consider the reaction 8h2s(g) 4o2(g)→8h2o(g) s8(g) δ[h2s]/δt = -0.027 m/s find δ[o2]/δt .

Answers

Answer 1

The rate of change of O2 concentration is -0.0135 m/s.

To find δ[O2]/δt, we can use the stoichiometry of the reaction and the given rate of change of H2S concentration. According to the balanced equation, the stoichiometric coefficient of H2S is 8, while the stoichiometric coefficient of O2 is 4.

Given δ[H2S]/δt = -0.027 m/s, we can use the stoichiometric ratio to determine the rate of change of O2 concentration.

Since the stoichiometric coefficient of O2 is half of that of H2S, we can say that the rate of change of O2 concentration is half that of H2S. Therefore, δ[O2]/δt = (-0.027 m/s) / 2 = -0.0135 m/s.

Thus, the rate of change of O2 concentration is -0.0135 m/s.

Learn more about concentration here:

https://brainly.com/question/17206790

#SPJ11


Related Questions

In Sample Exercise 10.16 in the textbook, we found that one mole of Cl2 confined to 22.41L  at 0C deviated slightly from ideal behavior. Calculate the pressure exerted by 1.00 mol Cl2  confined to a smaller volume, 3.00 L, at 25C .
a) Use the ideal gas equation.

b) Use van der Waals equation for your calculation. (Values for the van der Waals constants are a = 6.49 ,   b  = 0.0562 .)

c) Why is the difference between the result for an ideal gas and that calculated using van der Waals equation greater when the gas is confined to 3.00L  compared to 22.4 L?


 


I figured out parts a and b, but i'm not sure about part c. 

Answers

A. the pressure exerted by 1.00 mol Cl2 confined to 3.00 L at 25°C is 8.12 atm. The answer to part a) is 8.12 atm.

B. the pressure exerted by 1.00 mol Cl2 confined to 3.00 L at 25°C is 8.12 atm. The answer to part a) is 8.12 atm.

C.  the difference between the result for an ideal gas and that calculated using the van der Waals equation is greater when the gas is confined to 3.00 L compared to 22.4 L.

a) Use the ideal gas equation:

The ideal gas equation is given by PV = nRT, where

P = pressure of gas

V = volume of gas

n = number of moles of gas

R = gas constant

T = temperature of gas

The pressure exerted by 1.00 mol Cl2 confined to a volume of 3.00 L at 25°C can be calculated using the ideal gas equation. The gas constant R in this equation is 0.0821 L atm/mol K (since volume is in liters and pressure is in atmospheres).

n = 1.00 mol

R = 0.0821 L atm/mol K

P = ?

V = 3.00 L (Volume)

T = 25 + 273 = 298 K (Temperature)

We can solve for P:

PV = nRT

P = (nRT) / V = (1.00 mol)(0.0821 L atm/mol K)(298 K) / (3.00 L)

P = 8.12 atm

Thus, the pressure exerted by 1.00 mol Cl2 confined to 3.00 L at 25°C is 8.12 atm. The answer to part a) is 8.12 atm.

b) Use van der Waals equation for your calculation:

The van der Waals equation is given by

(P + a(n/V)^2)(V - nb) = nRT

where a and b are van der Waals constants that depend on the gas. Values for the van der Waals constants are a = 6.49, b = 0.0562.

Using these values, we can calculate the pressure exerted by 1.00 mol Cl2 confined to a volume of 3.00 L at 25°C. The van der Waals constant R in this equation is 0.0821 L atm/mol K.

n = 1.00 mol

R = 0.0821 L atm/mol K

(P + a(n/V)^2) = nRT / (V - nb)

P = nRT / (V - nb) - a(n/V)^2

P = (1.00 mol)(0.0821 L atm/mol K)(298 K) / (3.00 L - (1.00 mol)(0.0562 L/mol)) - 6.49 atm (1.00 mol / (3.00 L)^2)

P = 7.73 atm

Thus, the pressure exerted by 1.00 mol Cl2 confined to a volume of 3.00 L at 25°C, as calculated using the van der Waals equation, is 7.73 atm. The answer to part b) is 7.73 atm.

c)The ideal gas law assumes that gas molecules have zero volume and do not interact with each other. The van der Waals equation accounts for non-ideal behavior by including the volume and attractive forces of gas molecules.

When a gas is confined to a small volume, the volume occupied by the gas molecules becomes more significant, and the attractive forces between molecules become stronger.

Thus, the difference between the result for an ideal gas and that calculated using the van der Waals equation is greater when the gas is confined to 3.00 L compared to 22.4 L.

To learn more about pressure, refer below:

https://brainly.com/question/30673967

#SPJ11

hocl(aq) hcl(aq)→h2o(l) cl2(g) express your answers as integers separated by commas.

Answers

The balanced chemical equation for the reaction between HOCl(aq) and HCl(aq) to produce H2O(l) and Cl2(g) is as follows: 2 HOCl(aq) + 2 HCl(aq) → 2 H2O(l) + Cl2(g)

In this reaction, two moles of hypochlorous acid (HOCl) react with two moles of hydrochloric acid (HCl) to yield two moles of water (H2O) and one mole of chlorine gas (Cl2).

The reaction occurs through a displacement reaction where the chlorine in hypochlorous acid is displaced by the hydrogen in hydrochloric acid, resulting in the formation of water and chlorine gas.

The coefficients in the balanced equation represent the stoichiometric ratios between the reactants and products. In this case, the coefficient 2 indicates that two moles of HOCl and HCl are required to produce two moles of water and one mole of chlorine gas.

The reaction is exothermic, meaning it releases heat energy. It is important to note that the reaction conditions, such as temperature and concentration, can influence the rate and extent of the reaction.

Overall, the balanced equation provides a concise representation of the chemical reaction between HOCl and HCl, showing the conservation of atoms and the formation of the products, water, and chlorine gas.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

Final answer:

The balanced equation for the chemical reaction hocl(aq) to hcl(aq), h2o(l) and Cl2(g) is 2,4,2,1. Essentially, balancing involves making sure the number of atoms of each element is the same on both sides of the equation.

Explanation:

The question pertains to balancing a chemical equation, so let's balance the given equation hocl(aq) hcl(aq)→h2o(l) cl2(g). On the left side (Reactants) we have one H, one Cl, and one O. On the right side (Products) we have two H, two Cl, and one O. To balance H and Cl, add coefficient 2 before HCl on the right side to match the number of H and Cl atoms on both sides. Now the updated equation becomes hocl(aq) → 2hcl(aq) + h2o(l). But we need Cl2, not 2Cl, so we double the entire equation to get 2hocl(aq) → 4hcl(aq) + 2h2o(l), which we simplify to hocl(aq) → 2hcl(aq) + h2o(l) + cl2(g). Thus, the balanced equation is 2,4,2,1. Chemical equation, balanced equation, and reactants products are key to understanding this concept.

Learn more about Balancing Chemical Equations here:

https://brainly.com/question/28294176

#SPJ2

ammonia is produced using the haber process. calculate the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen

Answers

The balanced chemical equation of the Haber process is:

N2 + 3H2 → 2NH3

To calculate the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen using the Haber process, we need to find the limiting reactant first.

Limiting reactant is the reactant which gets completely consumed in a chemical reaction, limiting the amount of product produced. Therefore, we must calculate the moles of each reactant using their molar masses and compare them to find the limiting reactant.

For nitrogen, the molar mass = 28 g/mol

Number of moles of nitrogen = 35.0 g / 28 g/mol = 1.25 mol

For hydrogen, the molar mass = 2 g/mol

Number of moles of hydrogen = 12.5 g / 2 g/mol = 6.25 mol

From the above calculations, it can be observed that hydrogen is in excess as it produces more moles of NH3. Thus, nitrogen is the limiting reactant.

Using the balanced chemical equation, the number of moles of NH3 produced can be calculated.

Number of moles of NH3 = (1.25 mol N2) × (2 mol NH3/1 mol N2) = 2.50 mol NH3Now,

to find the mass of NH3 produced, we can use its molar mass which is 17 g/mol.Mass of NH3 produced = (2.50 mol NH3) × (17 g/mol) = 42.5 g

Therefore, the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen using the Haber process is 42.5 g.

Learn more about Haber process:

https://brainly.com/question/21867752

#SPJ11

predict whether the hcl, clo- is conjugate acid/base pair or not. group of answer choices yes no

Answers

Yes, HCl is a strong acid and thus it does not have a conjugate base.

But, when HCl gets dissolved in water, it gives H+ and Cl- ions as its products. Here, Cl- acts as the conjugate base of HCl. Thus, HCl and Cl- form a conjugate acid-base pair. Therefore, the answer is: yes, HCl and Cl- form a conjugate acid-base pair.HCl is a strong acid and thus it does not have a conjugate base. But, when HCl gets dissolved in water, it gives H+ and Cl- ions as its products. Here, Cl- acts as the conjugate base of HCl. Thus, HCl and Cl- form a conjugate acid-base pair. Therefore, the answer is: yes, HCl and Cl- form a conjugate acid-base pair.

learn more about conjugate base-

https://brainly.com/question/28979448?utm_source=android&utm_medium=share&utm_campaign=question

#SPJ11

Balance the following chemical equation (if necessary): Sn(ClO 4

) 4

( s)→SnCl 4

( s)+O 2

( g)

Answers

The balanced chemical equation for the reaction is:

2 Sn(ClO4)4 (s) → SnCl4 (s) + 8 O2 (g)

In order to balance the chemical equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation.

Starting with the left side of the equation, we have one tin atom (Sn), four perchlorate ions (ClO4-), and a total of 4 × 4 = 16 oxygen atoms (O). On the right side of the equation, we have one tin atom (Sn), four chloride ions (Cl-), and a total of 8 oxygen atoms (O) in the form of O2 gas.

To balance the tin (Sn) atoms, we need to have the same number on both sides of the equation. Therefore, we place a coefficient of 2 in front of Sn(ClO4)4, resulting in 2 Sn(ClO4)4.

Now, let's balance the chlorine (Cl) atoms. On the left side, we have 4 × 4 = 16 chlorine atoms from the perchlorate ions.

To balance this, we need to have the same number of chloride ions (Cl-) on the right side. Therefore, we put a coefficient of 4 in front of SnCl4, giving us 4 SnCl4.

Finally, let's balance the oxygen (O) atoms. On the left side, we have 4 × 4 = 16 oxygen atoms from the perchlorate ions. On the right side, we have 8 oxygen atoms in the form of O2 gas. These numbers are already balanced.

After applying the appropriate coefficients, the equation becomes:

2 Sn(ClO4)4 (s) → 4 SnCl4 (s) + 8 O2 (g)

In conclusion, the balanced chemical equation for the reaction Sn(ClO4)4 (s) → SnCl4 (s) + O2 (g) is 2 Sn(ClO4)4 (s) → 4 SnCl4 (s) + 8 O2 (g). This equation ensures that the number of atoms of each element is the same on both sides.

Learn more about perchlorate ions here https://brainly.com/question/13940278

#SPJ11

The decomposition of 3.08 g nahco3 yields 1.04 g na2co3. what is the percent yield of this reaction?

a. nahco3(s)

b. na2co3(s)

c. co2(g)

d. h2o(g)

Answers

The percent yield for each compound:

a) For NaHCO3: 100%
b) For Na2CO3: 126.2%
c) For CO2: 100%
d) For H2O: 0%


To find the percent yield, we first need to determine the theoretical yield and actual yield for each compound. The theoretical yield is the amount of product that would be obtained if the reaction proceeded perfectly, while the actual yield is the amount of product obtained in reality.

Let's calculate the theoretical yield for each compound:

a) NaHCO3(s): Since 3.08 g of NaHCO3 is given, the theoretical yield of NaHCO3 would also be 3.08 g.

b) Na2CO3(s): The given problem states that 1.04 g of Na2CO3 is obtained. However, since Na2CO3 is formed from NaHCO3, we need to consider the molar mass ratio between NaHCO3 and Na2CO3. The molar mass of NaHCO3 is 84 g/mol, and the molar mass of Na2CO3 is 106 g/mol. Using this ratio, we can calculate the theoretical yield of Na2CO3:

(1.04 g Na2CO3) × (84 g NaHCO3 / 106 g Na2CO3) = 0.824 g NaHCO3

c) CO2(g): CO2 is produced during the decomposition of NaHCO3, and it is a gas. Therefore, we need to convert the mass of NaHCO3 to moles and then use the balanced chemical equation to find the moles of CO2 produced. The balanced equation for the decomposition of NaHCO3 is:


2 NaHCO3(s) -> Na2CO3(s) + CO2(g) + H2O(g)
The molar mass of NaHCO3 is 84 g/mol.


(3.08 g NaHCO3) / (84 g/mol NaHCO3) = 0.0367 mol NaHCO3
According to the balanced equation, 1 mole of NaHCO3 produces 1 mole of CO2. Therefore, the theoretical yield of CO2 is also 0.0367 mol.

d) H2O(g): Similarly, we can use the balanced equation to determine the theoretical yield of water. According to the equation, 1 mole of NaHCO3 produces 1 mole of H2O. Therefore, the theoretical yield of H2O is 0.0367 mol.

Now, let's calculate the percent yield for each compound:

Percent yield = (Actual yield / Theoretical yield) × 100

a) For NaHCO3:
Percent yield = (3.08 g / 3.08 g) × 100 = 100%

b) For Na2CO3:
Percent yield = (1.04 g / 0.824 g) × 100 = 126.2%

c) For CO2:
Percent yield = (0.0367 mol / 0.0367 mol) × 100 = 100%

d) For H2O:
Percent yield = (0 mol / 0.0367 mol) × 100 = 0%

To summarize, the percent yield for NaHCO3 is 100%, for Na2CO3 is 126.2%, for CO2 is 100%, and for H2O is 0%.

Learn more about molar mass:

https://brainly.com/question/837939

#SPJ11

the basal rate of consumption of o2 by a 70-kg person is 16 mol o2 per day. this will oxidize food and then be reduced to water, providing energy for the person according to: o2 4h 4e- 2h2o a) the current (in amperes, c/s) corresponding to this rate of

Answers

The current corresponding to the basal rate of oxygen consumption of a 70-kg person, which is 16 mol O2 per day, is approximately 0.19 Amperes.

To calculate the current, we need to convert the number of moles of oxygen consumed to the number of electrons involved in the reduction of oxygen.

From the balanced equation: O2 + 4H+ + 4e- → 2H2O, we can see that for every 4 moles of oxygen consumed, 4 moles of electrons are involved.

Therefore, the number of moles of electrons involved in the reduction of oxygen is also 16 mol.

To calculate the charge in coulombs (C), we use Faraday's constant (F) which is equal to 96485 C/mol.

Charge (C) = moles of electrons × Faraday's constant

Charge = 16 mol × 96485 C/mol

Charge ≈ 1543760 C

Finally, to calculate the current (I) in Amperes (A), we divide the charge by the time in seconds. Assuming a day consists of 24 hours (86400 seconds), we have:

Current (A) = Charge (C) / Time (s)

Current ≈ 1543760 C / 86400 s

Current ≈ 17.86 A

Therefore, the current corresponding to the basal rate of oxygen consumption of a 70-kg person is approximately 0.19 Amperes.

Learn more about oxygen consumption from the given link https://brainly.com/question/13959817

#SPJ11.

A bar of gold has the following dimensions: 14 cm×8 cm×4 cm Calculate the volume of this bar of gold in both cm3 and mL. Write your answers to the ones place

Answers

The volume of the gold bar pf dimension 14 cm×8 cm×4 cm is 448 cm³ and 448 mL or 0.448 L.

The volume of a rectangular prism is calculated by multiplying the length, width, and height. In this case, the length is 14 cm, the width is 8 cm, and the height is 4 cm. To calculate the volume of the gold bar, we use the formula V = l × w × h, where l, w, and h represent the length, width, and height of the bar, respectively. Plugging in the given dimensions, we have V = 14 cm × 8 cm × 4 cm = 448 cm³. Since 1 cm³ is equivalent to 1 mL, the volume of the gold bar is also 448 mL.

The volume of the gold bar, calculated using its given dimensions, is 448 cm³ and 448 mL. This volume represents the amount of space occupied by the gold bar.

Learn more about volume here:

https://brainly.com/question/29796637

#SPJ11

a cubic container of volume 2.00 l holds 0.500 mol of nitrogen gas at a temperature of 25.0 c. what is the net force due to the nitrogen on one wall of the container?

Answers

To calculate the net force due to the nitrogen on one wall of the container, we need to consider the ideal gas law and apply Newton's second law.
First, let's convert the volume of the container to cubic meters. 2.00 L is equal to 0.002 [tex]m^3[/tex].

Next, we can use the ideal gas law, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.
Using the given values, we can solve for the pressure (P). Rearranging the equation gives us P = (nRT) / V.
Converting the temperature to Kelvin, we have T = 25.0 + 273

= 298 K.
Substituting the values, we get P = (0.500 mol * 8.314 J/(mol*K) * 298 K) / 0.002 [tex]m^3[/tex]= 61,774 Pa.

Finally, we can find the force using Newton's second law, F = P * A, where F is force and A is the area of the wall.
Since it's a cubic container, all the walls have the same area. The total area is 6 *[tex](side length)^2.[/tex]
Given that the volume is 2.00 L, the side length can be calculated as (2.00 L)^(1/3) = 1.26 m.

Therefore, the net force on one wall of the container is

F =[tex](61,774 Pa) * 6 * (1.26 m)^2[/tex]

= 583,994 N.

To know more about nitrogen visit:-

https://brainly.com/question/16711904

#SPJ11

Other Questions
An experimental design with more than two levels of a single independent variable is called a _____ design. Can you please answer the reason behind it? why we can't give epidosin medicine when we have this condition please explain for each of them briefly a. Cardiovascular system disorder b. Multipara and grandmultipara c. Myasthenia gravis Two circuit elements are connected in parallel. The current through one of them is i_{1} = 3sin(wt - 60 degrees) A and the total line current drawn by the circuit is i_{t} = 10 sin (wt + 90) A. Determine the rms value of the current through the second element. 8. A resistance R and reactance L in series are connected to a 115-V, 60-Hz voltage supply. Instruments are used to show that the reactor voltage (voltage at inductor) is 75 V and the total power supplied to the circuit is 190 W. Find L. What are the atomic number (Z), mass number (A), and symbol of the chlorine isotope with 18 neutrons!! 1 b. How many protons, electrons, and neutrons are present in an atom of Cr-54? e. What are the atomic number, mass number, and symbol for the carbon isotope with seven neutrons? Write electron configurations for each of the following elements. Use the symbol of the previous noble gas in brackets to represent the core electrons. GaExpress your answer in condensed form in order of increasing orbital energy as a string without blank space between orbitals. For example, [He]2s^22p^2 should be entered as [He]2s^22p^2. A water tower is 36 feet tall and casts a shadow 54 feet long, while a child casts a shadow 6 feet long. How tall is the child Find the value of the expression: 9 / 3 + ( 5 - 3 )^2 In the word ESOPHAGOGASTRODUODENOSCOPY, what is the word part that means "stomach"? gastr/o o/gastr gogastr/o esophagogastr/o gastric Question 10 1 pts In the word ESOPHAGOGASTRODUODENOSCOPY the suffix, -SCOPY, means "process of examination". The rest of the word consists of several combining forms. How many combining forms precede the suffix in this word? 1 2 3 4 5 A 3.00-kg object traveling 20.0 m/s west collides with a 5.00-kg mass object traveling 12.0 m/s west. the collision is perfectly elastic, what is the velocity of the 3.00-kg object after the collision? Choose the correct model from the list. You want to support the claim that more than 70% of students at De Anza college will transfer. 450 students will be sampled. One sample t test for mean Chi-square test of independence One Factor ANOVA Simple Linear Regression Matched Pairs t-test O One sample Z test of proportion What is a common use for Propionibacterium? A) making swiss cheese B) making bread C) germ warfare D) making yogurt E) canning foods a bank thermometer reads 120 degrees fahrenheit on a sunny summer day in philadelphia (where the official all-time record high temperature is 106 degrees fahrenheit). which effect may be contributing to this unreasonably high reading? Within a species of fish, sizes often range from large to small. some fishing practices exclude small fish from a species from being caught, but allow capture of larger fish in the same population. 1. if commercial fishermen use practices that exclude small fish from being caught, what effect do you think this will have on the size of fish over time? 2. explain how natural selection would cause that effect. 3. if fishermen stopped using the practices that exclude smaller fish, it is hypothesized that fish sizes will not return to the original range. explain why they would not return to their original size range. Question 2 [40 points] Consider the following signal X(e jw) X(e jw)= 1 21e j(w3)1+5e j4wa) Find x[n], show all your works. [15 Points] b) If y[n]=x[n]x[n1]. Find Y(e jut ) you need to show all your calculation steps. [15 Points] c) Using your own words, explain your results in parts a and b above. [10 Points] In the circuit shown, find the currents I1 and I2 , express youranswer asphasors.In the cicuit shown in figure 6 find the currents 11 and 12, express your answer as phasors. 6Z60S I, , 16Z45A ] 4Z30S In Figure 6 The assembly has the diameters and material make-up indicated. It fits securely between its fixed supports when the temperature is Ti - 70F (Figure 1) Part A Determine the magnitude of the average normal stress in the aluminum when the temperature reaches T2 = 102 "F. Express your answer to three significant figures and include the appropriate units. ? T.I = Value Units Submit Request Answer Part B Determine the magnitude of the average nommal stress in the bronze when the temperature reaches T) = 102 F. Figure < 1 1 of 1 Express your answer to three significant figures and include the appropriate units. THA ? be 2014-T6 Aluminum 304 Stainless -C86100 Bronze steel Value Units 12 in. 8 in D Submit Request Answer C4 in. 31 Part Determine the magnitude of the average normal stress in the stainless steel when the temperature reaches T2 = 102"F. Express your answer to three significant figures and include the appropriate units. The measurements inside a closed cylindrical tank are 20 inches high and 10 inches in radius. Use differentials to estimate the amount of metal in the tank if the metal in the top, the bottom, and the sides is 0.1 inches thick. a. 1007 in b. 507 in? c. 907 in? d. 807 in e. 607 in3 on the basis of the following counts per minute obtained from a thyroid uptake test: thyroid: 2876 patient background: 563 standard: 10,111 room background: 124 the percentage radioiodine uptake is: quizlet In order for water to condense on an object, the temperature of the object must be ______ the dew point temperature. An exhaust fan, of mass 140 kg and operating speed of 900rpm, produces a repeated force of 30,500 N on its rigid base. If the maximum force transmutted to the base is to be limited to 6500 N using an undamped isolator, determine: (a) the maximum permissible stiffress of the isolator that serves the purpose, and (b) the steady state amplitude of the exhaust fan with the isolator that has the maximum permissible stiffness.