consider the function below. f(x) = 9x tan(x), − 2 < x < 2 (a) find the interval where the function is increasing. (enter your answer using interval notation.)

Answers

Answer 1

The function is increasing on the interval (-π/2, 0) U (0, π/2). In interval notation, this is:

(-π/2, 0) ∪ (0, π/2)

To find where the function is increasing, we need to find where its derivative is positive.

The derivative of f(x) is given by:

f'(x) = 9tan(x) + 9x(sec(x))^2

To find where f(x) is increasing, we need to solve the inequality f'(x) > 0:

9tan(x) + 9x(sec(x))^2 > 0

Dividing both sides by 9 and factoring out a common factor of tan(x), we get:

tan(x) + x(sec(x))^2 > 0

We can now use a sign chart or test points to find the intervals where the inequality is satisfied. However, since the interval is restricted to −2 < x < 2, we can simply evaluate the expression at the endpoints and critical points:

f'(-2) = 9tan(-2) - 36(sec(-2))^2 ≈ -18.7

f'(-π/2) = -∞  (critical point)

f'(0) = 0  (critical point)

f'(π/2) = ∞  (critical point)

f'(2) = 9tan(2) - 36(sec(2))^2 ≈ 18.7

Therefore, the function is increasing on the interval (-π/2, 0) U (0, π/2). In interval notation, this is:

(-π/2, 0) ∪ (0, π/2)

Learn more about functions from

https://brainly.com/question/11624077

#SPJ11


Related Questions

ten employees of a company are to be assigned to 10 different managerial posts, one to each post. in how many ways can these posts be filled?

Answers

There are 3,628,800 ways in which the posts can be filled. To find the number of ways these posts can be filled, we can use the concept of permutations.

Since there are 10 employees and 10 managerial posts, we can start by selecting one employee for the first post. We have 10 choices for this.

Once the first post is filled, we move on to the second post. Since one employee has already been assigned, we now have 9 employees to choose from.

Following the same logic, for each subsequent post, the number of choices decreases by 1. So, for the second post, we have 9 choices; for the third post, we have 8 choices, and so on.

We continue this process until all 10 posts are filled. Therefore, the total number of ways these posts can be filled is calculated by multiplying the number of choices for each post together.

So, the number of ways = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800.

Hence, there are 3,628,800 ways in which the posts can be filled.

To know more about permutations visit:

https://brainly.com/question/3867157

#SPJ11

Solve the following system of equations. \[ \left\{\begin{array}{l} y-3 x=-4 \\ 6 x^{2}-11 x-y=-4 \end{array}\right. \]

Answers

The solution to the system of equations is x = 1 and y = -1. Substituting these values into the equations satisfies both equations simultaneously. Therefore, (1, -1) is the solution to the given system of equations.

To solve the system, we can use the method of substitution or elimination. Let's use the substitution method. From the first equation, we can express y in terms of x as y = 3x - 4. Substituting this expression for y into the second equation, we have [tex]6x^2 - 11x - (3x - 4) = -4[/tex]. Simplifying this equation, we get [tex]6x^2 - 14x + 4 = 0[/tex].

We can solve this quadratic equation by factoring or using the quadratic formula. Factoring the equation, we have (2x - 1)(3x - 4) = 0. Setting each factor equal to zero, we find two possible solutions: x = 1/2 and x = 4/3.

Substituting these values of x back into the first equation, we can find the corresponding values of y. For x = 1/2, we get y = -1. For x = 4/3, we get y = -11/3.

Therefore, the system of equations is solved when x = 1 and y = -1.

To learn more about the Substitution method, visit:

https://brainly.com/question/26094713

#SPJ11

In 1997, the soccer club in newyork had an average attendance of 5,623 people. Since then year after year the average audience has increased, in 2021 the average audience has become 18679. What is the change factor when?

Answers

The change factor is approximately 1.093 when the average attendance of the soccer club in New York increased from 5,623 people in 1997 to 18,679 people in 2021.

The average attendance of the soccer club in New York was 5,623 people in 1997, and it has increased every year until, 2021, it was 18679. Let the change factor be x. A formula to find the change factor is given by:`(final value) = (initial value) x (change factor)^n` where the final value = 18679 and the initial value = 5623 n = the number of years. For this problem, the number of years between 1997 and 2021 is: 2021 - 1997 = 24Therefore, the above formula can be written as:`18679 = 5623 x x^24 `To find the value of x, solve for it.```
x^24 = 18679/5623
x^24 = 3.319
x = (3.319)^(1/24)
```Rounding off x to 3 decimal places: x ≈ 1.093. So, the change factor is approximately 1.093 when the average attendance of the soccer club in New York increased from 5,623 people in 1997 to 18,679 people in 2021.

To learn more about change factor: https://brainly.com/question/15891755

#SPJ11

talia is buying beads to make bracelets. she makes a bracelet with 7 plastic beads and 5 metal beads for $7.25. she makes another bracelet with 9 plastic beads and 3 metal beads for 6.75$. write and solve a system of equations using elimination to find the price of each bead

Answers

The price of each plastic bead is $0.75 and the price of each metal bead is $1.25.

Let's assume the price of a plastic bead is 'p' dollars and the price of a metal bead is 'm' dollars.

We can create a system of equations based on the given information:

Equation 1: 7p + 5m = 7.25 (from the first bracelet)

Equation 2: 9p + 3m = 6.75 (from the second bracelet)

To solve this system of equations using elimination, we'll multiply Equation 1 by 3 and Equation 2 by 5 to make the coefficients of 'm' the same:

Multiplying Equation 1 by 3:

21p + 15m = 21.75

Multiplying Equation 2 by 5:

45p + 15m = 33.75

Now, subtract Equation 1 from Equation 2:

(45p + 15m) - (21p + 15m) = 33.75 - 21.75

Simplifying, we get:

24p = 12

Divide both sides by 24:

p = 0.5

Now, substitute the value of 'p' back into Equation 1 to find the value of 'm':

7(0.5) + 5m = 7.25

3.5 + 5m = 7.25

5m = 7.25 - 3.5

5m = 3.75

Divide both sides by 5:

m = 0.75

Therefore, the price of each plastic bead is $0.75 and the price of each metal bead is $1.25.

For more such questions on metal, click on:

https://brainly.com/question/4701542

#SPJ8

Using the whole numbers 1 through 9, fill in the boxes so that 2 of the lines are parallel and the third line is a transversal is perpendicular to the parallel lines

Answers

By arranging the numbers in this manner, Line A and Line B are parallel, while the vertical column (transversal) is perpendicular to them.

To create a configuration with two parallel lines and a perpendicular transversal using the whole numbers 1 through 9, you can follow these steps:

Start by placing the numbers 1, 2, and 3 in a row to represent one line. Let's call this Line A.

Next, place the numbers 4, 5, and 6 in another row, parallel to Line A. This will be Line B.

Now, for the transversal, place the numbers 7, 8, and 9 in a vertical column, intersecting Line A and Line B perpendicularly.

Your configuration should look like this:

Line A: 1 2 3
Line B: 4 5 6
Transversal: 7
            8
            9

By arranging the numbers in this manner, Line A and Line B are parallel, while the vertical column (transversal) is perpendicular to them.

To create a configuration with two parallel lines and a perpendicular transversal, we need to arrange the whole numbers 1 through 9 in a specific manner. First, we can start by placing the numbers 1, 2, and 3 in a row to represent one line, let's call this Line A. Then, we place the numbers 4, 5, and 6 in another row, parallel to Line A, forming Line B. So far, we have two parallel lines. Now, to introduce the perpendicular transversal, we can place the numbers 7, 8, and 9 in a vertical column, intersecting Line A and Line B perpendicularly. By arranging the numbers in this manner, we have achieved our desired configuration with two parallel lines (Line A and Line B) and a perpendicular transversal.

By following the steps mentioned above, we can successfully create a configuration using the whole numbers 1 through 9, where two lines are parallel and the third line is a transversal perpendicular to the parallel lines.

To know more about parallel lines visit:

brainly.com/question/29762825

#SPJ11

Find the volume of the solid obtained by rotating the region underneath the graph of the function over the given interval about the y-axis.
f(x)=√x^2+25,[0,4]
(Use symbolic notation and fractions where needed.)
note : the entire func x^2+25 is under the square root

Answers

The volume of the solid obtained by rotating the region under the graph of the function f(x) = √(x^2 + 25) over the interval [0, 4] about the y-axis is π/3(16√26 - 25√3).

The disk method involves integrating the cross-sectional areas of the disks formed by slicing the solid perpendicular to the axis of rotation. In this case, we are rotating the region about the y-axis, so our cross-sectional disks are parallel to the y-axis.

To determine the radius of each disk, we need to express the function f(x) in terms of y. Solving the equation y = √(x^2 + 25) for x, we get x = √(y^2 - 25).

The radius of each disk is the distance from the y-axis to the function f(x), which is √(y^2 - 25). The volume of each disk is then given by the formula V = πr^2Δy, where Δy is the infinitesimal thickness of each disk.

To find the total volume, we integrate the volume function over the interval [0, 4]:

V = ∫[0,4] π(√(y^2 - 25))^2 dy.

Evaluating this integral will give us the volume of the solid obtained by rotating the region under the graph of the function f(x) = √(x^2 + 25) over the interval [0, 4] about the y-axis.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Compute the directional derivative of the following function at the given point \( \mathrm{P} \) in the direction of the given vector. Be sure to use a unit vector for the direction vector. \[ f(x, y)

Answers

The directional derivative measures the rate of change of a function along a specified direction. It represents the slope of the function in that direction.

To compute the directional derivative, we need the function, a point in the domain of the function, and a direction vector. The direction vector should be a unit vector, which means its length is equal to 1.

Once we have these inputs, we can calculate the directional derivative using the formula:

\[ \frac{{\partial f}}{{\partial \mathbf{u}}} = \nabla f \cdot \mathbf{u} \]

Here, \(\nabla f\) represents the gradient of the function, which is a vector containing the partial derivatives of the function with respect to each variable. The dot product between the gradient and the unit direction vector \(\mathbf{u}\) gives us the directional derivative.

By evaluating this expression, we can find the numerical value of the directional derivative at the given point in the specified direction.

learn more about vector here:

brainly.com/question/29740341

#SPJ11

Sam goes to a restaurant to buy a burger along with a drink. he has the options of having either a hamburger, a cheese burger or a chicken burger. along with it, he can pick either an orange juice or a apple juice. find his probability of having a cheese burger along with an apple juice.

Answers

The probability of Sam having a cheeseburger along with an apple juice  is 1/6. can be found by multiplying the probabilities of choosing a cheeseburger and an apple juice.


Step 1: Determine the probability of choosing a cheeseburger.
Since Sam has the options of a hamburger, a cheeseburger, or a chicken burger, and there are three choices in total, the probability of Sam choosing a cheeseburger is 1/3.



Step 2: Determine the probability of choosing an apple juice.
Similarly, since Sam has the options of orange juice or apple juice, and there are two choices in total, the probability of Sam choosing an apple juice is 1/2.


Step 3: Calculate the probability of having a cheeseburger and an apple juice.
To find the probability of two independent events occurring together, we multiply the individual probabilities. Therefore, the probability of Sam having a cheeseburger along with an apple juice is (1/3) * (1/2) = 1/6.


So, the probability of Sam having a cheeseburger along with an apple juice is 1/6.

To know more about probability refer here:

https://brainly.com/question/32117953#

#SPJ11

Assume that there are 335,104 new cases of gonorrhea reported among the U.S. population in the past month. When calculated, this would be 115.2 per 100,000 or approximately 1 reported case per 1,000 population. The value represents ______

Answers

The value represents the incidence rate of gonorrhea in the U.S. population, which is a crucial measure used in epidemiology to understand the frequency and spread of a disease within a given population.

By analyzing the number of new cases reported, health officials and researchers can gauge the impact and burden of the disease on the population.

In this case, with 335,104 new cases of gonorrhea reported among the U.S. population in the past month, the incidence rate is calculated as 115.2 per 100,000 people. This means that for every 100,000 individuals in the population, there were approximately 115.2 reported cases of gonorrhea within the given time frame. Another way to interpret this is that for every 1,000 people, there was an average of 1 reported case.

This value helps public health authorities assess the magnitude of the issue, monitor trends, and allocate resources appropriately. It also serves as a basis for comparisons with previous periods or different populations, aiding in the identification of high-risk groups and the development of targeted prevention and control strategies.

Learn more about  incidence rate:

brainly.com/question/31493651

#SPJ11

how many different ways can you navigate this grid so that you touch on every square of the grid exactly once

Answers

The number of different ways one can navigate the given grid so that every square is touched exactly once is (N-1)²!.

In order to navigate a grid, a person can move in any of the four possible directions i.e. left, right, up or down. Given a square grid, the number of different ways one can navigate it so that every square is touched exactly once can be found out using the following algorithm:

Algorithm:

Use the backtracking algorithm that starts from the top-left corner of the grid and explore all possible paths of length n², without visiting any cell more than once. Once we reach a cell such that all its adjacent cells are either already visited or outside the boundary of the grid, we backtrack to the previous cell and explore a different path until we reach the end of the grid.

Consider an N x N grid. We need to visit each of the cells in the grid exactly once such that the path starts from the top-left corner of the grid and ends at the bottom-right corner of the grid.

Since the path has to be a cycle, i.e. it starts from the top-left corner and ends at the bottom-right corner, we can assume that the first cell visited in the path is the top-left cell and the last cell visited is the bottom-right cell.

This means that we only need to find the number of ways of visiting the remaining (N-1)² cells in the grid while following the conditions given above. There are (N-1)² cells that need to be visited, and the number of ways to visit them can be calculated using the factorial function as follows:

Ways to visit remaining cells = (N-1)²!

Therefore, the total number of ways to navigate the grid so that every square is touched exactly once is given by:

Total ways to navigate grid = Ways to visit first cell * Ways to visit remaining cells

= 1 * (N-1)²!

= (N-1)²!

Know more about the navigate a grid

https://brainly.com/question/31208528

#SPJ11

The function f(x,y)=e 2xy
has an absolute maximum value and absolute minimum value subject to the constraint x 2
+xy+y 2
=81. Use Lagrange multipliers to find these values. The absolute maximum is (Type an exact answer in terms of e.)

Answers

The absolute maximum is  [tex]f(x,y) = e^{(18)}[/tex] and the absolute minimum is [tex]f(x,y) = e^{(-6\sqrt3)}.[/tex]

Use the method of Lagrange multipliers.

[tex]g(x,y) = x^2 + xy + y^2 - 81,[/tex]

then ∇f = λ∇g or ∇f = λ(2x + y, 2y + x)

= (2xy, 2xe^(2xy)), and ∇g = (2x + y, x + 2y).

Therefore, the system of equations to solve is:

2xy = λ(2x + y)x + 2y = λ(x + 2y) x^2 + xy + y^2 = 81

use the second equation to write y = λx + 2λy, which simplifies to

y(1 - 2λ) = λx, or x/y = (1 - 2λ)/λ.

Substituting this into the first equation yields:

2xy = λ(2x + y) ⇔ 2x^2(1 - 2λ)/λ

= λ(2x + x(1 - 2λ)/λ)⇔ 2x^2(1 - 2λ)

= 2λx(1 + 1 - 2λ)⇔ 2x(1 - 2λ)

= 2λ(2x - x(2λ - 1)/λ)⇔ 2x(1 - 2λ)

= 2λx(3 - 2λ)/λ⇔ (1 - 2λ)

= (3 - 2λ)/λ⇔ λ

= -1/4 or λ = 3

solve for x and y using the system of equations and substitute into f(x,y) to find the maximum and minimum values. When λ = -1/4,

x + 2y = (-1/4)(2x + y)

⇔ 9x + 18y = 0 or

x = -2y2xy = (-1/4)(2x + y)

⇔ -xy = (-1/8)(2x + y)

⇔ 2xy + xy = (x - y)/4

⇔ x - 3y = 0

or x = 3y

Substituting x = -2y into [tex]x^2 + xy + y^2 = 81[/tex]

[tex]4y^2 - 2y^2 + y^2 = 81[/tex]

⇔ y = ±3√3 or y = 3√3/2

The corresponding values of x and f(x,y) are:

x = -2y = ±6√3, f(x,y)

= e^(-6√3) for y = ±3√3x

= -2y

= ±3√3,

[tex]f(x,y) = e^{(-27)}[/tex] for y = 3√3/2When λ = 3,

x + 2y = 3(2x + y)

⇔ x - y = 0 or x = y2xy = 3(2x + y)

⇔ 2xy = 6x + 3y

⇔ x = 2y

Substituting x = y into [tex]x^2 + xy + y^2 = 81[/tex]yields:

[tex]3y^2 = 81[/tex]

⇔ y = ±3√3

The corresponding values of x and f(x,y) are:

x = y = ±3√3, f(x,y) = e^(18)

Therefore, the absolute maximum is  [tex]f(x,y) = e^{(18)}[/tex] and the absolute minimum is [tex]f(x,y) = e^{(-6\sqrt3)}.[/tex]

To learn more about Lagrange multipliers

https://brainly.com/question/17218339

#SPJ11

iven the following sampling distribution: x -20 -9 -4 10 17 p(x) 9⁄100 1⁄50 1/20 1/20 ___ what is the mean of this sampling distribution?

Answers

The mean of the given sampling distribution is 20.5.

To find the mean of the given sampling distribution, we need to calculate the weighted average of the values using their respective probabilities.

The sampling distribution is given as:

x: -20 -9 -4 10 17

p(x): 9/100 1/50 1/20 ?

To find the missing probability, we can use the fact that the sum of all probabilities in a distribution must equal 1. Therefore, we can subtract the sum of the known probabilities from 1 to find the missing probability.

1 - (9/100 + 1/50 + 1/20) = 1 - (18/200 + 4/200 + 10/200) = 1 - (32/200) = 1 - 0.16 = 0.84

Now, we have the complete sampling distribution:

x: -20 -9 -4 10 17

p(x): 9/100 1/50 1/20 0.84

To calculate the mean, we multiply each value by its corresponding probability and sum them up:

(-20)(9/100) + (-9)(1/50) + (-4)(1/20) + (10)(0.84) + (17)(0.84)

= -1.8 + (-0.18) + (-0.2) + 8.4 + 14.28

= 20.5

Therefore, the mean of the given sampling distribution is 20.5.

To learn more about mean visit : https://brainly.com/question/1136789

#SPJ11

In this question give all answers to two decimal places. carlos decides to take out a loan of 20,000 peruvian soles (sol) to buy a car. his bank offers two options to finance the loan. option a: five year loan with an annual interest rate of 12.8% compounded quarterly. no deposit required. option b: five year loan with an annual interest rate of r% compounded monthly. terms of the loan require a 10% deposit and monthly repayments of sol 400.

Answers

In summary, with option A, Carlos will have to repay approximately 34,693.39 soles. However, we don't have enough information to determine the total amount Carlos will have to repay with option B.

Option A:
To calculate the total amount Carlos will have to repay with option A, we can use the formula for compound interest:

A = P(1 + r/n)ⁿᵗ

Where:
A = Total amount to be repaid
P = Principal amount (loan amount)
r = Annual interest rate (12.8%)
n = Number of times interest is compounded per year (quarterly = 4 times)
t = Number of years (5 years)

Using the given values, we can calculate the total amount (A) as follows:

A = 20000(1 + 0.128/4)⁴⁽⁵⁾
A ≈ 20000(1.032)²⁰
A ≈ 20000 * 1.73466968072
A ≈ 34,693.39

So, with option A, Carlos will have to repay approximately 34,693.39 soles.

Option B:
With option B, Carlos will have to make a 10% deposit, which is 10% of 20,000 = 2000 soles. Therefore, the loan amount will be 20,000 - 2000 = 18,000 soles.

Since Carlos has to make monthly repayments of 400 soles, we can calculate the total amount (A) using the formula for compound interest:

A = P(1 + r/n)ⁿᵗ

Where:
A = Total amount to be repaid
P = Principal amount (loan amount)
r = Annual interest rate (unknown, denoted as r%)
n = Number of times interest is compounded per year (monthly = 12 times)
t = Number of years (5 years)

Given that Carlos will repay 400 soles monthly for 5 years, we can calculate the interest rate (r) using the following formula:

A = 400 * 12 * 5
A = 24000

A = P(1 + r/n)ⁿᵗ

24000 = 18000(1 + r/12)¹²⁽⁵⁾

24000 = 18000(1 + r/12)⁶⁰

To find the interest rate (r), we need to solve this equation. Unfortunately, we don't have enough information to provide a specific answer. We would need additional details regarding the loan terms or monthly interest rate.

In summary, with option A, Carlos will have to repay approximately 34,693.39 soles. However, we don't have enough information to determine the total amount Carlos will have to repay with option B.

To know more about amount visit:

https://brainly.com/question/32453941

#SPJ11

In the expression -56.143 7.16 both numerator and denominator are measured quantities. Evaluate the expression to the correct number of significant figures. Select one: A. -7.841 B. -7.8412 ° C.-7.84 D. -7.84120

Answers

The evaluated expression -56.143 / 7.16, rounded to the correct number of significant figures, is -7.84.

To evaluate the expression -56.143 / 7.16 to the correct number of significant figures, we need to follow the rules for significant figures in division.

In division, the result should have the same number of significant figures as the number with the fewest significant figures in the expression.

In this case, the number with the fewest significant figures is 7.16, which has three significant figures.

Performing the division:

-56.143 / 7.16 = -7.84120838...

To round the result to the correct number of significant figures, we need to consider the third significant figure from the original number (7.16). The digit that follows the third significant figure is 8, which is greater than 5.

Therefore, we round up the third significant figure, which is 1, by adding 1 to it. The result is -7.842.

Since we are evaluating to the correct number of significant figures, the final answer is -7.84 (option C).

For more such questions on expression

https://brainly.com/question/1859113

#SPJ8

Problem 2. (15 points) Let X be a random variable on X = {a,b,c} with the probability mass function PE). Let pa) = 0.1, p(b) = 0.2, and pC) = 0.7 and some function f() be 10 f(x) = 35 = a x=b 10 x=c a) What is E[f(x)]? b) What is E(1/P(X)]? c) For an arbitrary finite set X with n clements and arbitrary p(x) on X, what is E[1/P(X)]?

Answers

a) E[f(x)] = 15.

b)   E[1/P(X)] = 3.

c)  P(x) is arbitrary, we cannot determine a specific value for E[1/P(X)] without knowing the specific probability distribution. The calculation would involve substituting the values of P(x) for each element in X and performing the summation accordingly.

a) To find E[f(x)], we need to calculate the expected value of the function f(x) using the given probability mass function.

E[f(x)] = Σ f(x) * P(x)

Substituting the values of f(x) and P(x) for each element in X, we get:

E[f(x)] = f(a) * P(a) + f(b) * P(b) + f(c) * P(c)

= 10 * 0.1 + 35 * 0.2 + 10 * 0.7

= 1 + 7 + 7

= 15

Therefore, E[f(x)] = 15.

b) To find E[1/P(X)], we need to calculate the expected value of the reciprocal of the probability mass function.

E[1/P(X)] = Σ (1/P(x)) * P(x)

Substituting the values of P(x) for each element in X, we get:

E[1/P(X)] = (1/P(a)) * P(a) + (1/P(b)) * P(b) + (1/P(c)) * P(c)

= (1/0.1) * 0.1 + (1/0.2) * 0.2 + (1/0.7) * 0.7

= 1 + 1 + 1

= 3

Therefore, E[1/P(X)] = 3.

c) For an arbitrary finite set X with n elements and arbitrary p(x) on X, the expected value of 1/P(X) can be calculated as:

E[1/P(X)] = Σ (1/P(x)) * P(x)

Since P(x) is arbitrary, we cannot determine a specific value for E[1/P(X)] without knowing the specific probability distribution. The calculation would involve substituting the values of P(x) for each element in X and performing the summation accordingly.

Learn more about  probability here:

https://brainly.com/question/32117953

#SPJ11

In 1957, the sports league introduced a salary cap that limits the amount of money spent on players salaries.The quadatic model y = 0.2313 x^2 + 2.600x + 35.17 approximate this cup in millons of dollars for the years 1997 - 2012, where x = 0 reqpresents 1997, x = 1 represents 1998 and son on Complete parts a and b.

Answers

The quadratic model y = 0.2313x^2 + 2.600x + 35.17 approximates the salary cap in millions of dollars for the years 1997 to 2012, where x = 0 represents 1997 and x = 1 represents 1998. This model allows us to estimate the salary cap based on the corresponding year.

In 1957, a salary cap was introduced in the sports league to limit the amount of money spent on players' salaries. The quadratic model y = 0.2313x^2 + 2.600x + 35.17 provides an approximation of the salary cap in millions of dollars for the years 1997 to 2012. In this model, x represents the number of years after 1997. By plugging in the appropriate values of x into the equation, we can calculate the estimated salary cap for a specific year.

For example, when x = 0 (representing 1997), the equation simplifies to y = 35.17 million dollars, indicating that the estimated salary cap for that year was approximately 35.17 million dollars. Similarly, when x = 1 (representing 1998), the equation yields y = 38.00 million dollars. By following this pattern and substituting the corresponding x-values for each year from 1997 to 2012, we can estimate the salary cap for those years using the given quadratic model.

It is important to note that this model is an approximation and may not perfectly reflect the actual salary cap values. However, it provides a useful tool for estimating the salary cap based on the available data.

To learn more about quadratic here

brainly.com/question/22364785

#SPJ11



Consider the following system of equations.


x+2 z=-1

y-2 z=2

2 x+y+z=1

a. Represent the system of equations using the matrix equation A X=B .

Answers

The system of equations can be represented as A*X = B where A = [tex]\left[\begin{array}{ccc}1&0&2\\0&1&-2\\2&1&1\end{array}\right][/tex], X = [x; y; z], and B = [tex]\left[\begin{array}{ccc}-1&2&1\end{array}\right][/tex].

To represent the system of equations using the matrix equation A*X = B, we need to arrange the coefficients of the variables x, y, and z in a matrix form.

The coefficient matrix A is obtained by collecting the coefficients of the variables x, y, and z in the same order as they appear in the system of equations. In this case, we have:

A = [tex]\left[\begin{array}{ccc}1&0&2\\0&1&-2\\2&1&1\end{array}\right][/tex]

Here, each row of the matrix A represents the coefficients of the respective equation.

The variable matrix X is obtained by arranging the variables x, y, and z in a column matrix:

X = [x; y; z]

The constant matrix B is obtained by arranging the constants on the right-hand side of the equations in a column matrix:

B = [tex]\left[\begin{array}{ccc}-1&2&1\end{array}\right][/tex]

To learn more about matrix click on,

https://brainly.com/question/33535925

#SPJ4



The function y=0.4409 x²-5.1724 x+99.0321 models the emissions of carbon monoxide in the United States since 1987, where y represents the amount of carbon monoxide released in a year in millions of tons, and x=0 represents the year 1987.


b. How can you use the Quadratic Formula to estimate the year in which more than 100 million tons of carbon monoxide were released into the air?

Answers

The estimated year in which more than 100 million tons of carbon monoxide were released into the air is approximately 10.1311 years after 1987, which is around the year 1997.

To estimate the year in which more than 100 million tons of carbon monoxide were released into the air using the quadratic formula, we need to set up an equation.

Since y represents the amount of carbon monoxide released in millions of tons, we can set up the equation

[tex]0.4409x^2 - 5.1724x + 99.0321 = 100[/tex].

To solve this equation, we can rearrange it to match the quadratic formula:

[tex]0.4409x^2 - 5.1724x + 99.0321 - 100 = 0[/tex].

Now, we can use the quadratic formula, which states that for an equation of the form [tex]ax^2 + bx + c = 0[/tex], the solutions for x are given by [tex]x = (-b \pm \sqrt{(b^2 - 4ac)} / (2a)[/tex].

In our equation, a = 0.4409, b = -5.1724, and c = -0.9679.

Substituting these values into the quadratic formula, we get:
[tex]x = (-(-5.1724) \pm \sqrt{((-5.1724)^2 - 4(0.4409)(-0.9679))) / (2(0.4409))[/tex].

Simplifying this expression, we find two possible solutions for x:

[tex]0.4409x^2 - 5.1724x + 99.0321 = 100.[/tex]

x ≈ 10.1311 and x ≈ -0.0681.

Since x represents years, we can disregard the negative solution.

Therefore, the estimated year in which more than 100 million tons of carbon monoxide were released into the air is approximately 10.1311 years after 1987, which is around the year 1997.

This estimation is based on the quadratic model, so it's important to consider other factors that may affect carbon monoxide emissions in reality.

Additionally, please note that the quadratic model may not perfectly capture the actual emissions trend.

To know more about quadratic model, visit:

https://brainly.com/question/17933246

#SPJ11

f(2)=2 f ′
(2)=3 g(2)=1 g ′
(2)=5 Find j ′
(2) if j(x)= g(x)
f(x)

Answers

To find the derivative of j(x) at x = 2, where j(x) = g(x) * f(x), we need to use the product rule. Given the values of f(2), f'(2), g(2), and g'(2), we can calculate j'(2).

The product rule states that if we have two functions u(x) and v(x), the derivative of their product is given by (u * v)' = u' * v + u * v'.

Applying the product rule to j(x) = g(x) * f(x), we have j'(x) = g'(x) * f(x) + g(x) * f'(x).

At x = 2, we substitute the known values: f(2) = 2, f'(2) = 3, g(2) = 1, and g'(2) = 5.

j'(2) = g'(2) * f(2) + g(2) * f'(2) = 5 * 2 + 1 * 3 = 10 + 3 = 13.

Therefore, the derivative of j(x) at x = 2, denoted as j'(2), is equal to 13.

In summary, using the product rule, we found that the derivative of j(x) at x = 2, where j(x) = g(x) * f(x), is equal to 13. This was calculated by substituting the given values of f(2), f'(2), g(2), and g'(2) into the product rule formula.

Learn more about function here:

brainly.com/question/30721594

#SPJ11

Complete question:

If F(2)=2, f ′(2)=3, g(2)=1, g ′(2)=5. Then, find j ′(2) if j(x)= g(x), f(x)

Mr. cooper graden is 28 feet long and 4 feet wide what is the area of his graden

Answers

The area of Mr. Cooper's garden is 112 square feet.

To find the area of Mr. Cooper's garden, we can use the formula for the area of a rectangle, which is length multiplied by width.

In this case, the length is given as 28 feet and the width is given as 4 feet.

So, we can calculate the area by multiplying these two values:

Area = length × width

Area = 28 feet × 4 feet

Area = 112 square feet

To know more about area visit:

https://brainly.com/question/30791388

#SPJ11

Suppose you are a salaried employee. you currently earn $52,800 gross annual income. the 20-50-30 budget model has been working well for you so far, so you plan to continue using it. if you would like to build up a 5-month emergency fund over an 18-month period of time, how much do you need to save each month to accomplish your goal?

Answers

You would need to save approximately $14,666.67 each month to accomplish your goal of building up a 5-month emergency fund over an 18-month period of time.

To accomplish your goal of building up a 5-month emergency fund over an 18-month period of time using the 20-50-30 budget model, you would need to save a certain amount each month.
First, let's calculate the total amount needed for the emergency fund. Since you want to have a 5-month fund, multiply your gross annual income by 5:
$52,800 x 5 = $264,000
Next, divide the total amount needed by the number of months you have to save:
$264,000 / 18 = $14,666.67
Therefore, you would need to save approximately $14,666.67 each month to accomplish your goal of building up a 5-month emergency fund over an 18-month period of time.

Let us know more about emergency fund : https://brainly.com/question/30662508.

#SPJ11

The length of the arc intercepted by a 75 degree central angle in circle a is 25pi/12 feet. what is the length of the radius of circle a? round answer to nearest 10th.

Answers

The length of the radius of circle a is approximately 9.3 feet.

To find the length of the radius, we can use the formula for the arc length of a circle: L = rθ, where L is the arc length, r is the radius, and θ is the central angle in radians.

First, we need to convert the central angle from degrees to radians. Since 360 degrees is equivalent to 2π radians, we can use the conversion factor: 1 degree = π/180 radians. So, the central angle of 75 degrees is equivalent to (75π/180) radians.

Next, we can substitute the given values into the formula. The arc length is given as 25π/12 feet, and the central angle in radians is (75π/180). So, we have the equation: 25π/12 = r(75π/180).

To solve for r, we can simplify the equation by canceling out π and dividing both sides by (75/180). This gives us: 25/12 = r/4.

Finally, we can solve for r by cross-multiplying: 12r = 100. Dividing both sides by 12, we find that r is approximately 8.3 feet. Rounded to the nearest 10th, the length of the radius of circle a is approximately 9.3 feet.

Know more about radius here:

https://brainly.com/question/13449316

#SPJ11

write the symbolic expression for each of the following descriptions, then get rid of the radical and make them exponential expressions in fractional form. 11. the eighth root of fifty seven to the sixth degree

Answers

The final exponential expression in fractional form for "the eighth root of fifty-seven to the sixth degree" is 57^(3/4).

To express the given description as a symbolic expression and then convert it into an exponential expression in fractional form, we'll follow these steps:

Step 1: Symbolic Expression

The description states "the eighth root of fifty-seven to the sixth degree." Let's denote this as √[57]^(1/8)^6.

Step 2: Removing Radical

To eliminate the radical (√), we can rewrite it as a fractional exponent. The numerator of the fractional exponent corresponds to the power (6) applied to the base, and the denominator corresponds to the index of the root (8).

So, the expression becomes (57^(1/8))^6.

Step 3: Simplifying Exponents

To simplify the exponent, we multiply the powers:

(57^((1/8)*6))

Simplifying further:

(57^(6/8))

Step 4: Fractional Form

The exponent 6/8 can be simplified by dividing both the numerator and denominator by their greatest common divisor, which is 2:

(57^(3/4))

Therefore, the final exponential expression in fractional form for "the eighth root of fifty-seven to the sixth degree" is 57^(3/4).

This means that we raise 57 to the power of 3/4 to represent the original description. The fraction 3/4 indicates taking the eighth root of 57 and then raising it to the sixth power.

learn more about exponential expression here

https://brainly.com/question/26540624

#SPJ11

Adding center runs to a 2k design affects the estimate of the intercept term but not the estimates of any other factor effects.
True -or- False, why?

Answers

Adding center runs to a 2k design affects the estimate of the intercept term but not the estimates of any other factor effects. This statement is true.

Explanation: In a 2k factorial design, the intercept is equal to the mean of all observations and indicates the estimated response when all factors are set to their baseline levels. In the absence of center points, the estimate of the intercept is based solely on the observations at the extremes of the factor ranges (corners).

The inclusion of center points in the design provides additional data for estimating the intercept and for checking the validity of the first-order model. Central points are the points in an experimental design where each factor is set to a midpoint or zero level. Center points are introduced to assess whether the model accurately fits the observed data and to estimate the pure error term.

A linear model without an intercept is inadequate since it would be forced to pass through the origin, and the experiment would then be restricted to zero factor levels. Center runs allow for a better estimate of the intercept, but they do not influence the estimates of the effects of any other factors.

Center runs allow for a better estimation of the error term, which allows for the variance of the error term to be estimated more accurately, allowing for more accurate tests of significance of the estimated effects.

To know more about linear model visit :

https://brainly.com/question/17933246

#SPJ11

Lizzie cuts of 43 congruent paper squares. she arranges all of them on a table to create a single large rectangle. how many different rectangles could lizzie have made? (two rectangles are considered the same if one can be rotated to look like the other.)

Answers

Lizzie could have made 1 rectangle using 43 congruent paper squares, as the factors of 43 are prime and cannot form a rectangle. Combining pairs of factors yields 43, allowing for rotation.

To determine the number of different rectangles that Lizzie could have made, we need to consider the factors of the total number of squares she has, which is 43. The factors of 43 are 1 and 43, since it is a prime number. However, these factors cannot form a rectangle, as they are both prime numbers.

Since we cannot form a rectangle using the prime factors, we need to consider the factors of the next smallest number, which is 42. The factors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.

Now, we need to find pairs of factors that multiply to give us 43. The pairs of factors are (1, 43) and (43, 1). However, since the problem states that two rectangles are considered the same if one can be rotated to look like the other, these pairs of factors will be counted as one rectangle.

Therefore, Lizzie could have made 1 rectangle using the 43 congruent paper squares.

To know more about rectangle Visit:

https://brainly.com/question/28993977

#SPJ11

Consider the vector space P2, that is, the vector space of all polynomials of degree 2 or less. Let f, g e P2. (a) Is the rule (f,g) = f(3) · g(3) + f(5) · g(5) + f(6) · g(6) an inner product? ? (b) Is the rule (f, 8) = f(3) + f(5) + g(3) + g(5) + f(6) + g(6) an inner product? ? (c) For the rule that is an inner product, above, find the following: (1 + 4x²,4x + 3x) =

Answers

(a) Is the rule (f,g) = f(3) · g(3) + f(5) · g(5) + f(6) · g(6) an inner product?

No, the rule (f, g) = f(3) · g(3) + f(5) · g(5) + f(6) · g(6) is not an inner product as it fails to satisfy the symmetry condition.

For (f, g) to be an inner product, it should satisfy the following properties: Symmetry, Linearity, and Positive definiteness. But the given rule fails to satisfy the symmetry condition. Hence it is not an inner product.

(b) Is the rule (f, 8) = f(3) + f(5) + g(3) + g(5) + f(6) + g(6) an inner product?

No, the rule (f, 8) = f(3) + f(5) + g(3) + g(5) + f(6) + g(6) is not an inner product as it fails to satisfy the linearity condition

For (f, g) to be an inner product, it should satisfy the following properties: Symmetry, Linearity, and Positive definiteness. But the given rule fails to satisfy the linearity condition. Hence it is not an inner product.

(c) For the rule that is an inner product, above, find the following: (1 + 4x²,4x + 3x) =

The value of the inner product: (1 + 4x², 4x + 3x) = 10.5 which is obtained by the formula (p, q) = ∫[0,1] p(x)q(x) dx.

Since none of the above two rules is an inner product, we cannot find the given product using those rules. The standard inner product of two polynomials p and q of degree 2 or less can be represented as follows:(p, q) = ∫[0,1] p(x)q(x) dx

Let us solve the given problem using the above inner product.

(1 + 4x², 4x + 3x) = ∫[0,1] (1 + 4x²) (4x + 3x) dx

= ∫[0,1] (4x + 3x + 16x³ + 12x³) dx

= [(2x² + (3/2)x²) + (4x⁴ + 3x⁴)] [1, 0]

= [(7/2)x² + (7)x⁴] [1, 0]

= (7/2)(1²) + (7)(1⁴)

= 7/2 + 7= 10.5

Thus, (1 + 4x², 4x + 3x) = 10.5

Learn more about the inner product: https://brainly.com/question/31776318

#SPJ11



Which expression is the factored form of x³ +2x²-5 x-6 ? (F) (x+1)(x+1)(x-6) . (H) (x+2)(2 x-5)(x-6) . (G) (x+3)(x+1)(x-2) . (I) (x-3)(x-1)(x+2) .

Answers

In this question, the factored form of the expression x³ + 2x² - 5x - 6 is (H) (x+2)(2x-5)(x-6).

To determine the factored form of the given expression x³ + 2x² - 5x - 6, we need to factorize it completely.

By observing the expression, we can see that the coefficient of the cubic term (x³) is 1. So we start by trying to find linear factors using the possible rational roots theorem.

By testing various factors of the constant term (-6) divided by the factors of the leading coefficient (1), we find that x = -2, x = 1, and x = 3 are the roots.

Now, we can write the factored form as (x+2)(x-1)(x-3). However, we need to ensure that the factors are in the correct order to match the original expression. Rearranging them, we get (x+2)(x-3)(x-1).

Therefore, the correct answer is (G) (x+3)(x+1)(x-2).

Learn more about factored here:

https://brainly.com/question/33784635

#SPJ11

\( 1+x^{2} y^{2}+z^{2}=\cos (x y z) \)

Answers

The partial derivatives \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) can be found using implicit differentiation. The values are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\).

To find \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\), we can use implicit differentiation. Differentiating both sides of the equation \(Cos(Xyz) = 1 + X^2Y^2 + Z^2\) with respect to \(x\) while treating \(y\) and \(z\) as constants, we obtain \(-Sin(Xyz) \cdot (yz)\frac{{dz}}{{dx}} = 2XY^2\frac{{dx}}{{dx}}\). Simplifying this equation gives \(\frac{{dz}}{{dx}} = -2xy\).

Similarly, differentiating both sides with respect to \(y\) while treating \(x\) and \(z\) as constants, we get \(-Sin(Xyz) \cdot (xz)\frac{{dz}}{{dy}} = 2X^2Y\frac{{dy}}{{dy}}\). Simplifying this equation yields \(\frac{{dz}}{{dy}} = -2xz\).

In conclusion, the partial derivatives of \(z\) with respect to \(x\) and \(y\) are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\) respectively. These values represent the rates of change of \(z\) with respect to \(x\) and \(y\) while holding the other variables constant.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Correct question:

If Cos(Xyz)=1+X^(2)Y^(2)+Z^(2), Find Dz/Dx And Dz/Dy .



The Dow Jones Industrial average for the first 12 weeks of 1988 :

Answers

The mean of the Dow Jones Industrial average for the first 12 weeks of 1988 is approximately 1983.38, and the standard deviation is approximately 62.91.

To find the mean and standard deviation of the given data, we'll follow these steps:

Sum all the values.

Divide the sum by the total number of values to find the mean.

Calculate the squared difference between each value and the mean.

Find the sum of the squared differences.

Divide the sum of squared differences by the total number of values.

Take the square root of the result obtained in step 5 to find the standard deviation.

Let's perform these calculations for the given data:

Sum all the values.

1911.31 + 1956.07 + 1903.51 + 1958.22 + 1910.48 + 1983.26 + 2014.59 + 2023.21 + 2057.86 + 2034.98 + 2087.37 + 2067.14 = 23800.60

Divide the sum by the total number of values to find the mean.

Mean = 23800.60 / 12 = 1983.38

Calculate the squared difference between each value and the mean.

(1911.31 - 1983.38)² = 5232.14

(1956.07 - 1983.38)² = 0.75

(1903.51 - 1983.38)² = 6337.40

(1958.22 - 1983.38)² = 63.94

(1910.48 - 1983.38)² = 5336.76

(1983.26 - 1983.38)² = 0.01

(2014.59 - 1983.38)² = 97.10

(2023.21 - 1983.38)² = 1592.31

(2057.86 - 1983.38)² = 5540.20

(2034.98 - 1983.38)² = 2673.27

(2087.37 - 1983.38)² = 10775.16

(2067.14 - 1983.38)² = 7014.31

Find the sum of the squared differences.

5232.14 + 0.75 + 6337.40 + 63.94 + 5336.76 + 0.01 + 97.10 + 1592.31 + 5540.20 + 2673.27 + 10775.16 + 7014.31 = 47656.75

Divide the sum of squared differences by the total number of values.

47656.75 / 12 = 3963.06

Take the square root of the result obtained in step 5 to find the standard deviation.

Standard Deviation = √(3963.06) ≈ 62.91

Therefore, the mean of the Dow Jones Industrial average for the first 12 weeks of 1988 is approximately 1983.38, and the standard deviation is approximately 62.91.

Learn more about standard deviation here:

https://brainly.com/question/13498201

#SPJ11

#Correct question: Find the mean and the standard deviation. The Dow Jones Industrial average for the first 12 weeks of 1988: 1911.31 1956.07 1903.51 1958.22 1910.48 1983.26 2014.59 2023.21 2057.86 2034.98 2087.37 2067.14

Evaluate: ln(e^6) Select the correct answer below: a. −6 b. 0 c. 1 d. 1/6 e. 6 f. -1/6

Answers

The correct answer is e. 6. Evaluating ln([tex]e^6[/tex]) gives the result of 6 with the properties of logarithms and exponential functions.

The natural logarithm (ln) is the inverse function of the natural exponential function ([tex]e^x[/tex]). In other words, ln(x) "undoes" the operation of e^x. When we evaluate ln([tex]e^6[/tex]), the exponential function [tex]e^6[/tex] raises the base e to the power of 6, resulting in e raised to the power of 6. The natural logarithm then "undoes" this operation, returning the exponent itself, which is 6. Therefore, ln([tex]e^6[/tex]) equals 6.

It's worth noting that the natural logarithm and exponential functions are closely related and often used in various mathematical and scientific applications. The property ln([tex]e^x[/tex]) = x holds true for any value of x, demonstrating the inverse relationship between the two functions.

Learn more about exponential functions here:

https://brainly.com/question/29287497

#SPJ11

Other Questions
List the stages of development from secondary oocyte to birth.Also indicate where each of these stages are located.PLEASE DO NOT HANDWRITING* \( 3 x^{2}+20 x+25 \) How does the t-tess triangle help teachers to plan, teach, and reflect on lessons?. draw the alkene structure that produced the following compounds in a ozonolysis reaction as specified. c7h12 o3 ch32s Question 1: Calculate the nominal interest rate per annum in both the United States and the United Kingdom (U.K.), assuming that the Fisher effect holds, based on the following information: - Due to the integrated nature of their capital markets, investors in both the United States and the U.K. require the same real interest rate, 4.0 percent, on their lending. - There is a consensus in capital markets that the annual inflation rate is likely to be 5.0 percent in the United States and 3.0 percent in the U.K. for the next 3 years. Tip: Nominal interest rate per annum is calculated by using this formula: (1+rho)(1+E)1 rho is the real interest rate expressed in decimals. E($) is the expected value of inflation, also expressed in decimals. a wave is diffracted by an array of points and yields the pattern on the right. what will happen if you use a wave with a lower frequency instead? Which of the following statements accurately describe the process of glycolysis in cellular respiration? (Select all that apply.) Glycolysis is the first of the main metabolic pathways of cellular respiration to produce energy in the form of ATP Glycolysis is an anerobic process that does not require oxygen. Glycolysis occurs in the mitochondria. Glycolysis is the synthesis of body fat from food sources. 292. Sonia went on a 360 -mile trip in her car. She drove the first 200 miles in 4 hours, stopped 45 minutes for lunch, and then drove the rest of the way at an average speed of 58 miles per hour. If the total time for the trip includes the lunch stop, what was the total time for the trip? hours 292. Sonia went on a 360 -mile trip in her car. She drove the first 200 miles in 4 hours, stopped 45 minutes for lunch, and then drove the rest of the way at an average speed of 58 miles per hour. If the total time for the trip includes the lunch stop, what was the total time for the trip? hours 292. Sonia went on a 360 -mile trip in her car. She drove the first 200 miles in 4 hours, stopped 45 minutes for lunch, and then drove the rest of the way at an average speed of 58 miles per hour. If the total time for the trip includes the lunch stop, what was the total time for the trip? hours The vertical supports in this subdivided truss bridge are built so that ayb-xyz in the ratio 1:3. if ay= 4 meters, what is xy Dr. sanchez has prescribed a patient 750mg of a drug to be taken in an oral solution twice a day. in stock you have 2.5% solution to dispense. what amount of the available solution will each dose be? a marketing manager is closely monitoring their data to see how effectively their ads are driving online sales and generating leads through sign-ups. when the marketing manager compares ads data with their offline data, they see a difference in the number of sign-ups in ads vs. their offline data source. assuming everything is working as intended and the issue lies with when a conversion was counted, what's likely causing this data discrepancy? The 3rd order Taylor polynomial for the function f(x) = 1 x sin (3 x)t x = 1 is p(x) = P + P (x-x) + P (x ) +p (x x)Give the values of P:P:P:p: on january 1, 20x1, enterprises, inc., purchased a piece of equipment by issuing common stock to the seller. the facts of the transaction are shown below. number of $1 par value common stock 83,000 fair value per share $6.00 value of equipment 575,000 what is the cost or value of the equipment on the books at time of purchase if the stock is actively traded on the stock market? The four arms of an AC bridge network are as follows: Arm AB: unknown impedance Arm BC: a non-inductive resistance of 7500 Arm CD: a non-inductive resistance of R of 4000 Q in parallel to a capacitor of 0.5 F Arm DA: a non-inductive resistance of 20000 The supply frequency is 50 Hz and connected across terminals B and D. If the bridge is balanced with the above value, determine the value of unknown Impedance. Select one: O a.7.5 mH O b. 750 mH O c.75mH O d.0.75 mH If x is the number of thousands of dollars spent on labour, and y is the thousands of dollars spent on parts, then the output of a factory is given by: Q(x,y)=42x 1/6y 5/6Where Q is the output in millions of units of product. Now, if $236,000 is to be spent on parts and labour, how much should be spent on each to optimize output? Round your answers to the nearest dollar. a soft drink machine outputs a mean of 26 ounces per cup. the machine's output is normally distributed with a standard deviation of 4 ounces. what is the probability of overfilling a 34 ounce cup? round your answer to four decimal places. What about the second half of the cycle, the luteal phase? Whathormone(s) is secreted, and what effects do they have? which requires more work, pumping out the top 4m of water or the bottom 4m of water? [60p] 2. Consider a discreate-time linear shift invariant (LSI) system for which the impulse response h[n] = u[n + 1] - u[n 2). (a) Find the output of the system, y[n] for an input x[n] = 8[n] + [ Given: Angle1 and Angle2 are supplements, and Angle3 and Angle2 are supplements.Prove: Angle1 Is-congruent-to Angle3Three separate angles are shown. They are labeled 1, 2, 3 from left to right.Complete the missing parts of the paragraph proof.By the definition of angles, the sum of the measures of angles 1 and 2 is 180 degrees. Likewise, the sum of the measures of angles is 180 degrees. By the property, mAngle1 + mAngle2 = mAngle3 + mAngle2. Subtract the measure of angle from each side. You get mAngle1 = mAngle3, or Angle1 Is-congruent-to Angle3, by the definition of congruence.