Container A and container B hold samples of the same ideal gas. The volume and the pressure of container A is equal to the volume and pressure of container B, respectively. If Container A has half as many molecules of the ideal gas in it as Container B does, then which of the following mathematical statements is correct regarding the absolute temperatures TA and TB in Container A and Container B. respectively?
A. TA = TB/2.
B. TA = 4TB.
C. TA = TB/4.
D. TA = 2TB.
E. TA = TB

Answers

Answer 1

Answer:

A. TA = TB/2.

Explanation:

Since container A has half as many molecules of the ideal gas in it as container B. Therefore, container A will have half the volume of gas as in container B:

[tex]V_A = \frac{1}{2}V_B[/tex]

Now, from Charle's Law:

[tex]\frac{V_A}{T_A}=\frac{V_B}{T_B}\\\\\frac{1}{2}\frac{V_B}{T_A}=\frac{V_B}{T_B}\\\\T_A = \frac{T_B}{2}[/tex]

Hence, the correct option is:

A. TA = TB/2.


Related Questions

When you take your 1900-kg car out for a spin, you go around a corner of radius 55 m with a speed of 15 m/s. The coefficient of static friction between the car and the road is 0.88. Assuming your car doesn't skid, what is the force exerted on it by static friction?

Answers

Answer:

7772.72N

Explanation:

When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page  (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.

Now which direction is the static friction, assume that it is pointing inward so

Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N

Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.

What is the total surface charge qint on the interior surface of the conductor (i.e., on the wall of the cavity)

Answers

Answer: hello your question is incomplete below is the missing part

A spherical cavity is hollowed out of the interior of a neutral conducting sphere. At the center of the cavity is a point charge, of positive charge q.

answer:

- q

Explanation:

Since the spherical cavity was carved out of a neutral conducting sphere hence the electric field inside this conductor = zero

given that there is a point charge +q at the center of the spherical cavity hence for the electric field inside the conductor to be = zero the total surface charge qint on the wall of the cavity will be -q

•. What is called the error due to the procedure and used apparatuses?
a. Random error
b. Index error
c. Systematic error
d. Parallax error.​

Answers

Answer:

[tex]c.) \: systematic \: error \\ \\ = > it \: is \: the \: error \: caused \: \\ \\ due \: to \: the \: procedure \\ \\ \: and \: used \: apparatuses \\ \\ \huge\mathfrak\red{Hope \: it \: helps}[/tex]

(a) If half of the weight of a flatbed truck is supported by its two drive wheels, what is the maximum acceleration it can achieve on wet concrete where the coefficient of kinetic friction is 0.5 and the coefficient of static friction is 0.7.
(b) Will a metal cabinet lying on the wooden bed of the truck slip if it accelerates at this rate where the coefficient of kinetic friction is 0.3 and the coefficient of static friction is 0.55?
(c) If the truck has four-wheel drive, and the cabinet is wooden, what is it's maximum acceleration (in m/s2)?

Answers

Answer:

a)     a = 27.44 m / s²,  b) a = 5.39 m / s², c)  a = 156.8 m / s², cabinet maximum acceleration does not change

Explanation:

a) In this exercise the wheels of the truck rotate to provide acceleration, but the contact point between the ground and the 2 wheels remains fixed, therefore the coefficient of friction for this point is static.

Let's apply Newton's second law

we set a regency hiss where the x axis is in the direction of movement of the truck

Y axis y

        N- W = 0

        N = W = m g

X axis

       2fr = m a

the expression for the friction force is

      fr = μ N

      fr = μ m g

we substitute

      2 μ m g = m /2   a

     a = 4 μ g

      a = 4 0.7 9.8

      a = 27.44 m / s²

b) let's look for the maximum acceleration that can be applied to the cabinet

       fr = m a

       μ N = ma

       μ m g = m a

       a = μ g

       a = 0.55  9.8

       a = 5.39 m / s²

as the acceleration of the platform is greater than this acceleration the cabinet must slip

c) the friction force is in the four wheels as well

With when the truck had two-wheel Thracian the weight of distributed evenly between the wheels, in this case with 4-wheel Thracian the weight must be distributed among all

applying Newton's second law

         4 fr = (m/4) a

         16 mg = (m) a

         a = 16 g

         a = 16 9.8

         a = 156.8 m / s²

cabinet maximum acceleration does not change

Suppose a van de Graaff generator builds a negative static charge, and a grounded conductor is placed near enough to it so that a 7.0 mu C of negative charge arcs to the conductor. Calculate the number of electrons that are transferred.

Answers

Answer:

 # _electron = 4.375 10¹³ electrons

Explanation:

In this exercise it is indicated that 7.1 μC is transferred, let's use a direct ratio or rule of three. If an electron has a charge of 1.6 10⁻¹⁹ C, how many electrons have a charge of 7.0 10⁻⁶ C

           # _electron = 7.0 10⁻⁶ C (1 electron / 1.6 10⁻¹⁹ C)

           # _electron = 4.375 10¹³ electrons

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s. Calculate
(a) the angular acceleration,
(b) the time required to complete the 60 revolutions,
(c) the time required to reach the 10 rev/s angular speed, and
(d) the number of revolutions from rest until the time the disk reaches the 10 rev/s angular speed.

Answers

Explanation:

Given:

[tex]\omega_0[/tex] = 10 rev/s = [tex]20\pi\:\text{rad/s}[/tex]

[tex]\omega[/tex] = 15 rev/s = [tex]30\pi\:\text{rad/s}[/tex]

[tex]\theta[/tex] = 60 rev = [tex]120\pi\:\text{rads}[/tex]

a) the angular acceleration [tex]\alpha[/tex] is given by

[tex]\alpha = \dfrac{\omega^2 - \omega_0^2}{2\theta}[/tex]

[tex]\:\:\:\:\:\:\:=\dfrac{(30\pi)^2 - (20\pi)^2}{240\pi} = 6.5\:\text{rad/s}^2[/tex]

b) [tex]t = \dfrac{\omega - \omega_0}{\alpha} = \dfrac{30\pi - 20\pi}{6.5} = 4.8\:\text{s}[/tex]

c) [tex]t = \dfrac{\omega - \omega_0}{\alpha}[/tex]

[tex]=\dfrac{20\pi - 0}{6.5} = 9.7\:\text{s}[/tex]

d)[tex]\theta = \frac{1}{2}\alpha t^2[/tex]

[tex]\:\:\:\:\:\:\:=\frac{1}{2}(6.5\:\text{rad/s}^2)(9.7\:\text{s})^2 = 305.8\:\text{rad}[/tex]

[tex]\:\:\:\:\:\:\:= 48.7\:\text{revs}[/tex]

Explain why the flow from the battery increases when the switch is closed. Give the label of the concept(s) that you use from the model of electricity. [

Answers

Answer:

Due to the applied filed the electrons move in a particular direction.

Explanation:

Initially when the switch is off, the free electrons move here and there in any random directions in the conductor with the random speeds called thermal velocity.  So, tat the net flow is almost zero.

When the battery is connected is switch is ON, the random motion of the electrons aligned in a particular direction due to the force applied by the electric filed, so the net flow is not zero it increases and thus the current flow.

A moderate wind accelerates a pebble over a horizontal xy plane with a constant acceleration a with arrow = (4.60 m/s2)i hat + (7.00 m/s2)j. At time t = 0, the velocity is (4.3 m/s)i hat. What are magnitude and angle of its velocity when it has been displaced by 11.0 m parallel to the x axis?

Answers

Explanation:

Given

Acceleration of the pebble is

At t=0, velocity is

considering horizontal motion

[tex]\Rightarrow x=ut+0.5at^2 \\\Rightarrow 11=4.3t+0.5(4.6)t^2\\\Rightarrow 2.3t^2+4.3t-11=0\\\Rightarrow (t-1.4435)(t+3.3131)=0\\\Rightarrow t=1.44\ s\quad [\text{Neglecting negative time}]\\[/tex]

Velocity acquired during this time

[tex]\Rightarrow v_x=4.3+4.6\times 1.44\\\Rightarrow v_x=4.3+6.624\\\Rightarrow v_x=10.92\ s[/tex]

Consider vertical motion

[tex]\Rightarrow v_y=0+7(1.44)\\\Rightarrow v_y=10.08\ m/s[/tex]

Net velocity is

[tex]\Rightarrow v=\sqrt{10.92^2+10.08^2}\\\Rightarrow v=\sqrt{220.85}\\\Rightarrow v=14.86\ m/s[/tex]

Angle made is

[tex]\Rightarrow \tan \theta =\dfrac{10.08}{10.92}\\\\\Rightarrow \tan \theta =0.92307\\\\\Rightarrow \theta =42.7^{\circ}[/tex]

During typical urination, a man releases about 400 mL of urine in about 30 seconds through the urethra, which we can model as a tube 4 mm in diameter and 20 cm long. Assume that urine has the same density as water, and that viscosity can be ignored for this flow.a. What is the flow speed in the urethra?b. If we assume that the fluid is released at the same height as the bladder and that the fluid is at rest in the bladder (a reasonable approximation), what bladder pressure would be necessary to produce this flow? (In fact, there are additional factors that require additional pressure; the actual pressure is higher than this.)

Answers

Answer:

Explanation:

Given:

volume of urine discharged, [tex]V=400~mL=0.4~L=4\times 10^{-4}~m^3[/tex]

time taken for the discharge, [tex]t=30~s[/tex]

diameter of cylindrical urethra, [tex]d=4\times10^{-3}~m[/tex]

length of cylindrical urethra, [tex]l=0.2~m[/tex]

density of urine, [tex]\rho=1000~kg/m^3[/tex]

a)

we have volume flow rate Q:

[tex]Q=A.v[/tex] & [tex]Q=\frac{V}{t}[/tex]

where:

[tex]A=[/tex] cross-sectional area of urethra

[tex]v=[/tex] velocity of flow

[tex]A.v=\frac{V}{t}[/tex]

[tex]\frac{\pi d^2}{4}\times v=\frac{4\times 10^{-4}}{30}[/tex]

[tex]v=\frac{4\times4\times 10^{-4}}{30\times \pi (4\times 10^{-3})^2}[/tex]

[tex]v=1.06~m/s[/tex]

b)

The pressure required when the fluid is released at the same height as the bladder and that the fluid is at rest in the bladder:

[tex]P=\rho.g.l[/tex]

[tex]P=1000\times 9.8\times 0.2[/tex]

[tex]P=1960~Pa[/tex]

A pilot flies her route in two straight-line segments. The displacement vector A for the first segment has a magnitude of 243 km and a direction 30.0o north of east. The displacement vector for the second segment has a magnitude of 178 km and a direction due west. The resultant displacement vector is R = A + B and makes an angle ? with the direction due east. Using the component method, find (a) the magnitude of R and (b) the directional angle ?.
(a) R = km
(b) ? = degrees

Answers

Answer:

a) [tex]R=126Km[/tex]

b) [tex]\theta=74.6\textdegree[/tex]

Explanation:

From the question we are told that:

1st segment

243km at Angle=30

2nd segment

178km West

Resolving to the X axis

[tex]F_x=243cos30+178[/tex]

[tex]F_x=33.44Km[/tex]

Resolving to the Y axis

[tex]F_y=243sin30+178sin0[/tex]

[tex]R=\sqrt{F_y^2+F_x^2}[/tex]

[tex]F_y=121.5Km[/tex]

Therefore

Generally the equation for Directional Angle is mathematically given by

[tex]\theta=tan^{-1}\frac{F_y}{F_x}[/tex]

[tex]\theta=tan^{-1}\frac{121.5}{33.44}[/tex]

[tex]\theta=74.6\textdegree[/tex]

Generally the equation for Magnitude is mathematically given by

[tex]R=\sqrt{F_y^2+F_x^2}[/tex]

[tex]R=\sqrt{33.44^2+121.5^2}[/tex]

[tex]R=126Km[/tex]

A mixture of gaseous reactants is put into a cylinder, where a chemical reaction turns them into gaseous products. The cylinder has a piston that moves in or out, as necessary, to keep constant pressure on the mixture of 1 atm. The cylinder is also submerged in a large insulated water bath. The temperature of the water bath is monitored, and it is determined from this data that 133.0 kJ of heat flows into the system during the reaction. The position of the piston is also monitored, and it is determined from the data that the piston does 241.0 kJ of work on the system during the reaction.

a. Does the temperature of the water bath go up or down?
b. Does the piston move in or out?
c. Does heat flow into or out of the gaseous mixture?
d. How much heat flows?

Answers

I feel like it would be B makes the most sense not sure tho

A device for acclimating military pilots to the high accelerations they must experience consists of a horizontal beam that rotates horizontally about one end while the pilot is seated at the other end. In order to achieve a radial acceleration of 26.5 m/s2 with a beam of length 5.89 m , what rotation frequency is required

Answers

Answer:

The angular acceleration is 4.5 rad/s^2.

Explanation:

Acceleration, a = 26.5 m/s2

length, L = 5.89 m

The angular acceleration is

[tex]\alpha =\frac{a}{L}\\\\\alpha = \frac{26.5}{5.89}=4.5 rad/s^2[/tex]

An object moving along a horizontal track collides with and compresses a light spring (which obeys Hooke's Law) located at the end of the track. The spring constant is 52.1 N/m, the mass of the object 0.250 kg and the speed of the object is 1.70 m/s immediately before the collision.
(a) Determine the spring's maximum compression if the track is frictionless.
?? m
(b) If the track is not frictionless and has a coefficient of kinetic friction of 0.120, determine the spring's maximum compression.
??m

Answers

(a) As it gets compressed by a distance x, the spring does

W = - 1/2 (52.1 N/m) x ²

of work on the object (negative because the restoring force exerted by the spring points in the opposite direction to the object's displacement). By the work-energy theorem, this work is equal to the change in the object's kinetic energy. At maximum compression x, the object's kinetic energy is zero, so

W = ∆K

- 1/2 (52.1 N/m) x ² = 0 - 1/2 (0.250 kg) (1.70 m/s)²

==>   x0.118 m

(b) Taking friction into account, the only difference is that more work is done on the object.

By Newton's second law, the net vertical force on the object is

F = n - mg = 0

where n is the magnitude of the normal force of the track pushing up on the object. Solving for n gives

n = mg = 2.45 N

and from this we get the magnitude of kinetic friction,

f = µn = 0.120 (2.45 N) = 0.294 N

Now as the spring gets compressed, the frictional force points in the same direction as the restoring force, so it also does negative work on the object:

W (friction) = - (0.294 N) x

W (spring) = - 1/2 (52.1 N/m) x ²

==>   W (total) = W (friction) + W (spring)

Solve for x :

- (0.294 N) x - 1/2 (52.1 N/m) x ² = 0 - 1/2 (0.250 kg) (1.70 m/s)²

==>   x0.112 m

For the 0.250 kg object moving along a horizontal track and collides with and compresses a light spring, with a spring constant of 52.1 N/m, we have:

a) The spring's maximum compression when the track is frictionless is 0.118 m.

b) The spring's maximum compression when the track is not frictionless, with a coefficient of kinetic friction of 0.120 is 0.112 m.

 

a) We can calculate the spring's compression when the object collides with it by energy conservation because the track is frictionless:

[tex] E_{i} = E_{f} [/tex]

[tex] \frac{1}{2}m_{o}v_{o}^{2} = \frac{1}{2}kx^{2} [/tex]  (1)

Where:

[tex]m_{o}[/tex]: is the mass of the object = 0.250 kg

[tex]v_{o}[/tex]: is the velocity of the object = 1.70 m/s

k: is the spring constant = 52.1 N/m

x: is the distance of compression

After solving equation (1) for x, we have:

[tex] x = \sqrt{\frac{m_{o}v_{o}^{2}}{k}} = \sqrt{\frac{0.250 kg*(1.70 m/s)^{2}}{52.1 N/m}} = 0.118 m [/tex]

Hence, the spring's maximum compression is 0.118 m.

b) When the track is not frictionless, we can calculate the spring's compression by work definition:

[tex] W = \Delta E = E_{f} - E_{i} [/tex]

[tex] W = \frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2} [/tex]   (2)

Work is also equal to:

[tex] W = F*d = F*x [/tex]     (3)

Where:  

F: is the force

d: is the displacement = x (distance of spring's compression)  

The force acting on the object is given by the friction force:

[tex] F = -\mu N = -\mu m_{o}g [/tex]   (4)

Where:

N: is the normal force = m₀g

μ: is the coefficient of kinetic friction = 0.120

g: is the acceleration due to gravity = 9.81 m/s²

The minus sign is because the friction force is in the opposite direction of motion.

After entering equations (3) and (4) into (2), we have:

[tex]-\mu m_{o}gx = \frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2}[/tex]

[tex]\frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2} + \mu m_{o}gx = 0[/tex]

[tex] \frac{1}{2}52.1 N/m*x^{2} - \frac{1}{2}0.250 kg*(1.70)^{2} + 0.120*0.250 kg*9.81 m/s^{2}*x = 0 [/tex]        

Solving the above quadratic equation for x

[tex] x = 0.112 m [/tex]  

Therefore, the spring's compression is 0.112 m when the track is not frictionless.

Read more here:

https://brainly.com/question/14245799?referrer=searchResultshttps://brainly.com/question/16857618?referrer=searchResults    

I hope it helps you!  

When should a line graph be used?
A. When the independent variable is continuous and does not show a relationship to the dependent variable
B. When the independent variable is composed of categories and does not show a relationship
C. When the independent variable is continuous and shows a casual link to the dependent variable
D. When there is no independent variable

Answers

B. Because the independent show what graph use of categories and relationship

Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors

Answers

Answer:

The incoming white light is composed of light of different colors,

Since these different colors have different refractive indices they are refracted at different angles from one another.

The output light is then separated by color creating a color spectrum.

Since n is greater for shorter wavelengths  (violet colors) these wavelengths are refracted thru the larger angles.

A student measure the length of a laboratory bench with a meter ruler. Which of the following values is the most approbriate way to record the result ? a.4.022m b.4.02m c.4.0m d.4m​

Answers

Answer:

Well a meter stick has increments of a centimeter, and since 1 cm=0.01m he should record it as 4.02m(b)

Explanation:

After a laser beam passes through two thin parallel slits, the first completely dark fringes occur at 19.0 with the original direction of the beam, as viewed on a screen far from the slits. (a) What is the ratio of the distance between the slits to the wavelength of the light illuminating the slits

Answers

Answer:

[tex]$\frac{d}{\lambda} = 1.54$[/tex]

Explanation:

Given :

The first dark fringe is for m = 0

[tex]$\theta_1 = \pm 19^\circ$[/tex]

Now we know for a double slit experiments , the position of the dark fringes is give by :

[tex]$d \sin \theta=\left(m+\frac{1}{2}\right) \lambda$[/tex]

The ratio of distance between the two slits, d to the light's wavelength that illuminates the slits, λ :

[tex]$d \sin \theta=\left(\frac{1}{2}\right) \lambda$[/tex]     (since, m = 0)

[tex]$d \sin \theta=\frac{\lambda}{2}$[/tex]

[tex]$\frac{d}{\lambda} = \frac{1}{2 \sin \theta}$[/tex]

[tex]$\frac{d}{\lambda} = \frac{1}{2 \sin 19^\circ}$[/tex]

[tex]$\frac{d}{\lambda} = 1.54$[/tex]

Therefore, the ratio is [tex]$\frac{1}{1.54}$[/tex]  or 1 : 1.54

Which level of government relies the most on income tax?
OA.
federal
state
OC.
local

Answers

Answer:

Its the Federal government

Federal government tax

Helium gas at 20 °C is confined within a rigid vessel. The gas is then heated until its pressure is doubled. What is the final temperature of the gas?

Answers

Answer:

586 K

Explanation:

Let P is the initial pressure.

Initial temperature, T₁ = 20°C = 293 K

Final pressure, P₂ = 2P

We need to find the final temperature of the gas.

The relation between the pressure and the temperature is as follows

[tex]P\propto T\\\\or\\\\\dfrac{P_1}{P_2}=\dfrac{T_1}{T_2}[/tex]

Put all the values,

[tex]\dfrac{P}{2P}=\dfrac{293}{T_2}\\\\\dfrac{1}{2}=\dfrac{293}{T_2}\\\\T_2=2\times 293\\\\T_2=586\ K[/tex]

So, the final temperature of the gas is 586 K.

PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?

Answers

Explanation:

hope this will help u

mark me as brinalist or vote me

Thankyou

Why is the melting of ice a physical change?
A. It changes the chemical composition of water.
B. It does not change the chemical composition of water.
C. It creates new chemical bonds.
D. It forms new products.
E. It is an irreversible change that forms new products.

Answers

It does not change the chemical composition of water.

* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)​

Answers

Explanation:

Given

Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]

time taken to reach ground is given by

[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]

(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]

From the figure, it can be written

[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]

Considering horizontal motion

[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]

(c) The vertical velocity with which it strikes the ground is given by

[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]

Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]

Explanation:

Given

Ball is projected horizontally from a building of height  

time taken to reach ground is given by

(b) Line joining the point of projection and the point where it hits the ground makes an angle of  

From the figure, it can be written

Considering horizontal motion

(c) The vertical velocity with which it strikes the ground is given by

Thus, the ball strikes with a vertical velocity of

As you move farther away from a source emitting a pure tone, the ___________ of the sound you hear decreases.

Answers

Answer:

frequency

Explanation:

The phenomenon of apparent change in frequency due to the relation motion between the source and the observer is called Doppler's effect.

So, when we move farther, the frequency of sound decreases. The formula of the Doppler's effect is  

[tex]f' = \frac{v + v_o}{v+ v_s} f[/tex]

where, v is the velocity of sound, vs is the velocity of source and vo is the velocity of observer, f is the true frequency. f' is the apparent frequency.

A ball drops from a height, bounces three times, and then rolls to a stop when it reaches the ground the fourth time.

At what point is its potential energy greatest?

At what points does it have zero kinetic energy?

At what point did it have maximum kinetic energy?

Answers

Answer:

Greatest potential: moment before being dropped

Zero Kinetic: when it comes to rest

Greatest Kinetic: moment before first bounce

Explanation:

When you hammer a nail into wood, the nail heats up. 30 Joules of energy was absorbed by a 5-g nail as it was hammered into place. How much does the nail's temperature increase (in °C) during this process? (The specific heat capacity of the nail is 450 J/kg-°C, and round to 3 significant digits.

Answers

Answer:

13.33 K

Explanation:

Given that,

Heat absorbed, Q = 30 J

Mass of nail, m = 5 g = 0.005 kg

The specific heat capacity of the nail is 450 J/kg-°C.

We need to find the increase in the temperature during the process. The heat absorbed in a process is as follows:

[tex]Q=mc\Delta T\\\\\Delta T=\dfrac{Q}{mc}\\\\\Delta T=\dfrac{30}{0.005\times 450}\\\\=13.33\ K[/tex]

So, the increase in temperature is 13.33 K.

If I could lift up to ten tons and I threw a ball the size of an orange but weighed a ton, to the ground, how big of an impact would it make? And could you also show me the equation to solve similar problems myself. Thank you.

Answers

Answer:

The impact force is 98000 N.

Explanation:

mass = 10 tons

The impact force is the weight of the object.

Weight =mass x gravity

W = 10 x 1000 x 9.8

W = 98000 N

The impact force is 98000 N.

The velocity-time graph of a body is given. What quantities are represented by (a) slope of the graph and (b) area under the graph?​

Answers

Answer:

a) acceleration

b) displacement

Explanation:

The velocity-time graph is a graph of velocity versus time. The velocity (m/s) would be on the Y-axis while time (s) would be on the X-axis.

a) The slope of a graph is given by: change in Y-axis/change in X-axis = ΔY/ΔX

In a velocity-time graph, ΔY = change in velocity and ΔX = change in time.

Hence, the slope of a velocity-time graph becomes: change in velocity/change in time.

Also, acceleration = change in velocity/change in time.

Hence, the slope of a velocity-time graph = acceleration.

b) Assuming that the area under a velocity-time graph is a rectangle, the area is given as:

Area of a rectangle = length x breadth

                                  = velocity x time (m/s x s)

Also, displacement = velocity x time (m)

Hence, the area under a velocity-time graph of a body would give the displacement of the body.

An object is moving from north to south what is the direction of the force of friction of the object

Answers

Answer:

North

Explanation:

Friction is a reaction force against the direction of movement. So since the direction of movement is south the friction would be opposite and move north.

Answer:

South To North

Explanation:

Frictional force acts in the direction opposite to the direction of motion of a body. Because the object is moving from north to south, the direction of frictional force is from south to north

Magnets produce _________ in the spaces surrounding them

Answers

Answer:

magnetic field

Explanation:

If a car generates 22 hp when traveling at a steady 100 km/h , what must be the average force exerted on the car due to friction and air resistance

Answers

Answer:

The average force exerted on the car is 590.12 N.

Explanation:

Given that,

The power generated, P = 22 hp = 16405.4 W

Speed of the car, v = 100 km/h = 27.8 m/s

We need to find the average force exerted on the car due to friction and air resistance.

We know that,

Power, P = F v

Where

F is force exerted on the car

[tex]F=\dfrac{P}{v}\\\\F=\dfrac{16405.4}{27.8}\\\\F=590.12\ N[/tex]

So, the average force exerted on the car is 590.12 N.

Other Questions
In the backward chaining technique, used by the inference engine component of an expert system, the expert system starts with the goal, which is the _____ part, and backtracks to find the right solution. Carmen simplifies the expression (4 y + 8 x + 6) + 25 + (4 x + 6 y + 7). The coefficient of the variable y in her simplified answer is 1)Quais So as caractersticas principais do discurso direto 2)escreva um pequeno exemplo de discurso direto (cos2a *cos 4a+ sin 2a*sin 4a)/sin4a Which expression is equivalent to 3 square root of x^5*y which of these is not associated with successful reform movements? a. New organizations b.bureaucracy c. social policy d.Cultural change The formula for the volume of a cylinder is V = srh.Solve v = rn for h, the height of the cylinder. (a) Find the average rate of change of the area of a circle with respect to its radius r as r changes from 2 to each of the following.(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1(b) Find the instantaneous rate of change when r =2. Inaugural address, which statement best describes the persuasive strategy of the speaker? As part of a class project, Claire needs to draw a food chain of the animals she sees in a zoo. Where in the food chain should she place rabbits?A. producersB. primary consumersC. secondary consumersD. tertiary consumers 1. Por que durante la Edad Media, Constantinopla fue una ciudad clave en el comerci a^2+b^2a square + b square ka formula After Hitler came to power in 1933, how was anti-Semitism seen in Germany?O It was against the law.O. It was encouraged and supported.It was subtle and hidden.O It was unrecognized until WWII broke out. How did George Washington die 12. Which of these is more dense?A. 10kg of a block of woodB. 1kg of a block of styrofoamC. 1kg of feathersD. 10kg of feathersE. 10kg of stryfoamF. 1 kg of wood Read the following exchange between Romeo and Juliet from act I of Romeo and Juliet. What does the excerpt reveal about the love between the two young people?ROMEO: (to JULIET) If I profane with my unworthiest handThis holy shrine, the gentle fine is this:My lips, two blushing pilgrims, ready standTo smooth that rough touch with a tender kiss.JULIET: Good pilgrim, you do wrong your hand too much,Which mannerly devotion shows in this;For saints have hands that pilgrims' hands do touch,And palm to palm is holy palmers' kiss.ROMEO: Have not saints lips, and holy palmers too?JULIET: Ay, pilgrim, lips that they must use in prayer. At a certain store, a CD costs $12. If the cost of CDs were graphed as the output, compared to the number ofCDs purchased as input, which of the following would not be true of the graph?A. The set of points would all lie on the same line.B. The set of points would include the origin.C. The set of points would rise from left to right.D. The set of points would not graph a function.Please select the best answer from the choices providedABCD how is the grapes of wrath structed find the domain of f(x)=sec(2x) If a price index rose from 16.2 in 2010 to 22.5 in 2019, what would the inflation rate be over the period