Consider the following two-car accident: Two cars of equal mass m collide at an intersection. Driver E was traveling eastward, and driver N, northward. After the collision, the two cars remain joined together and slide, with locked wheels, before coming to rest. Police on the scene measure the length d of the skid marks to be 9 meters. The coefficient of friction μ between the locked wheels and the road is equal to 0.9.
(Figure 1)
Each driver claims that his speed was less than 14 meters per second (about 31 mph). A third driver, who was traveling closely behind driver E prior to the collision, supports driver E's claim by asserting that driver E's speed could not have been greater than 12 meters per second. Take the following steps to decide whether driver N's statement is consistent with the third driver's contention.
Let the speeds of drivers E and N prior to the collision be denoted by ve and vn, respectively. Find v^2, the square of the speed of the two-car system the instant after the collision. v^2 = ?
What is the kinetic energy K of the two-car system immediately after the collision? K = ?
Write an expression for the work Wfric done on the cars by friction. Wfric = ?
Using the information given in the problem introduction and assuming that the third driver is telling the truth, determine whether driver N has reported his speed correctly. Specifically, if driver E had been traveling with a speed of exactly 12 meters per second before the collision, what must driver N's speed have been before the collision? vn = ?

Answers

Answer 1

The possible values for v are 6 and 18. Since v represents the speed of the two-car system after the collision, the value of 6 meters per second is valid. This means that driver N's speed must have been 6 meters per second before the collision, not exceeding the claimed speed of 14 meters per second. Therefore, driver N's statement is consistent with the third driver's contention.

To determine whether driver N's statement is consistent with the third driver's contention, we can analyze the given information and apply the principles of physics.

1. Finding [tex]v^2[/tex], the square of the speed of the two-car system after the collision:

Since the two cars remain joined together and slide with locked wheels, we can apply the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision, assuming no external forces act on the system. The momentum of each car is given by the product of its mass and velocity.

Before the collision:

Momentum of car E = m * ve (since car E is traveling eastward)

Momentum of car N = m * vn (since car N is traveling northward)

After the collision:

The two cars move together, so they have a common velocity, denoted by v.

Using the Pythagorean theorem, we can relate the velocities before and after the collision:

[tex](ve)^2 + (vn)^2 = v^2[/tex]

2. Finding the kinetic energy K of the two-car system immediately after the collision:

The kinetic energy is given by the formula[tex]K = (1/2) * m * v^2[/tex], where m is the mass of each car. Since both cars have the same mass, we can write [tex]K = (1/2) * 2m * v^2 = m * v^2.[/tex]

3. Expressing the work Wfric done on the cars by friction:

The work done by friction is equal to the force of friction multiplied by the distance over which it acts. The force of friction can be determined using the coefficient of friction μ, which is given as 0.9. The work done by friction is equal to the change in kinetic energy of the system. Therefore, Wfric = -ΔK.

4. Determining driver N's speed vn assuming driver E's speed is exactly 12 meters per second:

Using the equation[tex](ve)^2 + (vn)^2 = v^2[/tex]and substituting ve = 12, we can solve for vn.

According to the principle of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. The momentum of car E before the collision is given by m * ve, and the momentum of car N is m * vn. Therefore, we have:

m * ve + m * vn = (2m) * v   (equation 1)

Now, we need to find the value of v^2, the square of the speed of the two-car system after the collision. To do this, we can square equation 1:

[tex](ve)^2 + 2 * ve * vn + (vn)^2 = 4 * v^2[/tex]

Since the cars remain joined together and slide with locked wheels, the coefficient of friction μ can be used to calculate the force of friction acting on the cars. The work done by friction is equal to the change in kinetic energy of the system. Therefore, we have:

Wfric = -ΔK

The kinetic energy of the two-car system immediately after the collision can be calculated using the formula[tex]K = (1/2) * m * v^2[/tex], where m is the mass of each car. Since both cars have the same mass, we can write:

[tex]K = m * v^2[/tex]

Assuming driver E's speed is exactly 12 meters per second before the collision, we can substitute this value into equation 1 to find vn:

m * 12 + m * vn = (2m) * v

Simplifying the equation:

12 + vn =

2v

Substituting vn = 2v - 12 into the squared equation from step 2:

[tex](ve)^2 + 2 * ve * (2v - 12) + (2v - 12)^2 = 4 * v^2[/tex]

Simplifying and rearranging the equation:

[tex]144 + 4v^2 - 48v + 144 - 48v + 144 = 4v^2[/tex]

Combining like terms:

[tex]8v^2 - 96v + 432 = 4v^2[/tex]

Rearranging and dividing by 4:

[tex]4v^2 - 96v + 432 = 0[/tex]

Dividing the entire equation by 4, we get:

[tex]v^2 - 24v + 108 = 0[/tex]

This equation can be factored as:

(v - 6)(v - 18) = 0

For more such information on: speed

https://brainly.com/question/13943409

#SPJ8


Related Questions

find the magnitude of the net force on the conducting bar. ignore friction, air resistance, and electrical resistance, express your answer in terms of the variable A, L and B!

Answers

The magnitude of the net force on the conducting bar is 1.25 N.

The force on the bar can be calculated using the right-hand rule for magnetic fields. The direction of the magnetic field is from north to south pole, while the direction of the current is from the positive to negative terminal of the battery. The direction of the force is perpendicular to both the direction of the magnetic field and the direction of the current.

Using the right-hand rule, the force is pointing upwards out of the page. The magnitude of the force can be calculated using the following formula:F = BILwhere F is the force, B is the magnetic field strength, I is the current, and L is the length of the conducting bar.

Substituting the given values into the formula: F = BIL= (2.5 T) x (5.0 A) x (0.10 m)= 1.25 Nm

The magnitude of the net force on the conducting bar is 1.25 N.

Learn more about magnitude

brainly.com/question/28714281

#SPJ11

the energy of a photon emitted when an electron underwent a transition to n = 4 energy level was 9.176x10-20 j. what was the initial energy level for the electron?

Answers

The energy of a photon emitted when an electron underwent a transition to n = 4 energy level was 9.176x10-20 j. the initial energy level for the electron is n = 1.

The energy of a photon emitted when an electron underwent a transition to n = 4 energy level was 9.176 x 10-20 J. The energy of a photon is given by the equation E = hν, where E is the energy of the photon in Joules, h is Planck's constant, and ν is the frequency of the photon in Hertz.

Since frequency is related to wavelength, we can write this equation as E = hc/λ, where λ is the wavelength of the photon in meters.Given the energy of a photon is 9.176 x 10-20 J, we can use this equation to determine the initial energy level for the electron.The energy difference between the initial and final energy levels is given by ΔE = E2 - E1, where E2 is the energy of the final state and E1 is the energy of the initial state. We can rearrange this equation to solve for E1 as E1 = E2 - ΔE.

The transition is from some higher energy level to the n = 4 energy level, so the final energy level is En = -2.178 x 10-18 J (from the equation for the energy levels of a hydrogen atom). Thus, ΔE = En - Ei = -2.178 x 10-18 J - Ei, where Ei is the energy of the initial state. We can now plug in the given values to find Ei:E1 = E2 - ΔE= (-9.176 x 10-20 J) - (-2.178 x 10-18 J)E1 = 2.261 x 10-18 JThis is the energy of the electron in the initial state. We can determine the energy level from this by using the equation for the energy levels of a hydrogen atom:En = -2.178 x 10-18 J/n2We can solve this equation for n to find the energy level:n2 = -2.178 x 10-18 J/Enn2 = -2.178 x 10-18 J/(2.261 x 10-18 J)n2 = 0.9624n ≈ 1This means that the initial energy level for the electron was n = 1.

To know more about Photon visit :

https://brainly.com/question/31591565

#SPJ11

Esteem needs focus on? None of these is correct basic needs OOOO O the need for friendship. various types of support

Answers

Esteem needs are not related to basic needs, such as food, water, and shelter, but they are higher needs that must be satisfied. Therefore, the right answer is "None of these is correct basic needs."

Esteem needs are concerned with people's self-image and how they are viewed by others. Esteem needs involve feeling accomplished, respected, and acknowledged. Esteem needs are split into two types, inner and external esteem.Inner esteem is determined by self-esteem, which is how a person regards themselves. Inner esteem is related to a person's sense of worth and value.

It is a mental state in which a person feels good about themselves and their abilities. To have a positive sense of self-esteem, people must feel valued and respected for who they are. It aids in the development of self-confidence and self-worth. It is the starting point for creating meaningful friendships and relationships.External esteem, on the other hand, is the perception of the individual by others.

When we say "esteem" in a social context, we usually mean what others think of us. Esteem needs are not related to basic needs, such as food, water, and shelter, but they are higher needs that must be satisfied. Therefore, the right answer is "None of these is correct basic needs."

To learn more about Esteem visit;

https://brainly.com/question/28768312

#SPJ11

A sphere of radius 2m is given a charge of 5C. Find the electric field at a point inside the sphere, at r = 75cm, and outside the sphere at r=2.5m. (a) Do this process first for an insulating sphere.

Answers

For an insulating sphere with a radius of 2m and charge of 5C, the electric field is zero at a point inside the sphere and can be calculated using Gauss's Law for a point outside the sphere.

Consider an insulating sphere with a radius of 2 meters and a charge of 5 Coulombs. To determine the electric field at different points, we need to use Gauss's Law.

For a point inside the sphere, at r = 75 cm (0.75 m), we can apply Gauss's Law to a Gaussian surface within the sphere. Since the sphere is insulating, the charge is uniformly distributed on its surface.

Therefore, the electric field inside the sphere is zero since the net charge enclosed by the Gaussian surface is zero.

For a point outside the sphere, at r = 2.5 m, we can use Gauss's Law again with a Gaussian surface that encompasses the entire sphere.

In this case, the net charge enclosed by the Gaussian surface is 5 C, the total charge of the sphere.

Thus, we can calculate the electric field using Gauss's Law, which states that the electric field times the area of the Gaussian surface is equal to the charge enclosed divided by the permittivity of free space.

By solving this equation, we can find the electric field outside the sphere.

Therefore, the electric field inside the sphere is zero, and the electric field outside the sphere can be calculated using Gauss's Law.

To know more about insulating sphere refer here:

https://brainly.com/question/27188549#

#SPJ11

A 2.0-cm-tall object is 70 cm in front of a converging lens that has a 35 cm focal length.
Calculate the image position.
Calculate the image height. Type a positive value if the image is upright and a negative value if it is inverted.

Answers

Therefore, the image is formed at a distance of -70 cm from the lens and it is an inverted image with a height of 2.0 cm.

Given data:

Object height (h) = 2.0 cm, Object distance (u) = -70 cm, Focal length (f) = 35 cm

Lens formula is given as follows:

`1/f = 1/u + 1/v`

where, f = focal length of the lens, u = object distance from the lens, v = image distance from the lens

By using the lens formula,

the image distance (v) can be calculated as

:1/f = 1/u + 1/v1/35 = 1/-70 + 1/v1/v = 1/-70 - 1/35 = -3/210 = -1/70v = -70 cm

The negative sign indicates that the image is formed on the same side of the lens as the object.

Therefore, it is an inverted image.

The image height can be calculated using the magnification formula which is given as follows:

`m = -v/u`

where, m = magnification

v = image distance from the lens, u = object distance from the lens

Substituting the values, we get:

`m = -v/u`

`m = -(-70)/(-70)

`m = 1

The positive value of magnification indicates that the image is an upright image.

The height of the image can be calculated as:

`m = -v/u``1 = -v/(-70)`v = -70 cm

`h_i = m × h_o`

`h_i = 1 × 2.0 = 2.0 cm

to know more about magnification visit:

https://brainly.com/question/28350378

#SPJ11

In a Young’s double-slit experiment, how many maxima occur
between the 4th order maxima?
a. 6
b. 7
c. 8
d. Three more than the number of minima.

Answers

The number of maxima that occur in a young’s double-slit experiment is three more than the number of minima.

In a Young's double-slit experiment, a light wave passes through a slit and diffracts, creating two coherent sources of light that interfere with one another. These waves are directed towards a screen with two slits, resulting in interference patterns.The light waves diffract and interfere with one another at the slits, creating an interference pattern on the screen. When the two waves are in phase, they interfere constructively and produce a bright spot. When the two waves are out of phase, they interfere destructively and produce a dark spot. The bright and dark bands of the interference pattern on the screen are known as maxima and minima, respectively.According to the question, the number of maxima that occur in a Young’s double-slit experiment is three more than the number of minima. Thus, if there are n minima, then there will be n + 3 maxima.

Know more about double-slit experiment, here:

https://brainly.com/question/28108126

#SPJ11

A billiard ball of mass 0.28 kg hits a second, identical ball at a speed of 5.8 m/s and comes to rest as the second ball flies off. The collision takes 250 μs.
A.) What is the average force on the first ball?
B.) What is the average force on the second ball?

Answers

The average force on the first ball is 0 N. The average force on the second ball is 0 N.

To solve this problem, we can use the principles of conservation of momentum and energy. Let's start by calculating the velocity of the second ball after the collision using the conservation of momentum:

Initial momentum = Final momentum
(mass_1 * velocity_1) + (mass_2 * velocity_2) = 0
(0.28 kg * 5.8 m/s) + (0.28 kg * velocity_2) = 0
velocity_2 = -(0.28 kg * 5.8 m/s) / 0.28 kg
velocity_2 = -5.8 m/s. The negative sign indicates that the second ball is moving in the opposite direction to the first ball. Now, we can calculate the change in kinetic energy of the first ball using the conservation of energy: Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_1 * velocity_1^2) - 0 = Average force * distance.
0.5 * 0.28 kg * (5.8 m/s)^2 = Average force * 0.
Average force on the first ball = 0 N
Since the first ball comes to rest, there is no change in kinetic energy, and therefore, no average force is exerted on it.
Next, we can calculate the change in kinetic energy of the second ball:
Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_2 * velocity_2^2) - 0 = Average force * distance

0.5 * 0.28 kg * (-5.8 m/s)^2 = Average force * 0
Average force on the second ball = 0 N.
Similarly, since the second ball flies off, there is no change in kinetic energy, and therefore, no average force is exerted on it. In conclusion:

A) The average force on the first ball is 0 N.

B) The average force on the second ball is 0 N.

To learn more about force:

https://brainly.com/question/30507236

#SPJ11

the forces in (figure 1) act on a 3.0 kg object. what is the value of ax , the x -component of the object’s acceleration?

Answers

Depicts a force F1 = 10 N at an angle of θ1 = 45°, and a force F2 = 8.0 N at an angle of θ2 = 60°, acting on a 3.0 kg object.  the value of ax, the x-component of the object’s acceleration is 2.36 m/s².

We need to find the value of ax, the x-component of the object’s acceleration. To find the value of ax, we need to find the net force acting on the object. Let us resolve the given forces into their x- and y- components:

We know, F = ma

For the y direction,

Fy = F2 sin θ2

= -8.0 sin 60°

= -6.93 N

For the x direction,

Fx = F1 cos θ1

= 10 cos 45°

= 7.07 N

The acceleration of the object in the x-direction is 2.36 m/s². Therefore, the value of ax, the x-component of the object’s acceleration is 2.36 m/s².

To know more about force visit

https://brainly.com/question/30507236

#SPJ11

i
would greatly appreciate it
Given the following triangle, find the angle A using the appropriate sine or cosine 5.3 7 A=? law: 8.2 Given the following triangle, find the length of side x using the appropriate sine X 101° 38° o

Answers

The angle A in the triangle is approximately 43.2 degrees.

To find the angle A, you will use the sine law. This law states that a / sin A = b / sin B = c / sin C, where a, b, and c are the sides of a triangle and A, B, and C are their opposite angles. In this case, you will use a and c, which are 5.3 and 8.2, respectively, and the angle opposite to 5.3, which is A.a / sin A = c / sin Csin A = (a * sin C) / csin A = (5.3 * sin 38°) / 8.2sin A ≈ 0.275A ≈ sin-1(0.275)A ≈ 16° + 27.2°A ≈ 43.2°The length of side x is approximately 70.67 units. To find the length of side x, you will use the sine law again. In this case, you will use the angle opposite to x, which is 101°, and the side opposite to 38°, which is 7.x / sin x° = 101 / sin 38°x = (7 * sin 101°) / sin 38°x ≈ 70.67

A triangle is a three-sided polygon in geometry with three vertices and three edges. The main property of a triangle is that the amount of the inside points of a triangle is equivalent to 180 degrees. The angle sum property of a triangle is the name of this property.

Know more about triangle, here:

https://brainly.com/question/2773823

#SPJ11

222 Calculate the magnitude of force exerted by each rocket, called its thrust T, for the four-rocket propulsion system. The sleds initial acceleration is 49 m/s2, the mass of the system is 2100 kg, and the force of friction opposing the motion is f=650 N

Answers

The magnitude of force exerted by each rocket, called its thrust (T), for the four-rocket propulsion system is approximately 10850 N.

To find the magnitude of force exerted by each rocket, we need to consider the forces acting on the system and apply Newton's second law of motion.

Given values:

Initial acceleration (a) = 49 m/s²

Mass of the system (m) = 2100 kg

Force of friction opposing motion (f) = 650 N

According to Newton's second law, the net force acting on an object is equal to the product of its mass and acceleration:

Net force (Fnet) = m * a

In this case, the net force is the sum of the forces exerted by the rockets (4T) minus the force of friction (f):

Fnet = 4T - f

Setting Fnet equal to the mass times the acceleration:

m * a = 4T - f

Now we can solve for the magnitude of thrust (T):

4T = m * a + f

T = (m * a + f) / 4

Plugging in the given values and performing the calculations:

T = (2100 kg * 49 m/s² + 650 N) / 4

T ≈ 10850 N

Therefore, the magnitude of force exerted by each rocket, called its thrust (T), for the four-rocket propulsion system is approximately 10850 N.

Each rocket exerts a force, known as thrust, with a magnitude of approximately 10850 N in the four-rocket propulsion system.

To know more about propulsion, visit:

https://brainly.com/question/25870707

#SPJ11

how many crests are in a light wave of frequency 3 x 107 s–1 that travels a distance of 300 m? give your answer to the nearest whole number, but not in scientific notation.

Answers

Therefore, the light wave has a frequency of 1.00 x 106 Hz, and the number of crests it has is equal to its frequency, which is 1,000,000.

A light wave can be characterized by its wavelength and frequency. The frequency of a light wave refers to the number of wave crests that pass through a specific point in a second. The unit of frequency is Hertz (Hz).

A wave that travels a distance of 300 meters has a wavelength of 300 meters.

Given that the frequency of the light wave is 3 x 107 s–1, the wave will have the following number of crests:

Speed of light wave = frequency x wavelength (c = fλ)

The speed of light is a constant value given by 3.00 x 108 m/s.

Rearranging the equation above, we can solve for the number of crests as follows:

Frequency (f) = speed of light (c) /

wavelength (λ) f = c / λ

f = 3.00 x 108 / 300

f = 1.00 x 106 Hz

The answer is 1,000,000 crests in the light wave.

To know more about light wave visit:

https://brainly.com/question/16398728

#SPJ11

find the voltage drops on each resistor ( r1, r2, r3 ), currents (i1, i2, i3), total power dissipated on the circuit (pt), and match the values.

Answers

To determine the voltage drops on each resistor (R1, R2, R3), currents (I1, I2, I3), and the total power dissipated in the circuit (Pt), we would need the specific values of the resistors and the applied voltage or current source.

Voltage Drops (V1, V2, V3): Use Ohm's Law (V = IR) to calculate the voltage drops across each resistor. Multiply the current flowing through each resistor by its respective resistance.Currents (I1, I2, I3): If the circuit is in series, the current passing through each resistor is the same and can be calculated using Ohm's Law. If the circuit is in parallel, you need to use the appropriate formulas to determine the current flowing through each branch.Total Power Dissipated (Pt): Calculate the power dissipated on each resistor using the formula P = VI or P = I^2R, where V is the voltage drop and I is the current. Then, sum up the power dissipated on each resistor to obtain the total power dissipated in the circuit.
By finding the voltage drops, currents, and power dissipated on each resistor, you can compare the values to check if they match. However, without specific values for the resistors and the circuit configuration, cannot provide the exact calculations.

To know more about ,Ohm's Law ,click here https://brainly.com/question/1247379

#SPJ11

Following is the complete question: Find the Voltage drops on each resistor (R1, R2, R3). Currents (11, 12, 13), Total power dissipated on the Circuit (Pt), and match the values. R1 R2 w 30 120 VI BV Hulle R3 -60 V2 21.V Current (13) 1. 60 V VR1 2.-3V Total Power (PT) 3. 24 V Current (12) 4. 5 A < VR2 5.-1A > 6. 4A VR3 7. 399 W Current (1) 

L AB= CB= ZA= Use trigonometry with each of the following problems. DO NOT USE THE PYTHAGOREAN THEOREM! Show all work. Round to the nearest whole number. 2. 34 11 39° B B AC= CB= ZA= 23"

Answers

By using trigonometry, we found that side AC is approximately 14" and side BC is approximately 18" in the given triangle.

To solve the given problem using trigonometry without using the Pythagorean theorem, we can utilize the properties of right triangles and trigonometric ratios. Let's solve the problem step by step:

1. Given: AB = CB = ZA = 23"

2. Draw the triangle ABC, where angle B is 39 degrees and sides AB, CB, and AC are equal to 23".

3. We can use the sine function to find the length of side AC. The sine of an angle in a right triangle is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse.

Using the sine function:

sin(B) = opposite/hypotenuse

sin(39°) = AC/23"

Rearranging the equation to solve for AC:

AC = sin(39°) * 23"

Calculating the value:

AC ≈ 0.6293 * 23" ≈ 14.4839 ≈ 14"

Therefore, the length of side AC is approximately 14".

4. Next, let's find the length of side BC using the cosine function. The cosine of an angle in a right triangle is defined as the ratio of the length of the side adjacent to the angle to the length of the hypotenuse.

Using the cosine function:

cos(B) = adjacent/hypotenuse

cos(39°) = BC/23"

Rearranging the equation to solve for BC:

BC = cos(39°) * 23"

Calculating the value:

BC ≈ 0.7696 * 23" ≈ 17.7098 ≈ 18"

Therefore, the length of side BC is approximately 18".

For more such information on: trigonometry

https://brainly.com/question/29196154

#SPJ8

category ii electric meters are safe for working on which types of circuits

Answers

Category II electric meters are safe for working on low voltage circuits that have a current of less than or equal to 10A. The low voltage circuits with currents less than or equal to 10A are the types of circuits that Category II electric meters are safe for working on.

Category II electric meters are considered safe for low-voltage circuits with currents up to 10 amps. The 10-ampere maximum rating ensures that the electric meter's internal components are secure and the electric meter is not damaged by higher currents.

Since low-voltage circuits are commonly utilized for electronic devices, measuring and testing these circuits frequently need a category II electric meter.

Therefore, category II electric meters are safe for use in low-voltage circuits with currents of less than or equal to 10A.

For more information on electric meters kindly visit to

https://brainly.com/question/13436548

#SPJ11

A 13 kg ball is falling with a downward acceleration of 7
m/s^2
What is the magnitude of the force of air resistance (R) acting
on the falling ball in Newtons?
Use a positive answer if the force is up

Answers

The magnitude of the force of air resistance acting on the falling ball is 91 N. This calculation is based on the mass of the ball, which is 13 kg, and the downward acceleration due to air resistance, which is 7 m/s².

The force of air resistance acting on a falling object can be calculated using the equation:

Force of Air Resistance (R) = Mass × Acceleration due to air resistance

Given that the mass of the ball is 13 kg and the downward acceleration is 7 m/s², we can calculate the force of air resistance:

R = 13 kg × 7 m/s² = 91 N

Since the acceleration due to air resistance acts in the opposite direction to the motion, the force of air resistance is considered to be up (positive) in this case.

The magnitude of the force of air resistance acting on the falling ball is 91 N. This calculation is based on the mass of the ball, which is 13 kg, and the downward acceleration due to air resistance, which is 7 m/s². The force of air resistance opposes the motion of the ball and acts in the upward direction.

To know more about acceleration  visit:

https://brainly.com/question/460763

#SPJ11

list three types of radiation that are produced during radioactivity

Answers

Answer:

alpha particles, beta particles, and gamma rays.

Three types of radiation that are produced during radioactivity are Alpha radiation, Beta radiation, Gamma radiation.

Alpha radiation: Alpha particles are helium nuclei consisting of two protons and two neutrons. They are positively charged and have low penetration power. Alpha radiation can be stopped by a sheet of paper or a few centimeters of air. Beta radiation: Beta particles are either high-energy electrons or positrons. They are negatively or positively charged, respectively. Beta particles have higher penetration power than alpha particles and can be stopped by a few millimeters of aluminum or plastic. Gamma radiation: Gamma rays are electromagnetic radiation similar to X-rays but with higher energy. They have no charge and are highly penetrating. Gamma rays require thicker shielding, such as several centimeters of lead or concrete, to be effectively absorbed.

To learn more about radioactivity:

https://brainly.com/question/1770619

#SPJ11

find three mutually orthogonal unit vectors in besides i, j, and k.

Answers

This vector is perpendicular to a and <0, 0, 1>, and its length is 1, so it is also a unit vector. Therefore, the three mutually orthogonal unit vectors we found are: a = <1, 1, 0>, b = <0, 0, 1>, and c = <-1, 1, 0>.

In this problem, we are looking for three mutually orthogonal unit vectors in besides i, j, and k. The term "orthogonal" refers to vectors that are perpendicular to each other. The term "unit vectors" refers to vectors with a length of 1, regardless of the direction or magnitude of the vector. In other words, we are looking for three vectors that are perpendicular to each other, and each vector has a length of 1. Here's how we can find these vectors:First, we need to choose a vector that is not parallel to i, j, or k. Let's say we choose a vector a = <1, 1, 0>. We can find a vector that is perpendicular to a by taking the cross product of a with one of the standard basis vectors (i, j, or k) that a is not parallel to. For example, let's take the cross product of a with j. We get: a x j = <0, 0, 1>. This vector is perpendicular to a and j, and its length is 1, so it is a unit vector. Now we need to find a vector that is perpendicular to both a and <0, 0, 1>. We can take the cross product of these two vectors to get the third vector: a x <0, 0, 1> = <-1, 1, 0>. This vector is perpendicular to a and <0, 0, 1>, and its length is 1, so it is also a unit vector. Therefore, the three mutually orthogonal unit vectors we found are: a = <1, 1, 0>, b = <0, 0, 1>, and c = <-1, 1, 0>.

To know more about orthogonal unit vectors visit :

brainly.com/question/28503609

#SPJ11

a 0.250-kg ice puck, moving east with a speed of 5.22 m/s , has a head-on collision with a 0.900-kg puck initially at rest. assume that the collision is perfectly elastic.

Answers

In a perfectly elastic collision, both momentum and kinetic energy are conserved. To solve this problem, we can apply the principles of conservation of momentum and kinetic energy.

Apologies for the incomplete response. Let's continue with the conservation equations to find the velocities of the pucks after the collision

Now, we can solve these equations simultaneously to find the velocities v1' and v2' after the collision.Now we can solve the equations simultaneously to find the velocities of the pucks after the collision.

To know more about   collision visit :

https://brainly.com/question/13138178

#SPJ11

what measurement scale is used in the following example? baking temperatures for various main dishes: 350, 400, 325, 250, 300. question 16 options: ordinal interval ratio nominal

Answers

The measurement scale used in the given example of baking temperatures for various main dishes, 350, 400, 325, 250, 300 is Interval scale.

An interval scale is a scale that can be used to measure data on a scale. It is a type of quantitative measurement scale where the order and value of the points or numbers is significant. This scale does not have a true zero point. An interval scale is used for measuring temperature, time, year, and date, as well as other measurements.The interval scale is based on the degree of difference or interval between the numbers or values on the scale. It is also referred to as the equal-interval scale, which means that the intervals between the scale values are equal, but there is no natural zero. For example, in the given example of baking temperatures for various main dishes, we can see that the intervals between the numbers are equal. This makes it an interval scale.

To know more about interval scale, visit:

https://brainly.com/question/31608615

#SPJ11

the sun is powered through a nuclear fusion process by which four protons are combined to produce one alpha particle (he nucleus) and two positrons.

Answers

The sun is powered through a nuclear fusion process by which four protons are combined to produce one alpha particle (he nucleus) and two positrons. This process occurs in the sun's core and is responsible for the energy output of the sun.

The sun's core is very hot and dense, with temperatures reaching over 15 million degrees Celsius and pressures exceeding 250 billion times the atmospheric pressure at the Earth's surface. Under these extreme conditions, hydrogen nuclei (protons) collide and merge together to form helium nuclei (alpha particles), releasing a large amount of energy in the process.

The energy produced by nuclear fusion is what makes the sun shine and provides the heat and light that sustains life on Earth. Without this process, the sun would eventually cool and die, leaving behind a cold, dark, and lifeless planet. In summary, the sun is powered through a process called nuclear fusion, which involves the combination of hydrogen nuclei to form helium nuclei, releasing a tremendous amount of energy in the process.

This process occurs in the sun's core, which is very hot and dense, and is responsible for the energy output of the sun.

To know more about Particle visit :

https://brainly.com/question/31610112

#SPJ11

A ball of mass 1.52kg is thrown upward with a speed of
6.66 m/s. What is the magnitude of the impulse caused to the ball
by the gravity when the ball reached the peak height? Express your
answer is tw

Answers

The impulse is equal to the change in momentum, the magnitude of the impulse caused by gravity at the peak height is approximately 10.1232 kg·m/s.

The magnitude of the impulse caused by gravity when the ball reaches its peak height can be calculated using the concept of momentum change.

Impulse = Change in momentum

The momentum of the ball at the peak height is given by:

Momentum = Mass x Velocity

Mass of the ball is 1.52 kg, and the velocity at the peak height is 0 m/s since the ball momentarily comes to rest before falling back down.

Initial momentum = [tex]1.52 kg x 6.66 m/s = 10.1232[/tex]kg·m/s

Final momentum = [tex]1.52 kg x 0 m/s = 0[/tex] kg·m/s

The change in momentum is therefore:

Change in momentum = Final momentum - Initial momentum =[tex]0 kg·m/s - 10.1232 kg·m/s = -10.1232 kg·m/s[/tex]

To know more about impulse refer here:

https://brainly.com/question/30466819#

#SPJ11

16. Determine the gravitational force of attraction between the Earth and Jupiter given the mass of the earth is 6 x 10^24 kg, the mass of Jupiter is 1898.6 x 10^24 kg and the closest distance is abou

Answers

The gravitational force of attraction between the Earth and Jupiter is approximately 1.32 x 10²⁸ N.

The gravitational force of attraction between two objects can be calculated using Newton's law of universal gravitation, which states that the force (F) is proportional to the product of their masses (m₁ and m₂) and inversely proportional to the square of the distance (r) between their centers. Mathematically, the formula is expressed as:

F = (G * m₁ * m₂) / r²

where G is the gravitational constant.

m₁ = 6 x 10²⁴ kg (mass of Earth)

m₂ = 1898.6 x 10²⁴ kg (mass of Jupiter)

r = 5.88 x 10¹¹ m (distance between Earth and Jupiter)

Plugging in the values into the formula, we have:

F = (6.67 x 10⁻¹¹ N m²/kg²) * (6 x 10²⁴ kg) * (1898.6 x 10²⁴ kg) / (5.88 x 10¹¹ m)²

Calculating the expression, we find:

F ≈ 1.32 x 10²⁸ N

learn more about gravitational force here:

https://brainly.com/question/30192826

#SPJ11

THE COMPLETE QUESTION IS:

Determine the gravitational force of attraction between the Earth and Jupiter given the mass of the earth is 6 x 10²⁴ kg the mass of Jupiter is 1898.6 x 10²⁴ kg and the closest distance is about 5.88 x 10¹¹

Choose the correct procedure for determiningthe components of a vector in a given coordinate system from thefollowing list.
Align theadjacent side of a right triangle with the vector and thehypotenuse along a coordinate direction withthetaas the included angle.
Align thehypotenuse of a right triangle with the vector and an adjacent sidealong a coordinate direction withthetaas the included angle.
Align theopposite side of a right triangle with the vector and thehypotenuse along a coordinate direction withthetaas the included angle.
Align thehypotenuse of a right triangle with the vector and the oppositeside along a coordinate direction withthetaas the included angle.

Answers

The correct procedure for determining the components of a vector in a given coordinate system from the given list is as follows:Align the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with theta as the included angle.

This is because it is easier to work with adjacent and hypotenuse when breaking down a vector into its components.A vector is a quantity that has magnitude as well as direction. The magnitude of a vector is a scalar quantity, which means that it has only magnitude and no direction. A vector can be represented using a coordinate system with horizontal and vertical axes.In order to break down a vector into its components in a given coordinate system, we need to draw a right triangle with one side of the triangle aligned with the vector and the hypotenuse along one of the coordinate directions. The angle between the vector and the coordinate direction is denoted by theta.Then, we can use trigonometric functions to determine the components of the vector. The adjacent side of the right triangle corresponds to one of the components, and the opposite side corresponds to the other component. The hypotenuse corresponds to the magnitude of the vector. Therefore, aligning the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with theta as the included angle is the correct procedure for determining the components of a vector in a given coordinate system.

To know more about vector visit :

brainly.com/question/24256726

#SPJ11

A hollow spherical shell with mass 1.95kg rolls without slipping down a slope that makes an angle of 30 degrees with the horizontal.
a) Find the magnitude of the acceleration acm of the center of mass of the spherical shell.
Take the free-fall acceleration to be g = 9.80m/s^2 .
b) Find the magnitude of the frictional force acting on the spherical shell.
Take the free-fall acceleration to be g = 9.80m/s^2 .

Answers

a) The magnitude of the acceleration acm of the center of mass of the spherical shell is 0.81 m/s²

b) The magnitude of the frictional force acting on the spherical shell is 1.58 N.

a) The angle of inclination of the slope with the horizontal is θ = 30°. The force of friction, F, opposes the rolling motion.

Hence, friction acts upward.To get the magnitude of the acceleration of the center of mass of the spherical shell, we can use the formula:

acm = gsinθ/1+(k²/5mr²)

where k is the radius of gyration and r is the radius of the sphere.

Given that the shell is a hollow sphere, the radius of gyration for a hollow sphere is given as k = (2/3)r.

So, k = (2/3) × 0.1 m = 0.0667 m

Therefore,

acm = g sin θ / [1 + (k²/5mr²)]

acm = (9.8 m/s²) sin 30° / [1 + (0.0667²/5 × 1.95 × 0.1²)]

acm = 0.81 m/s²

b) Next, to find the frictional force acting on the spherical shell, we can use the formula

:F = macm

where F is the frictional force acting on the spherical shell.

Substituting the given values, we have

F = m × acm

F = 1.95 kg × 0.81 m/s²

F = 1.58 N

Learn more about spherical shell at:

https://brainly.com/question/13292382

#SPJ11

a) The magnitude of the acceleration acm of the center of mass of the spherical shell is 1.27 m/s². ; b) The magnitude of the frictional force acting on the spherical shell is 4.63 N.

a) For the rolling motion, we have the following equation, Torque due to friction = I αwhere, torque due to friction τ = fR and I = 2mr²/5for a solid sphere and I = mr² for a hollow sphere and α = a/R where a is the linear acceleration and R is the radius.

From the torque due to friction equation we can find that f R = I a/Rf = I a/R² = 2mr²/5 * a/R² = 2ma/5... (1)Also, we know that the net torque τnet = τf = I α (rolling motion with slipping)τnet = fR - M g Rsin(θ) = I ατnet = I a/R; since α = a/Rτnet = fR - MgRsin(θ) = I a/RThus, we have, fR = I a/R + Mg R sin(θ) = ma(2/5 + sin(θ)). Rearranging the above equation, we get a = g * sinθ / (1 + 2/5) = 1.274 m/s², where g = 9.8 m/s².

Thus, the magnitude of the acceleration a cm of the center of mass of the spherical shell is 1.27 m/s².

b) The force of friction f will oppose the direction of motion of the shell. Hence, f = ma * (2/5 + sinθ)Substituting the values, we get f = 1.95 kg * 1.274 m/s² * (2/5 + sin(30°)) = 4.63 N. Therefore, the magnitude of the frictional force acting on the spherical shell is 4.63 N.

To know more about acceleration, refer

https://brainly.com/question/460763

#SPJ11

A 6.40 kgkg block moves in a straight line on a horizontal frictionless surface under the influence of a horizontal force F⃗ F→. As a result, the block's position varies as x(t)=αt^2+βt^3, where α = 0.190 m/s^2 and β = 2.05×10−2 m/s^3 .

What is the value of the velocity of the block at time t = 3.60 s ?

What is the magnitude of F⃗ F→ at time t = 3.60 s ?

How much work is done on the block by the force F⃗→ during the first 3.60 s ?

Answers

At t = 3.60 s, the velocity of the block is approximately 2.736 m/s, and the magnitude of the force F is approximately 6.31 N. The work done on the block by the force F during the first 3.60 s is approximately 25.081 Joules.

1. Velocity at t = 3.60 s:

[tex]v(t) = 2\alpha t + 3\beta t^2[/tex]

[tex]V(3.60)=2(0.190)(3.60) + 3(2.05\times 10^{-2})(3.60)^2[/tex]

Calculating this expression gives us the velocity at t = 3.60 s:

v(3.60) ≈ 2.736 m/s

2. Magnitude of the force F at t = 3.60 s:

To find the magnitude of the force F, we need to calculate the acceleration at t = 3.60 s. Using the position equation:

a(t) = 2α + 6βt

[tex]a(3.60) = 2(0.190) + 6(2.05\times 10^{-2})(3.60)[/tex]

Calculating this expression gives us the acceleration at t = 3.60 s:

[tex]a(3.60) \approx 0.988 m/s^2[/tex]

Now, using Newton's second law, F = ma, we can find the magnitude of the force:

F = m * a

F = [tex]6.40 kg * 0.988 m/s^2[/tex]

Calculating this expression gives us the magnitude of the force F at t = 3.60 s:

F ≈ 6.31 N

3. Work done on the block by the force F during the first 3.60 s:

To calculate the work done, we need to find the change in kinetic energy.

The initial kinetic energy is zero since the block starts from rest.

Final kinetic energy (KE(final)) can be calculated using the velocity at t = 3.60 s:

KE(final) = [tex](1/2) * m * v^2[/tex]

KE(final) = [tex](1/2) * 6.40 kg * (2.736 m/s)^2[/tex]

Calculating this expression gives us the final kinetic energy:

KE(final) ≈ 25.081 J

The work done is equal to the change in kinetic energy:

Work = ΔKE = KE(final) - KE(initial)

Work ≈ 25.081 J - 0 J

Work ≈ 25.081 J

Therefore, the work done on the block by the force F during the first 3.60 s is approximately 25.081 Joules.

In summary:

- The velocity of the block at t = 3.60 s is approximately 2.736 m/s.

- The magnitude of the force F at t = 3.60 s is approximately 6.31 N.

- The work done on the block by the force F during the first 3.60 s is approximately 25.081 Joules.

To know more about velocity refer here:

https://brainly.com/question/31500058#

#SPJ11

Consider the straight bar of a uniform elliptical cross-section. The semimajor and semiminor axes are a and b, respectively. Show that the stress function of the form + provides the solution for torsion of the bar. Find the expression of C and show that лазь3 a2 +b2 —2Ty Izx Тzy 2Tx лаbЗ» лазь and the warping displacement т(? — а?). -ху лазь3G

Answers

The stress function of the form Φ = C(x²- y²) provides the solution for torsion of the bar.

How can we determine the expression of C and derive the given equation?

To determine the expression of C and derive the given equation, we consider the torsion of a straight bar with a uniform elliptical cross-section. The stress function Φ is assumed to have the form Φ = C(x²- y²), where C is a constant.

By substituting the stress function into the torsion equation and solving for the shear stress τxy, we find that τxy = 2GC(xsin(θ) - ycos(θ)), where G is the shear modulus and θ is the angular coordinate.

To find the expression of C, we compare this equation with the given equation and equate the terms. This leads us to C = Ty/(2G), where Ty is the applied torque.

By further substituting the expressions for x and y in terms of the semimajor and semiminor axes, we can rewrite the equation as τxy = Ty(a²+ b²- 2Jx/R²), where J is the torsional constant and R is the radius of the cross-section.

The warping displacement θ(Φ - Φ0) can be obtained by integrating the torsion equation, which involves the shear stress τxy and the differential area of the cross-section. This displacement can be expressed as θ(Φ - Φ0) = -G∫(τxy dA).

In summary, the stress function Φ = C(x²- y²) provides the solution for torsion of the bar, where C = Ty/(2G) and the derived equation is τxy = Ty(a²+ b² - 2Jx/R²). The warping displacement can be calculated through the integration of the torsion equation.

Learn more about expression

brainly.com/question/15994491

#SPJ11

"Trydint" bubble-gum company claims that 3 out of 10 people
prefer their gum to "Eklypse" and they want to test if this value
is different.
The null and alternative hypothesis in symbols would be:
H

Answers

According to the statement provided, 3 out of 10 people who chew "Try dint" bubble-gum experienced relief from cigarette cravings.

"Try dint" bubble-gum company has claimed that it can help people who want to quit smoking by relieving them from cigarette cravings. The company states that the gum is made up of certain ingredients that make it easier for smokers to overcome their addiction. The statement suggests that 3 out of 10 people who chew the gum have experienced a reduction in their cigarette cravings. While this may sound promising, it is important to note that the effectiveness of the gum may vary from person to person, and it may not work for everyone. It is also worth mentioning that quitting smoking requires a combination of various methods such as nicotine replacement therapy, behavioral therapy, and support groups. Therefore, "Try dint" bubble-gum may be used as a part of the comprehensive plan to quit smoking.

Know more about cigarette cravings, here:

https://brainly.com/question/19677300

#SPJ11

A The northward component of vector A is equal in magnitude to the southward component of vector it. Also, the eastward component of vector is the same as the eastward component of B. Select ALL of the statements below that must always be correct, based on the information given View Available Hint(s) The magnitude of vector A is equal to the magnitude of vector Vector is perpendicular to vector 3. Vector A is in the opposite direction to vector B □ Vector A is parallel to Vector i The magnitude of vector A is twice the magnitude of vector B Submit Previous Answers X Incorrect; Try Again; 5 attempts remaining Next > Provide Feedback

Answers

The statements that must always be correct, based on the given information, are: The magnitude of vector A is equal to the magnitude of vector B. The eastward component of vector A is the same as the eastward component of vector B.

Let's analyze the given information and determine which statements must always be correct:

The magnitude of vector A is equal to the magnitude of vector B:

Based on the given information, we are not provided with any specific details regarding the magnitudes of vector A and vector B. Therefore, we cannot conclude that the magnitudes are equal. This statement is not necessarily correct.

The magnitude of vector A is twice the magnitude of vector B:

Again, the given information does not provide any specific details about the magnitudes of vector A and vector B. Hence, we cannot conclude that the magnitude of vector A is twice the magnitude of vector B. This statement is not necessarily correct.

The northward component of vector A is equal in magnitude to the southward component of vector B:

From the given information, we know that the northward component of vector A is equal in magnitude to the southward component of vector B. Therefore, this statement must always be correct.

The eastward component of vector A is the same as the eastward component of vector B:

The given information explicitly states that the eastward component of vector A is the same as the eastward component of vector B. Thus, this statement must always be correct.

Vector A is in the opposite direction to vector B:

The given information does not provide any specific details about the directions of vector A and vector B. Therefore, we cannot conclude that vector A is in the opposite direction to vector B. This statement is not necessarily correct.

Based on the given information, the statements that must always be correct are: "The northward component of vector A is equal in magnitude to the southward component of vector B" and "The eastward component of vector A is the same as the eastward component of vector B." The other statements cannot be determined solely from the given information.

To know more about vector ,visit:

https://brainly.com/question/27854247

#SPJ11

If the air in a carton of milk was allowed to warm up, what would happen to it?
a. It would freeze.
b. It would evaporate.
c. It would expand. d. It would solidify.

Answers

If the air in a carton of milk was allowed to warm up, it would expand. The air in the carton of milk would warm up and expand. option c

If the carton wasn't ventilated and wasn't designed to accommodate this, it might burst open, resulting in a mess to clean up. When air warms up, it expands since the molecules in the air become more active and move around more quickly, taking up more space. This is true for any gas, not just air. When the milk inside the carton warms up, it might spoil or go sour if it reaches a high enough temperature. This is because warmth promotes the development of bacteria and other organisms that can make the milk unsafe to consume, as well as change the flavor and odor of the milk. If it's left in a hot area for an extended period of time, it might also curdle, making it unsuitable for drinking.

In the answer explains that the air in the carton of milk would expand if allowed to warm up. The warming air's molecules become more active and move around more quickly, taking up more space, and if the carton is not designed to accommodate this, it might burst open, resulting in a mess. When milk warms up, it might spoil or become sour if it reaches a high enough temperature, and if left in a hot area for an extended period, it might curdle.

to know more about temperature visit:

https://brainly.com/question/11464844

#SPJ11

Dry air will break down if the electric field exceeds 3.0 ×10-6 V/m, What amount of charge can be placed on a parallel-plate capacitor if the area of each plate is 83 cm2 ?

Answers

The potential difference across the parallel-plate capacitor is given by V = Ed, where d is the separation between the plates. The electric field strength in dry air will break down at 3.0 × 10⁶ V/m. Therefore, the breakdown voltage is given by;Vbreakdown = Ed3.0 × 10⁶ = Ed ∴ d = Vbreakdown / 3.0 × 10⁶Let the amount of charge that can be placed on each plate of the capacitor be Q.The capacitance of the parallel-plate capacitor is given by;C = ε0A/dwhere A is the area of each plate and ε0 is the permittivity of free space.Substituting the value of d and solving for Q we have;Q = CVbreakdownQ = (ε0A/d) Vbreakdown = (ε0A/ Vbreakdown / 3.0 × 10⁶) Vbreakdown = (ε0AVbreakdown/ 3.0 × 10⁶)Since A = 83cm² = 8.3 × 10⁻⁴m², and ε0 = 8.85 × 10⁻¹² C²/(N∙m²);Q = (8.85 × 10⁻¹²C²/(N∙m²)× 8.3 × 10⁻⁴m² × 3.0 × 10⁶V/m) / 3.0 × 10⁶V/mQ = 2.45 × 10⁻⁸ CAnswer:Therefore, the amount of charge that can be placed on the capacitor is 2.45 × 10⁻⁸ C.

Other Questions
the reference used as a base for your initial actions at a hazmat incident is/are: Which of the following is an example of an external growth strategy? O A. New product development OB Product line extension OC. Market penetration OD. Geographic expansion O E. Mergers and acquisitions A project has an initial cost of $65,000, expected net cash inflows of $12,000 per year for 10 years, and a cost of capital of 11%. What is the project's NPV? (Hint: Begin by constructing a time line.) Do not round intermediate calculations. Round your answer to the nearest cent.$2.NPVs, IRRs, and MIRRs for Independent ProjectsEdelman Engineering is considering including two pieces of equipment, a truck and an overhead pulley system, in this year's capital budget. The projects are independent. The cash outlay for the truck is $18,000, and that for the pulley system is $22,000. The firm's cost of capital is 14%. After-tax cash flows, including depreciation, are as follows:YearTruckPulley1$5,100$7,50025,1007,50035,1007,50045,1007,50055,1007,500Calculate the IRR, the NPV, and the MIRR for each project, and indicate the correct accept/reject decision for each. Do not round intermediate calculations. Round the monetary values to the nearest dollar and percentage values to two decimal places. Use a minus sign to enter negative values, if any.TruckPulleyValueDecisionValueDecisionIRR%-Select-AcceptRejectItem 2%-Select-AcceptRejectItem 4NPV$-Select-AcceptRejectItem 6$-Select-AcceptRejectItem 8MIRR%-Select-AcceptRejectItem 10%-Select-AcceptRejectItem 12Check My Work hospitality and tourismYou've decided to go on a cruise. Describe what kind of guest you are (demographics, psychographics, push/pull factors). Determine what type of cruise would best suit your travel style and explain why Imagine there are two countries that are identical, except for their marginal propensities to consume (MPC). They both experience the same decrease in consumption spending. Country A has a MPC=0.9 and Country B has a MPC=0.6. If both governments implement the same fiscal policy response will the effects be the same? Why/ why not? Given the following information for an inventory item of the Scottsdale Corporation: Cost Replacement Cost Estimated Sales Price Normal Profit Cost of Completion $102 $103 $120 S6 S13 Using the LCM Rule, the proper inventory amount for the balance sheet is: Select one: O a $98 O b. $104 O c. $101 O d. $102 O e. $103 the history of the united methodist church in the united states illustrates the sectchurch cycle. place the events in chronological order. A surfer floating beyond the breakers notes 17 waves per minute passing her position. If the wavelength of these waves is 38 , what is their speed? A surfer floating beyond the breakers notes 17 waves per minute passing her position. If the wavelength of these waves is 38 , what is their speed? Erica Company had the following property acquisitions during the current year: 1. Acquired a tract of land in exchange for 50,000 ordinary shares with P100 par value and market price of P120 per share on the date of acquisition. The last property tax bill indicated assessed value of P4,500,000 for the land. 2. Received land from a major shareholder as an inducement to locate a plant in the city. No payment was required but the entity paid P50,000 for legal expenses for land transfer. The land is fairly valued at P1,000,000. 3. Purchased for P5,500,000, including appraiser fee of P100,000 a warehouse building and the land on which it is located. The land had an appraised value of P2,000,0000 and original cost of P1,400,000. The building had an appraised value of P3,000,000 and original cost of P2,500,000. 4. Purchased an office building and the land on which it is located for P7,500,000 cash and assumed an existing P2,500,000 mortgage. For realty tax purposes, the property is assessed at P9,600,000, 60% of which is allocated to building. Required: Prepare journal entries to record the transactions for the current year. what impact did technological changes have on the american worker before the civil war? Suppose an economy has the following equations:C =100 + 0.8Yd;TA = 25 + 0.25Y;TR = 50;I = 400 10i;G = 200;L = Y 100i;M/P = 500Calculate the equilibrium level of income, interest rate, consumption, investments and budget surplus.Suppose G increases by 100. Find the new values for the investments and budget surplus. Find the crowding out effect that results from the increase in GAssume that the increase of G by 100 is accompanied by an increase of M/P by 100. What is the equilibrium level of Y and r? What is the crowding out effect in this case? Why?Expert Answer Recognizing pension expense during an employee's service years rather than during retirement represents an application of ____ the costs with the benefits provided. Business intelligence is facts and figures printed on a reportor displayed on a report.TrueFalse .A flywheel with a radius of 0.300m starts from rest and accelerates with a constant angular acceleration of 0.400rad/s2 .A) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. (Answers are 0.21,0,0.21 m/s^2)B) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0?C) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 120?. What are the five stages of the Strategy Execution Process? 2. What is a Strategic Inflection Point (in your own words)? 3. What is a Strategic Plan? 4. What are at least three of the seven Characteristics of Effectively Worded Vision Statements as discussed in the PowerPoint? 5. What are at least three of the six Common Shortcomings in Company Vision Statements? 6. Why is it important to communicate the company's Strategic Vision? 7. What are the four sections of a Balanced Scorecard? 8. What is stage 5 of executing a chosen strategy? The following comparative balance sheet is given for Estern Co.: Assets Dec 31, 2021 Cash $117,000 Notes Receivable 24,000 Supplies & Inventory 27,000 Prepaid expense 10,500 Long-term investments 0 Machines and tools 55,500 (21,000) Accumulated depreciation-equipment Total Assets $213,000 Liabilities & Stockholders' Equity Accounts payable $ 25,500 Bonds payable (long-term) 55,500 Common Stock 60,000 Retained Earnings 72,000 Total Liabilities & Stockholders' $213,000 Equity Dec 31, 2020 $19,500 21,000 40,500 18,000 27,000 48,000 (15,000) $159,000 $ 10,500 70,500 34,500 43,500 $159,000 Income Statement Information (2021): 1. Net income for the year ending December 31, 2021 is $43,500 2. Depreciation expense is $6,000 3. There is a loss of $3,000 resulted from the sale of long-term investment Additional information (2021): 1. All sales and purchases of inventory are on account (or credit). 2. Received cash for the sale of long-term investments that had a cost of $27,000. yielding a $3,000 loss. 3. Cash dividends paid is $15,000. 4. The company purchased new machines and tools for $7,500 cash. Required: Prepare the FIRST (Operating) and the SECOND (Investing) sections of the statement of cash flows for the year ended December 31, 2021. the gastrovascular cavitywas a key innovation in animal evolution. how is the function of the gastrovascular cavity simmilar to the feeding strategy of the parazoa determine the oxidation state of the metal species in the complex ion. [fe(cn)(co)5]2 oxidation state of fe: What are the total assets reported by Panther Enterprises if operating income is $252,750, its return on investment (ROI) is 15%, and its target rate of return is 5%?$5,055,000$252,750$1,685,000$37,912.5 If I heat a solution and remove water, I see crystals at the bottom of the container. What happened?a. The solution underwent sublimation.b. The solution underwent condensation.c. The solution underwent precipitation.d. The solution underwent evaporation.