9514 1404 393
Answer:
see attached
Step-by-step explanation:
The attachment shows the ordered pairs (x, f(x)) and their graph.
I need help :)What’s m
Answer:
[tex] \large{ \tt{❃ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]
[tex] \large{ \tt{⇢m \: \angle \: GHI= m \: \angle \: GHQ + m \: \angle \: QHI}}[/tex]
[tex] \large{ \tt{➝14x + 6 = 3x - 3 + 130 \degree}}[/tex]
[tex] \large{ \tt{➝14x + 6 = 3x + 127}}[/tex]
[tex] \large{ \tt{➝ \: 14x - 3x = 127 - 6}}[/tex]
[tex] \large{ \tt{➝ \: 11x = 121}}[/tex]
[tex] \large{ \tt{➝ \: x = \frac{121}{11} }}[/tex]
[tex] \large{ \tt{➝ \: x = 11}}[/tex]
[tex] \large{ \tt{✣ \: REPLACING \: VALUE}} : [/tex]
[tex] \large{ \tt{✺ \: m \: \angle \: GHI = 14x + 6 = 14 \times 11 + 6 = \boxed{ \tt{160 \degree}}}}[/tex]
Our final answer : 160° . Hope I helped! Let me know if you have any questions regarding my answer! :)▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
nen,
Problem: Two towns, A and B, located along the coast of the Pacific Ocean are 30
km apart on a north-south line. From a ship, the line of sight of town A is W30°N,
while that of town B is S400W.
1. How far is the ship from town A?
2. How far is the ship from town B?
Answer:
Step-by-step explanation:
From the picture attached,
m∠COB = 90° - m∠BOS
= 90° - 40°
= 50°
tan(30°) = [tex]\frac{AC}{OC}[/tex]
[tex]\frac{1}{\sqrt{3}}=\frac{AC}{OC}[/tex]
AC = [tex]\frac{OC}{\sqrt{3}}[/tex] ------(1)
Similarly, tan(50°) = [tex]\frac{BC}{OC}[/tex]
BC = OC[tan(50°)] -------(2)
Now AC + BC = 30 cm
By substituting the values of AC and BC from equation (1) and (2),
[tex]\frac{OC}{\sqrt{3}}+OC(\text{tan}50)=30[/tex]
(1.769)OC = 30
OC = 16.96
1). cos(30°) = [tex]\frac{OC}{AO}[/tex]
[tex]\frac{\sqrt{3}}{2}= \frac{16.96}{OA}[/tex]
[tex]OA=19.58[/tex] cm
Therefore, distance between the ship and town A is 19.58 cm.
2). cos(50°) = [tex]\frac{OC}{OB}[/tex]
0.6428 = [tex]\frac{16.96}{OB}[/tex]
OB = 26.38 cm
Therefore, distance between the ship and town B is 26.38 cm.
In order for the parallelogram to be a
rhombus, x = [?].
(5x + 25)
(12x + 11)
A parallelogram is also a rhombus if the diagonal is a bisector of an angle enclosed by the two adjacent sides of a parallelogram.
In our case it means,
[tex]5x+25=12x+11[/tex]
[tex]7x=14\implies x=\boxed{2}[/tex]
Hope this helps.
In order for the parallelogram to be a rhombus, ,For the parallelogram to be a rhombus, x must be equal to 2.
To determine the value of x that would make the parallelogram a rhombus, we need to compare the lengths of its opposite sides. In a rhombus, all four sides are equal in length. So, we can equate the lengths of the opposite sides of the parallelogram and solve for x.
Given that one side has a length of (5x + 25) and the opposite side has a length of (12x + 11), we can set up the following equation: 5x + 25 = 12x + 11
To solve for x, we can start by isolating the x term on one side of the equation. We can do this by subtracting 5x from both sides: 25 = 12x - 5x + 11 Simplifying the equation further: 25 = 7x + 11 Next, we can isolate the x term by subtracting 11 from both sides: 25 - 11 = 7x 14 = 7x Finally, we can solve for x by dividing both sides by 7: 14/7 = x x = 2 Therefore, for the parallelogram to be a rhombus, x must be equal to 2.
To know more about parallelogram here
https://brainly.com/question/970600
#SPJ2
Simplify:
-5x+6y-9y+4x
Answer:
-x-3y
Step-by-step explanation:
-5x+6y-9y+4x
-5x+4x+6y-9y
-x-3y
Solve for z
-3z-2/2 <5
Answer:
z> -2
Step-by-step explanation:
STEP 1) Any expression divided by itself equals 1
-3z-1<5
STEP 2) Move the constant to the right-hand side and change its sign
-3z<5+1
STEP 3) Add the numbers
5+1= 6
-3z<6
STEP 4) Divide both sides of the inequality by -3 and flip the inequality sign
z>-2
Last year Nancy weighted 37 5/8 pounds. This year she weighed 42.7 pounds. How much did she gain?
Answer:
Nancy gained 5.075 pounds.
Step-by-step explanation:
5/8=0.625
37.625
42.7-37.625=5.075
11
5
у
х
Find the value of x.
A) 4rad5
B) 8rad5
C) 6
D) 16
Answer:
Option A, 4rad5
Step-by-step explanation:
x² = 5*(5+11)
x² = 5*16
x² = 80
x = 4√5
Answered by GAUTHMATH
pls how can u convert 9ml to cm cube
Answer:
There is no conversion necessary. It's a 1 to 1 ratio.
ml = [tex]cm^{3}[/tex]
so, 9ml is 9[tex]cm^{3}[/tex]
Answer:
9ml = 9cm³
Step-by-step explanation:
1ml = 1cm³
Therefore,
9ml = 9cm³
Can someone help me with this? Thanks!
9514 1404 393
Answer:
x ∈ {5, 7}(5,7)Step-by-step explanation:
The graph shows the function value is zero for x=5 and x=7. These are the elements of the solution set.
x ∈ {5, 7}
__
The graph is below the x-axis between these points, so that is the region where f(x) < 0
5 < x < 7 . . . . . for f(x) < 0
In interval notation: (5, 7).
What is the cost, in dollars, of 16 onions if 3 onions weigh 1.5 lb and the price of onions is 33 cents per kilogram
Answer:
The cost of 16 onions is $ 1.20.
Step-by-step explanation:
To determine what is the cost, in dollars, of 16 onions if 3 onions weigh 1.5 lb and the price of onions is 33 cents per kilogram, the following calculation must be performed:
1.5 pounds = 0.68 kilos
0.68 / 3 = 0.22666 kilos each onion
16 x 0.22666 = 3.626 kilos
0.33 x 3.626 = 1.20
Therefore, the cost of 16 onions is $ 1.20.
It has a time to failure distribution which is normal with a mean of 35,000 vehicle miles and a standard deviation of 7,000 vehicle miles. Find its designed life if a .97 reliability is desired.
Answer:
The designed life should be of 21,840 vehicle miles.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 35,000 vehicle miles and a standard deviation of 7,000 vehicle miles.
This means that [tex]\mu = 35000, \sigma = 7000[/tex]
Find its designed life if a .97 reliability is desired.
The designed life should be the 100 - 97 = 3rd percentile(we want only 3% of the vehicles to fail within this time), which is X when Z has a p-value of 0.03, so X when Z = -1.88.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.88 = \frac{X - 35000}{7000}[/tex]
[tex]X - 35000 = -1.88*7000[/tex]
[tex]X = 21840[/tex]
The designed life should be of 21,840 vehicle miles.
if 18 : 6 = x : 3 then what is 5 + 3x
Answer:
32
Step-by-step explanation:
18 : 6 = 3
therefore, x : 3 has to equal 3.
X : 3 = 3
X = 3 × 3
X = 9
To verify:
18 : 6 = 9 : 3
3 = 3
It's true that X = 9, so now just replace the X with 9 in the next equation
5 + 3(9) = 32
Answer:
32
Step-by-step explanation:
18 : 6 = x : 3
Product of means = Product of extremes
6 * x = 3*18
x = [tex]\frac{3*18}{6}[/tex]
x = 3*3
x = 9
Now plugin x = 9 in the expression
5 + 3x = 5 + 3*9
= 5 + 27
= 32
Solve the following inequality.
- 202-16
Which graph shows the correct solution?
A student takes an exam containing 16 true or false questions. If the student guesses, what is the probability that he will get exactly 14 questions right
Answer:
0.001831055
Step-by-step explanation:
Here, n = 16, p = 0.5, (1 - p) = 0.5 and x = 14
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)
We need to calculate P(X = 14)
P(x =14) = 16C14 * 0.5^14 *(1-0.5)^2
= 120 * 0.5^14 *(1-0.5)^2
= 0.001831055
Simplify the following expression.
3^{0}
Answer:
Anything to the power of zero (with the exception of zero itself) is equal to one.
So 3⁰ = 1
You own a small storefront retail business and are interested in determining the average amount of money a typical customer spends per visit to your store. You take a random sample over the course of a month for 12 customers and find that the average dollar amount spent per transaction per customer is $116.194 with a standard deviation of $11.3781. Create a 90% confidence interval for the true average spent for all customers per transaction.1) ( 114.398 , 117.99 )2) ( 112.909 , 119.479 )3) ( -110.295 , 122.093 )4) ( 110.341 , 122.047 )5) ( 110.295 , 122.093 )
Answer:
(110.295, 122.093).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 12 - 1 = 11
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 11 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 1.7959
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 1.7959\frac{11.3781}{\sqrt{12}} = 5.899[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 116.194 - 5.899 = 110.295
The upper end of the interval is the sample mean added to M. So it is 116.194 + 5.899 = 122.093
So
(110.295, 122.093).
Find domain of (x^2+3)+[tex]\sqrt{x} 3x-1[/tex]
Answer:
= x^2 + 3 + √3x^2 - 1
Step-by-step explanation:
Remove parentheses: (a) = a
= x^2 + 3 + √x . 3x - 1
x . 3x = 3x^2
= x^2 + 3 + √3x^2 - 1
Joe's Auto Insurance Company customers sometimes have to wait a long time to speak to a
customer service representative when they call regarding disputed claims. A random sample
of 25 such calls yielded a mean waiting time of 22 minutes with a standard deviation of 6
minutes. Construct a 95% and 99% confidence interval for the population mean of such
waiting times. Explain what these interval means.
Answer:
The 95% confidence interval for the population mean of such waiting times is between 19.5 and 24.5 minutes. This means that we are 95% sure that the true mean waiting time of all calls for this company is between 19.5 and 24.5 minutes.
The 99% confidence interval for the population mean of such waiting times is between 18.6 and 25.4 minutes. This means that we are 99% sure that the true mean waiting time of all calls for this company is between 18.6 and 25.4 minutes.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 25 - 1 = 24
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.0639
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.0639\frac{6}{\sqrt{25}} = 2.5[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 22 - 2.5 = 19.5 minutes
The upper end of the interval is the sample mean added to M. So it is 22 + 2.5 = 24.5 minutes
The 95% confidence interval for the population mean of such waiting times is between 19.5 and 24.5 minutes. This means that we are 95% sure that the true mean waiting time of all calls for this company is between 19.5 and 24.5 minutes.
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 2.797
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.797\frac{6}{\sqrt{25}} = 3.4[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 22 - 3.4 = 18.6 minutes
The upper end of the interval is the sample mean added to M. So it is 22 + 3.4 = 25.4 minutes
The 99% confidence interval for the population mean of such waiting times is between 18.6 and 25.4 minutes. This means that we are 99% sure that the true mean waiting time of all calls for this company is between 18.6 and 25.4 minutes.
I need some help please!
Answer:
See below
Step-by-step explanation:
Given :-
y || zTo Prove :-
m∠5 + m∠2 + m∠6 = 180°Proof :-
Here we are required to prove that ,
[tex]\rm\implies m\angle 5 + m\angle 6 + m\angle 2 = 180^o [/tex]
And here it's given that , y || z . Therefore ,
∠3 = ∠6 ( alternate interior angles )∠1 = ∠5 ( alternate interior angles )Now we know that the measure of a straight line is 180°. Therefore ,
[tex]\rm\implies m\angle 1 + m\angle 2 + m\angle 3 = 180^o \\\\\implies\boxed{\rm m\angle 5 + m\angle 6 + m\angle 2 = 180^o} [/tex]
From 1 and 2 .Hence Proved !
A three-year interest rate swap has a level notional amount of 300,000. Each settlement period is one year and the variable rate is the one-year spot interest rate at the beginning of the settlement period. One year has elapsed and the one-year spot interest rate at the start of year 2 is 4.45%.
Time to Maturity 1 2 3 4 5
Price of zero coupon bond with Maturity value 1 0.97 0.93 0.88 0.82 0.75
Calculate the net swap payment by the payer at the end of the second year.
A. −400
B. −300
C. −200
D. −100
E. 0
Hint : Find the swap rate R using the table and then use R and the one-year spot rate at the start of year 2 to find the net swap payment at the end of year 2.
Answer:
A. -400
Step-by-step explanation:
We solve for the swap rate
R = (1-p3)/(p1+p2+p3)
R = 1-0.88/0.97+0.93+0.88
= 0.12/2.78
= 0.04317
Remember 4.45% is the one year spot rate for the second option
Net swap
= 300000*0.04317-300000*0.0445
= 12951-13350
= -399
This is approximately -400
So the net swap payment at the end of the second year is option a, -400
The answer to this 6th grade summer school math question is
Answer 7.84
Gemma recently rode her bicycle to visit her friend who lives 6 miles away. On her way there, her average speed was 16 miles per hour faster than on her way home. If Gemma spent a total of 1 hour bicycle, find the two rates.
first speed --- x mph
return speed -- x+16 mph
6/x + 6/(x+16) = 1
times each term by x(x+16)
6(x+16) + 6x = x(x+16)
x^2 + 4x - 96 = 0
(x-8)(x+12) = 0
x = 8 or x is a negative
her first speed was 8 mph
her return speed was 24 mph
check:
6/8 + 6/24 = 1 , that's good!
sec theta root under 1- cos square theta = tan theta
Answer:
Step-by-step explanation:
012345678910
'yl\f[pt;]p;d[k;ell-=;q'[;
Answer:
see explanation
Step-by-step explanation:
Assuming you mean
secθ × [tex]\sqrt{1-cos^20}[/tex]
= [tex]\frac{1}{cos0}[/tex] × sinθ [ sin²θ + cos²θ = 1 , so sinθ = [tex]\sqrt{1-cos^20}[/tex] ]
= [tex]\frac{sin0}{cos0}[/tex]
= tanθ
= right side , thus verified
She decides that ordering that many cars would not be economically feasible at this time and asks her sales manager to randomly choose one of the models for the sales lot. What is the probability that he chooses the 4-door, special edition model, with four-wheel drive?
The probability that he chooses the 4-door, special edition, four-wheel drive model is (44)=
P(4S4)=
Answer:
The probability that he chooses the 4-door, special edition, four-wheel drive model is P( 454) = 1 (Enter your answer as reduced fraction.) ...Step-by-step explanation:
The probability that he chooses the 4-door, special edition, four-wheel drive model is (44)=P(4S4)=What is the value of x
Answer:
[tex]6x+3+69=180[/tex]
[tex]6x=180-72[/tex]
[tex]6x=108[/tex]
[tex]x=18[/tex]
--------------------------
hope it helps..
have a great day!!
36x^2=y^2
Does the equation define y as a function of x ?
Answer:
ya the equation divides y as a function of x
This Bar Chart shows the number of DVDs sold at a local music store during one week.
Which measure(s) of central tendency can be used to determine the average number of DVDs sold each day?
A. the median
B. the mean
C. the mean and the median
D. the mode
Answer:
B. the mean
Step-by-step explanation:
According to the Bar Chart shown, the number of DVDs sold at a local music store during one week are displayed.
Therefore, the measure(s) of central tendency that can be used to determine the average number of DVDs sold each day is the mean.
This is because the mean is the sum total of the number of DVDs sold, divided by the number, which gives the average.
Answer:
The Mean
Step-by-step explanation:
I took the test
Enter an equation in point-slope form for the line.
Slope is −6 and (1, 1) is on the line.
Answer:
y - 1 = -6(x - 1)
General Formulas and Concepts:
Algebra I
Point-Slope Form: y - y₁ = m(x - x₁)
x₁ - x coordinate y₁ - y coordinate m - slopeStep-by-step explanation:
Step 1: Define
Identify
Point (1, 1)
Slope m = -6
Step 2: Find Equation
Substitute in variables [Point-Slope Form]: y - 1 = -6(x - 1)At a coffee shop, the first 100 customers'
orders were as follows.
Medium Large
Small
Hot
5
48
22
Cold
8
12
5
What is the probability that a customer ordered
a small given that he or she ordered a hot
drink?
Rounded to the nearest percent, [? ]%
Well formatted distribution table is attached below :
Answer:
7%
Step-by-step explanation:
The probability that a customer ordered a small Given that he or she ordered a hot drink ;
This is a conditional probability and will be represented as :
Let :
P(small drink) = P(S)
P(hot drink) = P(H)
Hence, the conditional probability is written as :
P(S|H) = P(SnH) / P(H) = 5 / (5+48+22) = 5/75 = 0.0666 = 0.0666 * 100% = 6.67%
If 3 3/4m of cloth was used for one suit, how many suits can be made with 30m cloth
Answer:
8 suits
Step-by-step explanation:
Divide 30 m by 3 [tex]\frac{3}{4}[/tex] m , or 30 ÷ 3.75 , then
30 ÷ 3.75 = 8
Then 8 suits can be made from 30 m of cloth