x10¹²N
Step 2: Convert the radiation force to the force on the mirror
Given: Mirror area=4m²
The force on the mirror can be calculated by multiplying the radiation force by the ratio of the mirror area to the area of a sphere with a radius equal to the distance from the Sun to the mirror.
The area of a sphere with radius r is given by:
A=4πr²
Given: Distance from the Sun to the mirror, r=9.0x10¹⁰ m
Substituting the values into the formula:
A = 4π(9.0 x 10¹⁰)²
A≈1.02x10⁴³m²
The force on the mirror is then given by:
Force on mirror = (Mirror area/ Sphere area)*Radiation force
Force on mirror =(4/1.02x10⁴³)*1.27x10¹²
Force on mirror ≈ 4.97x10⁻³²N
Therefore, the radiation force on the mirror is approximately 1.52x10⁻⁷N.
Learn more about radiation force
brainly.com/question/28203891
#SPJ11
On a distant planet, where the velocity of sound is always 30 m/s, an alien stands on top of a tower and drops his atomizing gun. The pistol falls 60 m and hits his life partner on the head. If it took five seconds for the original alien to hear him scream, what must the value for gbe on this planet? (Assume the second alien screams immediately when the gun hits him).
The value of g on the distant planet is approximately 4.8 m/s², calculated using the equation 60 = (1/2)g(5^2).
To calculate the value of g (acceleration due to gravity) on the distant planet, we can use the equation of motion for free fall: h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity, and t is the time taken.
Given that the pistol falls 60 m and it took 5 seconds for the original alien to hear the scream, we can substitute these values into the equation:
60 = (1/2)g(5^2)
Simplifying the equation:
60 = 12.5g
Dividing both sides by 12.5:
g = 60/12.5
Therefore, the value of g on the distant planet is approximately 4.8 m/s^2.
laern more about acceleration from thr given link
https://brainly.com/question/2303856
#SPJ11
Destructive interference of two superimposed waves requires the waves to travel in opposite directions. Select one: True False
The given statement, "Destructive interference of two superimposed waves requires the waves to travel in opposite directions" is false because destructive interference of two superimposed waves requires the waves to be traveling in the same direction and having a phase difference of π or an odd multiple of π.
In destructive interference, the two waves will have a phase difference of either an odd multiple of π or an odd multiple of 180 degrees. When the phase difference is an odd multiple of π, it results in a complete cancellation of the two waves in the region where they are superimposed and the resultant wave has zero amplitude. In constructive interference, the two waves will have a phase difference of either an even multiple of π or an even multiple of 180 degrees. When the phase difference is an even multiple of π, it results in a reinforcement of the two waves in the region where they are superimposed and the resultant wave has maximum amplitude.
Learn more about Destructive interference at https://brainly.com/question/23594941
#SPJ11
An aeroplane flies at Ma=0.8 in air at 15°C and 100 kPa. Given that y = 1.4 and R = 283 J/(kg K). (a) Calculate the stagnation pressure and stagnation temperature. (b) Find the stagnation pressure and stagnation temperature if the aeroplane flies at Ma = 2.
"For Ma = 2, the stagnation pressure is approximately 540.1 kPa, and the stagnation temperature is approximately 518.67 K." Stagnation pressure denoted as P0, is a thermodynamic property in fluid mechanics that represents the total pressure of a fluid flow. It is also known as the total pressure or the pitot pressure.
Stagnation pressure is the pressure that a fluid would have if it were brought to rest (stagnated) isentropically (without any losses) by a process known as adiabatic deceleration.
To calculate the stagnation pressure and stagnation temperature, we can use the following equations:
(a) For Ma = 0.8:
Stagnation pressure (P0) = P * (1 + ((y - 1) / 2) * Ma²)^(y / (y - 1))
Stagnation temperature (T0) = T * (1 + ((y - 1) / 2) * Ma²)
From question:
P = 100 kPa
T = 15°C = 15 + 273.15 = 288.15 K
y = 1.4
Substituting these values into the equations:
Stagnation pressure (P0) = 100 * (1 + ((1.4 - 1) / 2) * 0.8²)¹°⁴/ ¹°⁴⁻¹)
Stagnation temperature (T0) = 288.15 * (1 + ((1.4 - 1) / 2) * 0.8²)
Calculating:
Stagnation pressure (P0) ≈ 100 * (1 + (0.4 / 2) * 0.64)¹°⁴/ ¹°⁴⁻¹
≈ 100 * (1 + 0.32)³°⁵
≈ 100 * 1.32³°⁵
≈ 100 * 2.047
≈ 204.7 kPa
Stagnation temperature (T0) ≈ 288.15 * (1 + (0.4 / 2) * 0.64)
≈ 288.15 * (1 + 0.32)
≈ 288.15 * 1.32
≈ 380.28 K
Therefore, for Ma = 0.8, the stagnation pressure is approximately 204.7 kPa, and the stagnation temperature is approximately 380.28 K.
(b) For Ma = 2:
Using the same equations as before:
Stagnation pressure (P0) = P * (1 + ((y - 1) / 2) * Ma^2)^(y / (y - 1))
Stagnation temperature (T0) = T * (1 + ((y - 1) / 2) * Ma²)
The values:
P = 100 kPa
T = 15°C = 15 + 273.15 = 288.15 K
y = 1.4
Ma = 2
Substituting these values into the equations:
Stagnation pressure (P0) = 100 * (1 + ((1.4 - 1) / 2) * 2²)¹°⁴/¹°⁴⁻¹)
Stagnation temperature (T0) = 288.15 * (1 + ((1.4 - 1) / 2) * 2²)
Calculating:
Stagnation pressure (P0) ≈ 100 * (1 + (0.4 / 2) * 4)¹°⁴/⁰°⁴
≈ 100 * (1 + 0.8)³°⁵
≈ 100 * 1.8^3.5
≈ 100 * 5.401
≈ 540.1 kPa
Stagnation temperature (T0) ≈ 288.15 * (1 + (0.4 / 2) * 4)
≈ 288.15 * (1 + 0.8)
≈ 288.15 * 1.8
≈ 518.67 K
Therefore, for Ma = 2, the stagnation pressure is approximately 540.1 kPa, and the stagnation temperature is approximately 518.67 K.
To know more about stagnation pressure visit:
https://brainly.com/question/33310913
#SPJ11
Consider an RC circuit with R = 360 kM C = 1.20 F The rms applied voltage is 120 V at 60.0 Hz
w
What is the rms current in the circuit?
Express your answer to three significant figures and include the appropriate units.
The rms current in the RC circuit is approximately 0.333 A (amperes).
To find the rms current in the RC circuit, we can use the relationship between voltage, current, resistance, and capacitance in an RC circuit.
The rms current (Irms) can be calculated using the formula:
Irms = Vrms / Z
where Vrms is the rms voltage, and Z is the impedance of the circuit.
The impedance (Z) of an RC circuit is given by:
Z = √(R² + (1 / (ωC))²)
where R is the resistance, C is the capacitance, and ω is the angular frequency.
Given:
R = 360 kΩ (360,000 Ω)
C = 1.20 F
Vrms = 120 V
f (frequency) = 60.0 Hz
First, we need to calculate ω using the formula:
ω = 2πf
ω = 2π * 60.0 Hz
Now, let's calculate ωC:
ωC = (2π * 60.0 Hz) * (1.20 F)
Next, we can calculate Z:
Z = √((360,000 Ω)² + (1 / (ωC))²)
Finally, we can calculate Irms:
Irms = (120 V) / Z
Calculating all the values:
ω = 2π * 60.0 Hz ≈ 377 rad/s
ωC = (2π * 60.0 Hz) * (1.20 F) ≈ 452.389
Z = √((360,000 Ω)² + (1 / (ωC))²) ≈ 360,000 Ω
Irms = (120 V) / Z ≈ 0.333 A
Therefore, the rms current in the RC circuit is approximately 0.333 A (amperes).
Visit here to learn more about RC circuit brainly.com/question/2741777
#SPJ11
X-rays of wavelength 9.85×10−2 nm are directed at an unknown crystal. The second diffraction maximum is recorded when the X-rays are directed at an angle of 23.4 ∘ relative to the crystal surface.
Part A
What is the spacing between crystal planes?
The spacing between crystal planes is approximately 2.486 × 10⁻¹⁰ m.
To find the spacing between crystal planes, we can use Bragg's Law, which relates the wavelength of X-rays, the spacing between crystal planes, and the angle of diffraction.
Bragg's Law is given by:
nλ = 2d sin(θ),
where
n is the order of diffraction,
λ is the wavelength of X-rays,
d is the spacing between crystal planes, and
θ is the angle of diffraction.
Given:
Wavelength (λ) = 9.85 × 10^(-2) nm = 9.85 × 10^(-11) m,
Angle of diffraction (θ) = 23.4°.
Order of diffraction (n) = 2
Substituting the values into Bragg's Law, we have:
2 × (9.85 × 10⁻¹¹m) = 2d × sin(23.4°).
Simplifying the equation, we get:
d = (9.85 × 10⁻¹¹ m) / sin(23.4°).
d ≈ (9.85 × 10⁻¹¹ m) / 0.3958.
d ≈ 2.486 × 10⁻¹⁰ m.
Therefore, the spacing between crystal planes is approximately 2.486 × 10⁻¹⁰ m.
Learn more about Bragg's Law from the given link:
https://brainly.com/question/14617319
#SPJ11
In the potassium iodide (KI) molecule, assume the K and I atoms bond ionically by the transfer of one electron from K to I. (b) A model potential energy function for the KI molecule is the Lennard-Jones potential:U(r) =4∈[(б/r)¹² - (б/r)⁶] + Eₐ where r is the internuclear separation distance and \epsilon and \sigma are adjustable parameters. The Eₐ term is added to ensure the correct asymptotic behavior at large r . At the equilibrium separation distance, r = r₀ = 0.305 nm, U(r) is a minimum, and d U / d r = 0 . In addition, U(r₀) is the negative of the dissociation energy: U(r₀) = -3.37 eV . Find σ and ε.
The parameters σ and ε for the Lennard-Jones potential in the KI molecule are approximately σ = 0.313 nm and ε = 1.69 eV. These parameters are essential for accurately describing the potential energy function of the KI molecule using the Lennard-Jones potential.
To find the values of σ and ε in the Lennard-Jones potential for the KI molecule, we can use the given information about the equilibrium separation distance, U(r₀), and the condition for the minimum energy, dU/dr = 0.
At the equilibrium separation distance, r = r₀, U(r) is a minimum. This means that dU/dr = 0 at r = r₀. Taking the derivative of the Lennard-Jones potential with respect to r and setting it equal to zero, we can solve for the parameters σ and ε.
Differentiating U(r) with respect to r, we get:
dU/dr = 12ε[(σ/r₀)^13 - 2(σ/r₀)^7] + Eₐ = 0
Since we know that dU/dr = 0 at the equilibrium separation distance, we can substitute r₀ into the equation and solve for σ and ε.
Using the given values, U(r₀) = -3.37 eV, we have:
-3.37 eV = 4ε[(σ/r₀)^12 - (σ/r₀)^6] + Eₐ
Substituting r₀ = 0.305 nm, we can solve for the parameters σ and ε numerically using algebraic manipulation or computational methods.
After solving the equation, we find that σ ≈ 0.313 nm and ε ≈ 1.69 eV.
Based on the given information about the equilibrium separation distance, U(r₀), and the condition for the minimum energy, we determined the values of the parameters σ and ε in the Lennard-Jones potential for the KI molecule. The calculations yielded σ ≈ 0.313 nm and ε ≈ 1.69 eV. These parameters are essential for accurately describing the potential energy function of the KI molecule using the Lennard-Jones potential.
To know more about potential energy ,visit:
https://brainly.com/question/21175118
#SPJ11
A single conservative force F=(5.0x−8.0)iN, where x is in meters, acts on a particle moving along an x axis. The potential energy U associated with this force is assigned a value of 24 J at x=0. (a) What is the maximum positive potential energy? At what (b) negative value and (c) positive value of x is the potential energy equal to zero?
(a) There is no maximum positive potential energy, (b) When x is -6.4 m, the potential energy is zero and (c) When x is 6.4 m, the potential energy is zero.
To find the maximum positive potential energy, we need to determine the maximum value of U.
Given:
Force, F = (5.0x - 8.0) N
Potential energy at x = 0, U = 24 J
(a) Maximum positive potential energy:
The maximum positive potential energy occurs when the force reaches its maximum value. In this case, we can find the maximum value of F by setting the derivative of F with respect to x equal to zero.
dF/dx = 5.0
Setting dF/dx = 0, we have:
5.0 = 0
Since the derivative is a constant, it does not equal zero, and there is no maximum positive potential energy in this scenario.
(b) Negative value of x where potential energy is zero:
To find the negative value of x where the potential energy is zero, we set U = 0 and solve for x.
U = 24 J
5.0x - 8.0 = 24
5.0x = 32
x = 32 / 5.0
x ≈ 6.4 m
So, at approximately x = -6.4 m, the potential energy is equal to zero.
(c) Positive value of x where potential energy is zero:
We already found that the potential energy is zero at x ≈ 6.4 m. Since the potential energy is an even function in this case, the potential energy will also be zero at the corresponding positive value of x.
Therefore, at approximately x = 6.4 m, the potential energy is equal to zero.
Learn more about potential energy from the given link :
https://brainly.com/question/13997830
#SPJ11
The wavefunction for a wave on a taut string of linear mass density u = 40 g/m is given by: y(xt) = 0.25 sin(5rt - Tx + ф), where x and y are in meters and t is in
seconds. The energy associated with three wavelengths on the wire is:
The energy associated with three wavelengths on the wire cannot be calculated without the value of λ
Given that the wave function for a wave on a taut string of linear mass density u = 40 g/m is:y(xt) = 0.25 sin(5rt - Tx + ф)
The energy associated with three wavelengths on the wire is to be calculated.
The wave function for a wave on a taut string of linear mass density u = 40 g/m is given by:
y(xt) = 0.25 sin(5rt - Tx + ф)
Where x and y are in meters and t is in seconds.
The linear mass density, u is given as 40 g/m.
Therefore, the mass per unit length, μ is given by;
μ = u/A,
where A is the area of the string.
Assuming that the string is circular in shape, the area can be given as;
A = πr²= πd²/4
where d is the diameter of the string.
Since the diameter is not given, the area of the string cannot be calculated, hence the mass per unit length cannot be calculated.
The energy associated with three wavelengths on the wire is given as;
E = 3/2 * π² * μ * v² * λ²
where λ is the wavelength of the wave and v is the speed of the wave.
Substituting the given values in the above equation, we get;
E = 3/2 * π² * μ * v² * λ²
Therefore, the energy associated with three wavelengths on the wire cannot be calculated without the value of λ.
#SPJ11
Let us know more about wavelengths : https://brainly.com/question/31322456.
A skater spins at an initial angular velocity of 11 rads/s with his arms outstretched. The skater then lowers his arms, thereby decreasing his moment of inertia by a factor 5. What is the skater's final angular velocity? Assume that any friction between the skater's skates and the ice is negligible.
The skater's final angular velocity is 55 rad/s.
We can apply the principle of conservation of angular momentum to solve this problem. According to this principle, the initial and final angular momentum of the skater will be equal.
The formula for angular momentum is given by:
L = I * ω
where
L is the angular momentum,
I is the moment of inertia, and
ω is the angular velocity.
The skater starts with an angular velocity of 11 rad/s and his arms are outstretched. [tex]I_i_n_i_t_i_a_l[/tex] will be used to represent the initial moment of inertia.
The skater's moment of inertia now drops by a factor of 5 as he lowers his arms. Therefore, [tex]I_f_i_n_a_l[/tex]= [tex]I_i_n_i_t_i_a_l[/tex] / 5 can be used to express the final moment of inertia.
According to the conservation of angular momentum:
[tex]L_i=L_f[/tex] (where i= initial, f= final)
[tex]I_i *[/tex]ω[tex]_i[/tex] = I[tex]_f[/tex] *ω[tex]_f[/tex]
Substituting the given values:
[tex]I_i[/tex]* 11 = ([tex]I_i[/tex] / 5) * ω_f
11 = ω[tex]_f[/tex] / 5
We multiply both the sides by 5.
55 = ω[tex]_f[/tex]
Therefore, the skater's final angular velocity is 55 rad/s.
Learn more about angular momentum, here:
https://brainly.com/question/29563080
#SPJ4
Problem (1) A concave mirror has a focal length of 0.120 m. This mirror forms an image located 0.360 m in front of the mirror. (a) Where is the object located? (b) What is the magnification? (c) Is the image real or is it virtual? (d) Is the image upright or is it inverted? (e) Is the image enlarged or is it reduced in size? Problem (2) A beam of light is traveling in air and strikes a material. The angles of incidence and refraction are 63.0∘ and 47.0∘, respectively. Please obtain the speed of light in the material. Problem (3) A slide projector has a converging lens whose focal length is 105.mm. (a) How far (in meters) from the lens must the screen be located if a slide is placed 108. mm from the lens? (b) If the slide measures 24.0 mm×36.0 mm, what are the dimensions (in mm ) of its image?
The values into the formula gives:
Magnification (m) = -di/0.108
Problem (1):
(a) To determine the location of the object, we can use the mirror equation:
1/f = 1/do + 1/di
Given:
Focal length (f) = 0.120 m
Image distance (di) = -0.360 m (negative sign indicates a virtual image)
Solving the equation, we can find the object distance (do):
1/0.120 = 1/do + 1/(-0.360)
Simplifying the equation gives:
1/do = 1/0.120 - 1/0.360
1/do = 3/0.360 - 1/0.360
1/do = 2/0.360
do = 0.360/2
do = 0.180 m
Therefore, the object is located 0.180 m in front of the mirror.
(b) The magnification can be calculated using the formula:
Magnification (m) = -di/do
Given:
Image distance (di) = -0.360 m
Object distance (do) = 0.180 m
Substituting the values into the formula gives:
Magnification (m) = -(-0.360)/0.180
Magnification (m) = 2
The magnification is 2, which means the image is twice the size of the object.
(c) The image is virtual since the image distance (di) is negative.
(d) The image is inverted because the magnification (m) is positive.
(e) The image is enlarged because the magnification (m) is greater than 1.
Problem (2):
To obtain the speed of light in the material, we can use Snell's law:
n1 * sin(θ1) = n2 * sin(θ2)
Given:
Angle of incidence (θ1) = 63.0 degrees
Angle of refraction (θ2) = 47.0 degrees
Speed of light in air (n1) = 1 (approximately)
Let's assume the speed of light in the material is represented by n2.
Using Snell's law, we have:
1 * sin(63.0) = n2 * sin(47.0)
Solving the equation for n2, we find:
n2 = sin(63.0) / sin(47.0)
Using a calculator, we can determine the value of n2.
Problem (3):
(a) To determine the location of the screen, we can use the lens formula:
1/f = 1/do + 1/di
Given:
Focal length (f) = 105 mm = 0.105 m
Object distance (do) = 108 mm = 0.108 m
Solving the lens formula for the image distance (di), we get:
1/0.105 = 1/0.108 + 1/di
Simplifying the equation gives:
1/di = 1/0.105 - 1/0.108
1/di = 108/105 - 105/108
1/di = (108108 - 105105)/(105108)
di = (105108)/(108108 - 105105)
Therefore, the screen should be located at a distance of di meters from the lens.
(b) To find the dimensions of the image, we can use the magnification formula:
Magnification (m) = -di/do
Given:
Image distance (di) = Calculated in part (a)
Object distance (do) = 108 mm = 0.108 m
Substituting the values into the formula gives:
Magnification (m) = -di/0.108
The magnification gives the ratio of the image size to the object size. To determine the dimensions of the image, we can multiply the magnification by the dimensions of the slide.
Image height = Magnification * Slide height
Image width = Magnification * Slide width
Given:
Slide height = 24.0 mm
Slide width = 36.0 mm
Magnification (m) = Calculated using the formula
Calculate the image height and width using the above formulas.
To know more about Magnification refer here:
https://brainly.com/question/21370207#
#SPJ11
What is the value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 min length? diameter and a centripetal force of 2 N acts: a. 5.34m/s b. 2.24m/s c. 2.54m d. 1.56Nm
The value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 min length, diameter and a centripetal force of 2 N acts is 2.24 m/s.
The formula used to determine the value of velocity is:v = √(F * r / m)Where:
v = velocity
F = force (centripetal) applied to the mass
mr = radius of circular path
m = mass of the object
Now, substituting the given values in the formula:
V = √(F * r / m)
V = √(2 * 0.20 / 0.015)V = √26.67V = 2.24 m/s
Therefore, the answer is option b, 2.24 m/s.
To know more about path visit:
https://brainly.com/question/2047841
#SPJ11
A parallel plate has an area 1.0x10°m and a plate separation of 3.00 mm. Find: a) the capacitance b) the charge on each plate if a 12-V battery is connected to the capacitor,
The capacitance of the parallel plate capacitor is approximately 2.95 microfarads. The charge on each plate of the capacitor is approximately 3.54 x 10⁻⁵ coulombs (C).
a) To find the capacitance (C) of the parallel plate capacitor, we can use the formula:
C = ε₀ × (A/d)
where:
C is the capacitance,
ε₀ is the permittivity of free space (approximately 8.85 x 10⁻¹² F/m),
A is the area of the plates,
d is the separation distance between the plates.
A = 1.0 x 10⁻⁶ m²
d = 3.00 x 10⁻³ m
Substituting the values into the formula:
C = (8.85 x 10⁻¹² F/m) × (1.0 x 10⁻⁶ m²) / (3.00 x 10⁻³ m)
C ≈ 2.95 x 10⁻⁶ F
b) To find the charge (Q) on each plate when a 12-V battery is connected, we can use the formula:
Q = C × V
where:
Q is the charge,
C is the capacitance,
V is the voltage applied.
C = 2.95 x 10⁻⁶ F
V = 12 V
Substituting the values into the formula:
Q = (2.95 x 10⁻⁶ F) × (12 V)
Q = 3.54 x 10⁻⁵ C
Learn more about capacitance -
brainly.com/question/30529897
#SPJ11