Convert the following base-ten numerals to a numeral in the indicated bases. a. 1059 in base six b. 760 in base nine c. 44 in base two a. 1059 in base six is six

Answers

Answer 1

A The numeral 1059 in base six is written as 2453.

B. To convert the base-ten numeral 1059 to base six, we need to divide it by powers of six and determine the corresponding digits in the base-six system.

Step 1: Divide 1059 by 6 and note the quotient and remainder.

1059 ÷ 6 = 176 with a remainder of 3. Write down the remainder, which is the least significant digit.

Step 2: Divide the quotient (176) obtained in the previous step by 6.

176 ÷ 6 = 29 with a remainder of 2. Write down this remainder.

Step 3: Divide the new quotient (29) by 6.

29 ÷ 6 = 4 with a remainder of 5. Write down this remainder.

Step 4: Divide the new quotient (4) by 6.

4 ÷ 6 = 0 with a remainder of 4. Write down this remainder.

Now, we have obtained the remainder in reverse order: 4313.

Hence, the numeral 1059 in base six is represented as 4313.

Note: The explanation assumes that the numeral in the indicated bases is meant to be the answer for part (a) only.

Learn more about base-ten numerals:

brainly.com/question/24020782

#SPJ11


Related Questions



Find all the real fourth roots of each number. 10,000/81

Answers

The real fourth root of 10,000/81 is 10/3.

To find all the real fourth roots of the number 10,000/81, we can use the concept of taking the fourth root. The fourth root of a number x is denoted as √√x.

The number 10,000/81 can be expressed as [tex](10,000/81)^(1/4)[/tex], representing the fourth root of 10,000/81.

To simplify this expression, we can rewrite 10,000 as [tex]100^2[/tex] and 81 as [tex]3^4[/tex].

Now, we have [tex]((100^2)/(3^4))^(1/4)[/tex]. Applying the properties of exponents, we can simplify further by taking the fourth root of both the numerator and denominator.

Taking the fourth root of [tex]100^2[/tex] gives us 10, and the fourth root of [tex]3^4[/tex] gives us 3.

To know more about real roots, refer here:

https://brainly.com/question/506802

#SPJ11



Verbal


4. When describing sets of numbers using interval notation, when do you use a parenthesis and when do you use a bracket?

Answers

Step-by-step explanation:

A parenthesis is used when the number next to it is NOT part of the solution set

   like :   all numbers up to but not including 3 .    

  Parens are always next to  infinity  when it is part of the solution set .

  A bracket is used when the number next to it is included in the solution set.

Question 1 Write down the first and last names of everyone in your group, including yourself. Question 2 Solve the IVP using an appropriate substitution: dy/dx = cos(x + y), y(0) = π/4
Question 3 Solve by finding an appropriate integrating factor: cos(x) dx + (1 + 1/y) sin (x) dy = 0

Answers

1: The question asks for the first and last names of everyone in your group, including yourself. You can tell any group or personal identity.

2: The question involves solving the initial value problem (IVP) dy/dx = cos(x + y), y(0) = π/4 using an appropriate substitution. The steps include substituting u = x + y, differentiating u with respect to x, substituting the values into the differential equation, separating the variables, integrating both sides, and finally obtaining the solution y = C / (μ sin(x)), where C is the constant of integration.

3: The question asks to solve the differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 by finding an appropriate integrating factor. The steps include determining the coefficients, multiplying the equation by the integrating factor, recognizing the resulting exact differential form, integrating both sides, and solving for y to obtain the solution y = C / (μ(x) sin(x)), where C is the constant of integration.

2. Let's consider the name " X" for the purpose of clarity in referring to the question.

For Question X:

X: Solve the differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 by finding an appropriate integrating factor.

i. Identify the coefficients of dx and dy in the given differential equation. Here, cos(x) and (1 + 1/y) sin(x) are the coefficients.

ii. Compute the integrating factor (IF) by multiplying the entire equation by an appropriate function μ(x) that makes the coefficients exact. In this case, μ(x) = [tex]e^\int\limits^a_b \ (1/y) sin(x) dx.[/tex]

iii. Multiply the differential equation by the integrating factor:

μ(x) cos(x) dx + μ(x) (1 + 1/y) sin(x) dy = 0.

iv. Observe that the left-hand side is now the exact differential of μ(x) sin(x) y. Therefore, we can write:

d(μ(x) sin(x) y) = 0.

v. Integrate both sides of the equation:

∫d(μ(x) sin(x) y) = ∫0 dx.

This simplifies to:

μ(x) sin(x) y = C,

where C is the constant of integration.

vi. Solve for y by dividing both sides of the equation by μ(x) sin(x):

y = C / (μ(x) sin(x)).

Hence, the solution to the given differential equation cos(x) dx + (1 + 1/y) sin(x) dy = 0 using the integrating factor method is y = C / (μ(x) sin(x)).

3. Solve the IVP using an appropriate substitution: dy/dx = cos(x + y), y(0) = π/4

i. Substitute u = x + y. Differentiate u with respect to x: du/dx = 1 + dy/dx.

ii. Substitute the values into the given differential equation: 1 + dy/dx = cos(u).

iii. Rearrange the equation: dy/dx = cos(u) - 1.

iv. Separate the variables: (1/(cos(u) - 1)) dy = dx.

v. Integrate both sides: ∫(1/(cos(u) - 1)) dy = ∫dx.

vi. Use the substitution v = tan(u/2): ∫(1/(cos(u) - 1)) dy = ∫dv.

vii. Integrate both sides: v = x + C.

viii. Substitute u = x + y back into the equation: tan((x + y)/2) = x + C.

Therefore, the solution to the IVP dy/dx = cos(x + y), y(0) = π/4 using the appropriate substitution is tan((x + y)/2) = x + C.

Learn more about IVP visit

brainly.com/question/33188858

#SPJ11

Fifty-five distinct numbers are randomly selected from the first 100 natural numbers.
(a) Prove there must be two which differ by 10, and two which differ by 12.
(b) Show there doesn’t have to be two which differ by 11

Answers

(a) The proof is as follows: By the Pigeonhole Principle, if 55 distinct numbers are selected from a set of 100 natural numbers, there must exist at least two numbers that fall into the same residue class modulo 11. This means there are two numbers that have the same remainder when divided by 11. Since there are only 10 possible remainders modulo 11, the difference between these two numbers must be a multiple of 11. Therefore, there exist two numbers that differ by 11. Similarly, using the same reasoning, there must be two numbers that differ by 12.

(b) To show that there doesn't have to be two numbers that differ by 11, we can provide a counterexample. Consider the set of numbers {1, 12, 23, 34, ..., 538, 549}. This set contains 55 distinct numbers selected from the first 100 natural numbers, and no two numbers in this set differ by 11. The difference between any two consecutive numbers in this set is 11, which means there are no two numbers that differ by 11.

(a) The Pigeonhole Principle is a mathematical principle that states that if more objects are placed into fewer containers, then at least one container must contain more than one object. In this case, the containers represent the residue classes modulo 11, and the objects represent the selected numbers. Since there are more numbers than residue classes, at least two numbers must fall into the same residue class, resulting in a difference that is a multiple of 11.

(b) To demonstrate that there doesn't have to be two numbers that differ by 11, we provide a specific set of numbers that satisfies the given conditions. In this set, the difference between any two consecutive numbers is 11, ensuring that there are no pairs of numbers that differ by 11. This example serves as a counterexample to disprove the claim that there must always be two numbers that differ by 11.

Learn more about the Pigeonhole Principle.

brainly.com/question/31687163

#SPJ11

2) Let V1, V2, W be vector spaces over F. Show that the set Bil(V₁ × V2, W) of bilinear maps is a vector space under point-wise addition/scalar multiplication (ie: given f, g bilinear define ƒ + g to be (f + g)(V1, V2) := f(V1, V2) + g(V1, V2) and similarly for scalar multiplication)

Answers

To show that the set Bil(V₁ × V₂, W) of bilinear maps is a vector space, we need to verify that it satisfies the vector space axioms: closure under addition, closure under scalar multiplication, associativity, commutativity, the existence of an additive identity, and the existence of additive inverses.

Closure under addition:

Let f and g be bilinear maps in Bil(V₁ × V₂, W). We define the point-wise addition of f and g as (f + g)(V₁, V₂) = f(V₁, V₂) + g(V₁, V₂). Since f(V₁, V₂) and g(V₁, V₂) are elements of W, their sum is also an element of W.

Therefore, (f + g)(V₁, V₂) is a bilinear map, satisfying closure under addition.

Closure under scalar multiplication:

Let c be a scalar in the field F, and let f be a bilinear map in Bil(V₁ × V₂, W). We define the scalar multiplication of f by c as (c · f)(V₁, V₂) = c · f(V₁, V₂). Since f(V₁, V₂) is an element of W, multiplying it by c, which is in F, gives another element of W.

Therefore, (c · f)(V₁, V₂) is a bilinear map, satisfying closure under scalar multiplication.

Associativity, commutativity, and distributivity:

Associativity, commutativity, and distributivity of addition and scalar multiplication are inherited from W, which is a vector space.

Existence of an additive identity:

The zero bilinear map, denoted as 0 ∈ Bil(V₁ × V₂, W), is defined as 0(V₁, V₂) = 0 for all (V₁, V₂) ∈ V₁ × V₂. It is straightforward to show that 0 is a bilinear map.

Existence of additive inverses:

For every bilinear map f ∈ Bil(V₁ × V₂, W), the negative bilinear map, denoted as -f, is defined as (-f)(V₁, V₂) = -f(V₁, V₂) for all (V₁, V₂) ∈ V₁ × V₂. It can be shown that -f is also a bilinear map.

By satisfying all the vector space axioms, the set Bil(V₁ × V₂, W) of bilinear maps is indeed a vector space under point-wise addition and scalar multiplication.

Learn more about: vector space

https://brainly.com/question/30531953

#SPJ11

what is the probability that a letterT is drown? a 1 b 1/2 c 3/4 d 1/4

Answers

IF all letters are equally likely to be drawn, the probability of drawing the letter "T" would be 1 out of 26, which can be expressed as 1/26.

To determine the probability of drawing the letter "T," we need additional information about the context or the pool of letters from which the drawing is taking place.

Without that information, it is not possible to determine the exact probability.

I can provide you with some general information on probability and how it applies to this scenario.

The probability of drawing a specific letter from a set of letters depends on the number of favorable outcomes (the number of ways you can draw the letter "T") and the total number of possible outcomes (the total number of letters available for drawing).

If we assume that all letters of the alphabet are equally likely to be drawn, then the probability of drawing the letter "T" would depend on the total number of letters in the alphabet.

In the English alphabet, there are 26 letters.

The options provided (1, 1/2, 3/4, 1/4) do not align with this probability. Therefore, without further context or clarification, it is not possible to determine the correct answer from the given options.

If you can provide more details about the problem or clarify the context, I can help you determine the appropriate probability.

For similar questions on probability

https://brainly.com/question/25839839

#SPJ8

Write step-by-step solutions and justify your answers. 1) [25 Points] Reduce the given Bernoulli's equation to a linear equation and solve it. dy X - 6xy = 5xy³. dx 2) [20 Points] The population, P, of a town increases as the following equation: P(t) 100ekt If P(4) = 130, what is the population size at t = 10? =

Answers

1) The linear equation formed is  [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]

2) The population size at t = 10 is approximately 177.82.

1) To reduce the given Bernoulli's equation to a linear equation, we can use a substitution method.

Given the equation: [tex]\(\frac{dy}{dx} - 6xy = 5xy^3\)[/tex]

Let's make the substitution: [tex]\(v = y^{1-3} = y^{-2}\)[/tex]

Differentiate \(v\) with respect to \(x\) using the chain rule:

[tex]\(\frac{dv}{dx} = \frac{d(y^{-2})}{dx} = -2y^{-3} \frac{dy}{dx}\)[/tex]

Now, substitute [tex]\(y^{-2}\)[/tex] and \[tex](\frac{dy}{dx}\)[/tex] in terms of \(v\) and \(x\) in the original equation:

[tex]\(-2y^{-3} \frac{dy}{dx} - 6xy = 5xy^3\)[/tex]

Substituting the values:

[tex]\(-2v \cdot (-2y^3) - 6xy = 5xy^3\)[/tex]

Simplifying:

[tex]\(4vy^3 - 6xy = 5xy^3\)[/tex]

Rearranging the terms:

[tex]\(4vy^3 - 5xy^3 = 6xy\)[/tex]

Factoring out [tex]\(y^3\)[/tex]:

[tex]\(y^3(4v - 5x) = 6xy\)[/tex]

Now, we have a linear equation: [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]

Solve this linear equation to find the solution for (y).

2) The population equation is given as: [tex]\(P(t) = 100e^{kt}\)[/tex]

Given that [tex]\(P(4) = 130\)[/tex], we can substitute these values into the equation to find the value of (k).

[tex]\(P(4) = 100e^{4k} = 130\)[/tex]

Dividing both sides by 100:

[tex]\(e^{4k} = 1.3\)[/tex]

Taking the natural logarithm of both sides:

[tex]\(4k = \ln(1.3)\)[/tex]

Solving for \(k\):

[tex]\(k = \frac{\ln(1.3)}{4}\)[/tex]

Now that we have the value of \(k\), we can use it to find the population size at t = 10.

[tex]\(P(t) = 100e^{kt}\)\\\(P(10) = 100e^{k \cdot 10}\)[/tex]

Substituting the value of \(k\):

\(P(10) = 100e^{(\frac{\ln(1.3)}{4}) \cdot 10}\)

Simplifying:

[tex]\(P(10) = 100e^{2.3026/4}\)[/tex]

Calculating the value:

[tex]\(P(10) \approx 100e^{0.5757} \approx 100 \cdot 1.7782 \approx 177.82\)[/tex]

Therefore, the population size at t = 10 is approximately 177.82.

Learn more about population size

https://brainly.com/question/30881076

#SPJ11

What data types do your columns contain? what columns are qualitative? what columns are quantitative?

Answers

In a dataset, the data types of columns can be categorized as qualitative (categorical) or quantitative (numerical).

Qualitative columns, also known as categorical columns, contain data that represents categories or groups. These categories are typically non-numeric and describe attributes or characteristics. Examples of qualitative columns include:

1. Names: People's names, product names, or city names.

2. Gender: Categories such as "Male" or "Female."

3. Color: Categories like "Red," "Blue," or "Green."

4. Occupation: Categories such as "Engineer," "Teacher," or "Doctor."

Quantitative columns, on the other hand, contain numeric data that can be measured or counted. These columns represent quantities or numerical values. Examples of quantitative columns include:

1. Age: Numeric values representing a person's age.

2. Income: Numeric values representing a person's income.

3. Temperature: Numeric values representing temperature readings.

4. Sales: Numeric values representing the amount of sales.

It's important to determine the data type of each column in a dataset as it influences the type of analysis or operations that can be performed on the data.

Learn more about qualitative columns here:

brainly.com/question/17303397

#SPJ11

1. Transform the following f(x) using the Legendre's polynomial function (i). (ii). 4x³2x²-3x+8 x32x²-x-3 (2.5 marks) (2.5 marks)

Answers

The transformed function using Legendre's polynomial function is

(i) f(x) = 4P₃(x) + 2P₂(x) - 3P₁(x) + 8P₀(x)

(ii) f(x) = x³P₃(x) + 2x²P₂(x) - xP₁(x) - 3P₀(x)

Legendre's polynomials are a set of orthogonal polynomials often used in mathematical analysis. To transform the given function, we substitute the respective Legendre polynomials for each term.

In step (i), the transformed function is obtained by replacing each term of the original function with the corresponding Legendre polynomial. We have 4x³, which becomes 4P₃(x), 2x², which becomes 2P₂(x), -3x, which becomes -3P₁(x), and the constant term 8, which becomes 8P₀(x).

Similarly, in step (ii), the transformed function is obtained by multiplying each term of the original function by the corresponding Legendre polynomial. We have x³, which becomes x³P₃(x), 2x², which becomes 2x²P₂(x), -x, which becomes -xP₁(x), and the constant term -3, which becomes -3P₀(x).

Legendre polynomials are orthogonal, meaning they have special mathematical properties that make them useful for various applications, including solving differential equations and approximation of functions. They are defined on the interval [-1, 1] and form a complete basis for square-integrable functions on this interval.

Learn more about Legendre's polynomial.

brainly.com/question/32793479

#SPJ11

How much does Doyle need to save each month for $1,800 down payment on his car if he wants to have the down payment in one year

Answers

Answer:

To determine how much Doyle needs to save each month for a $1,800 down payment on his car within one year, we need to consider the number of months in a year and divide the total down payment by that number.

Let's assume there are 12 months in a year.

Down payment amount: $1,800

Number of months: 12

To calculate the monthly savings needed, we divide the down payment amount by the number of months:

Monthly savings needed = Down payment amount / Number of months

Monthly savings needed = $1,800 / 12

Monthly savings needed = $150

Therefore, Doyle needs to save $150 per month to accumulate a $1,800 down payment on his car within one year.

Final answer:

To save $1,800 in one year for a car's down payment, Doyle needs to save $150 each month. This calculation is derived by dividing $1,800 by 12 months.

Explanation:

This is a question about simple division. If Doyle wants to save $1,800 for his car's down payment in one year (which is 12 months), he would simply need to divide the total amount he needs to save ($1,800) by the number of months in one year (12 months). Mathematically, this would look like $1,800 ÷ 12 = $150. So, Doyle needs to save $150 each month for a year to have enough for his car's down payment.

Learn more about Division here:

https://brainly.com/question/2273245

#SPJ2



Find each sum or difference.

[1 2 -5 3 -2 1] + [-2 7 -3 1 2 5 ]

Answers

The sum of the given row vectors (a special case of matrices) [1 2 -5 3 -2 1] and [-2 7 -3 1 2 5] is [-1 9 -8 4 0 6].To find the sum or difference of two vectors, we simply add or subtract the corresponding elements of the vectors.

Given [1 2 -5 3 -2 1] and [-2 7 -3 1 2 5], we can perform element-wise addition:

1 + (-2) = -1

2 + 7 = 9

-5 + (-3) = -8

3 + 1 = 4

-2 + 2 = 0

1 + 5 = 6

Therefore, the sum of [1 2 -5 3 -2 1] and [-2 7 -3 1 2 5] is [-1 9 -8 4 0 6].

In the resulting vector, each element represents the sum of the corresponding elements from the two original vectors. For example, the first element of the resulting vector, -1, is obtained by adding the first elements of the original vectors: 1 + (-2) = -1.

This process is repeated for each element, and the resulting vector represents the sum of the original vectors.

It's important to note that vector addition is performed element-wise, meaning each element is combined with the corresponding element in the other vector. This operation allows us to combine the quantities represented by the vectors and obtain a new vector that summarizes the combined effects.

Learn more about row vectors here:

brainly.com/question/32778794

#SPJ11

Make a cylindrical box with height -x, and radius = 1/2 - x.
Find the maximum volume

Answers

The maximum volume of the cylindrical box is approximately 0.928 cubic units.

The volume of the cylindrical box can be calculated using the formula:

V = πr²h

Given:

Height = -x

Radius = 1/2 - x

Substituting the given values into the volume formula, we get:

V = π(1/2 - x)²(-x)

Simplifying the expression, we have:

V = -π/4 x³ - π/2 x² + π/4 x

The volume function obtained is a cubic function. To find the maximum volume, we need to differentiate the function and set it equal to zero. Then we can verify if the obtained value is a maximum.

Let's differentiate the volume function:

V' = -3π/4 x² - πx + π/4

Setting V' equal to zero:

-3π/4 x² - πx + π/4 = 0

Multiplying the equation by -4/π:

-3x² - 4x + 1 = 0

Solving the quadratic equation, we find the values of x as:

x = (-(-4) ± √((-4)² - 4(-3)(1))) / (2(-3))

= (4 ± √(16 + 12)) / 6

= (4 ± √28) / 6

= (2 ± √7) / 3

Substituting the value (2 + √7) / 3 into the volume equation, we get:

V = -π/4 [(2 + √7) / 3]³ - π/2 [(2 + √7) / 3]² + π/4 [(2 + √7) / 3]

≈ 0.928 cubic units

Therefore, The maximal volume of the cylindrical box is roughly 0.928 cubic units.

Learn more about volume

https://brainly.com/question/28058531

#SPJ11

Your math teacher asks you to calculate the height of the goal post on the football field. You and a partner gather the measurements shown. Find the height of the top of the goal post, rounded to the nearest tenth of a foot.

Answers

The height of the top of the goal post is given as follows:

41.6 ft.

How to obtain the height of the top of the goal post?

The height of the top of the goal post is obtained applying the trigonometric ratios in the context of this problem.

For the angle of 61º, we have that:

20 ft is the adjacent side.x is the opposite side, which is the larger part of the height.

The tangent ratio is given by the division of the opposite side by the adjacent side, hence the value of x is obtained as follows:

tan(61º) = x/20

x = 20 x tangent of 61 degrees

x = 36.1 ft.

Then the total height is obtained as follows:

36.1 + 5.5 = 41.6 ft.

A similar problem, also about trigonometric ratios, is given at brainly.com/question/24349828

#SPJ4

X2−14x+48 how do i solve polynomials like these

Answers

For basic polynomials I would recommend using the factoring method, find factors that multiply up to 48
1 and 48, 2 and 24, 4 and 12, 6 and 8
I know that -6 + -8 = -14 and (-6)(-8) = 48
So we can solve it by setting up a factored expression
(x - 6)(x - 4) so the solutions are 6 and 4

How do I do this equation -5y+22>42

Answers

Answer:

Step-by-step explanation:

To solve the equation -5y + 22 > 42, we'll isolate the variable y.

First, let's subtract 22 from both sides of the inequality to move the constant term to the right side:

-5y + 22 - 22 > 42 - 22

Simplifying, we have:

-5y > 20

Next, we'll divide both sides of the inequality by -5. However, note that when dividing by a negative number, the direction of the inequality sign flips. Thus, we have:

(-5y) / -5 < 20 / -5

Simplifying further:

y < -4

Therefore, the solution to the inequality -5y + 22 > 42 is y < -4.



Simplify each expression.

sinθ secθ tanθ

Answers

The expression sinθ secθ tanθ simplifies to [tex]tan^{2\theta[/tex], which represents the square of the tangent of angle θ.

To simplify the expression sinθ secθ tanθ, we can use trigonometric identities. Recall the following trigonometric identities:

secθ = 1/cosθ

tanθ = sinθ/cosθ

Substituting these identities into the expression, we have:

sinθ secθ tanθ = sinθ * (1/cosθ) * (sinθ/cosθ)

Now, let's simplify further:

sinθ * (1/cosθ) * (sinθ/cosθ) = (sinθ * sinθ) / (cosθ * cosθ)

Using the identity[tex]sin^{2\theta} + cos^{2\theta} = 1[/tex], we can rewrite the expression as:

(sinθ * sinθ) / (cosθ * cosθ) = [tex]\frac { sin^{2\theta} } { cos^{2\theta} }[/tex]

Finally, using the quotient identity for tangent tanθ = sinθ / cosθ, we can further simplify the expression:

[tex]\frac { sin^{2\theta} } { cos^{2\theta} }[/tex] = [tex](sin\theta / cos\theta)^2[/tex] = [tex]tan^{2\theta[/tex]

Therefore, the simplified expression is [tex]tan^{2\theta[/tex].

Learn more about expression here:

https://brainly.com/question/29809800

#SPJ11



Multiply. State any restrictions on the variables.

x²-4 / x²-1 . x+1 / x²+2x

Answers

To multiply the given expression (x²-4) / (x²-1) * (x+1) / (x²+2x), we can simplify it by canceling out common factors and multiplying the remaining terms.

The resulting expression is (x+1) / (x+2). There are no restrictions on the variables.

To multiply the given expression, we start by multiplying the numerators and denominators separately. The numerator of the expression is (x²-4) * (x+1), and the denominator is (x²-1) * (x²+2x).

Expanding the numerator, we have x³ + x² - 4x - 4. Expanding the denominator, we get x⁴ + 2x³ - x² - 2x² - 2x.

Now, we simplify the expression by canceling out common factors. Notice that the terms x²-1 in the numerator and denominator can be canceled out. After canceling, the numerator becomes x³ + x² - 4x - 4, and the denominator becomes x⁴ + 2x³ - 3x² - 2x.

Finally, we have the simplified expression (x³ + x² - 4x - 4) / (x⁴ + 2x³ - 3x² - 2x). There are no restrictions on the variables x; it can take any real value.

Therefore, the simplified expression is (x+1) / (x+2), with no restrictions on the variables.

Learn more about Expression

brainly.com/question/28170201

brainly.com/question/15994491

#SPJ11

The product of the given expression is [tex](x² - 4)(x + 1) / (x² - 1)(x² + 2x).[/tex]

To multiply the given expression, we can follow these steps:

So, the final answer is (x³ + x² - 4x - 4) / (x(x³ + 2x² - x - 2)).

To multiply the given expression, we start by multiplying the numerators together and the denominators together. In this case, the numerator is (x² - 4)(x + 1), and the denominator is (x² - 1)(x² + 2x). Expanding the numerator and the denominator gives us the expanded numerator as (x³ + x² - 4x - 4) and the expanded denominator as (x⁴ + 2x³ - x² - 2x).

In the next step, we simplify the fraction by canceling out common factors. However, upon inspecting the numerator, we can see that it cannot be further simplified. It does not share any common factors that can be canceled out.

On the other hand, the denominator (x⁴ + 2x³ - x² - 2x) can be simplified by factoring out an x from each term. This gives us x(x³ + 2x² - x - 2).

Combining the simplified numerator and denominator, we get the final answer: [tex](x³ + x² - 4x - 4) / (x(x³ + 2x² - x - 2)).[/tex]

In summary, the given expression is multiplied by multiplying the numerators and denominators separately, expanding the resulting expression, and then simplifying by canceling out common factors. The final answer is (x³ + x² - 4x - 4) / (x(x³ + 2x² - x - 2)).

Learn more about  Expression

brainly.com/question/28170201

#SPJ11

he Westchester Chamber of Commerce periodically sponsors public service seminars and programs. Currently, promotional plans are under way for this year. brogram. Advertising alternatives include television, radio, and online. Audience estimates, costs, and maximum media usage limitations are as shown: To ensure a balanced use of advertising media, radio advertisements must not exceed 40% of the total number of advertisernents authorited. In addition, television should account for at least 10% of the total number of advertisements authorized. (a) If the promotional budget is limited to $20,500, how many commercial messages should be run on each medium to maximize total audience contact? If your answer is zero enter " 0 ". What is the alocation of the budget among the three media? What is the total audience reached? What is the allocation of the budget among the three media? What is the total audience reached? (b) By how much would audience contact increase if an extra $100 were allocated to the promotional budget? Round your answer to the nearest whole number, Increase in audience coverage of approximately

Answers

a) The allocated budget for radio advertising is $8,200, for television advertising is $2,050, and for online advertising is $10,250. The maximum number of messages is 41 for radio, 4 for television, and 102 for online, reaching a total audience of 1,000,000.

b) If an extra $100 were allocated to the promotional budget, the audience contact would increase by approximately 1 message.

The first step in solving this problem is to determine the amount of money that can be allocated to each advertising medium based on the given budget.

To do this, we need to calculate the percentages for each medium. Since the budget is $20,500, we can allocate 40% of the budget to radio and 10% to television.

40% of $20,500 is $8,200, which can be allocated to radio advertising.
10% of $20,500 is $2,050, which can be allocated to television advertising.
The remaining amount, $20,500 - $8,200 - $2,050 = $10,250, can be allocated to online advertising.

Next, we need to determine the maximum number of commercial messages that can be run on each medium to maximize total audience contact.

Let's assume that the cost of running a commercial message on radio is $200, on television is $500, and online is $100.

To determine the maximum number of commercial messages, we divide the allocated budget for each medium by the cost of running a commercial message.

For radio: $8,200 (allocated budget) / $200 (cost per message) = 41 messages
For television: $2,050 (allocated budget) / $500 (cost per message) = 4 messages
For online: $10,250 (allocated budget) / $100 (cost per message) = 102.5 messages

Since we cannot have a fraction of a message, we need to round down the number of online messages to the nearest whole number. Therefore, the maximum number of online messages is 102.

The total audience reached can be calculated by multiplying the number of messages by the estimated audience for each medium.

For radio: 41 messages * 10,000 (estimated audience per message) = 410,000
For television: 4 messages * 20,000 (estimated audience per message) = 80,000
For online: 102 messages * 5,000 (estimated audience per message) = 510,000

The total audience reached is 410,000 + 80,000 + 510,000 = 1,000,000.

Now, let's move on to part (b) of the question. We need to determine how much the audience contact would increase if an extra $100 were allocated to the promotional budget.

To do this, we can calculate the increase in audience coverage for each medium by dividing the extra $100 by the cost per message.

For radio: $100 (extra budget) / $200 (cost per message) = 0.5 messages (rounded down to 0)
For television: $100 (extra budget) / $500 (cost per message) = 0.2 messages (rounded down to 0)
For online: $100 (extra budget) / $100 (cost per message) = 1 message

The total increase in audience coverage would be 0 + 0 + 1 = 1 message.

Therefore, if an extra $100 were allocated to the promotional budget, the audience contact would increase by approximately 1 message.

Please note that the specific numbers used in this example are for illustration purposes only and may not reflect the actual values in the original question.

To know more about allocated budget, refer to the link below:

https://brainly.com/question/30266939#

#SPJ11

which brackets placement should be inserted to make the
following equation true 3+4x2-2x3=3

Answers

The correct placement of brackets to make the equation true is 3 + (4 * 2) - (2 * 3) = 3

To make the equation 3 + 4x2 - 2x3 = 3 true, we need to determine the correct placement of brackets to ensure the order of operations is followed.

Given the expression 3 + 4x2 - 2x3, we first perform the multiplications from left to right.

Multiplying 4x2, we have:

3 + (4 * 2) - 2x3 = 3 + 8 - 2x3

Next, we perform the multiplication 2x3:

3 + 8 - (2 * 3) = 3 + 8 - 6

Now, we perform the additions and subtractions from left to right:

3 + 8 - 6 = 11 - 6 = 5

As a result, the right bracket arrangement to make the equation true is: 3 + (4 * 2) - (2 * 3) = 3

Learn more about equation

https://brainly.com/question/32634451

#SPJ11

What is the probabilty of picking a red ball from a basket of 24 different balls

Answers

Answer:

1/24

Step-by-step explanation:

if there if multiple different color balls the odds of getting a red ball is very small

the answer

1/24 as a fraction

Find the solution of the given I.V.P.: y′′+4y=3sin2t,y(0)=2,y′(0)=−1

Answers

The final solution to the IVP is y(t) = 2xcos(2t) + (3/8)xcos(2t) - (1/4)xsin(2t), which can be simplified to y(t) = (25/8)xcos(2t) - (1/4)xsin(2t).

To solve the IVP y′′+4y=3sin2t, we first find the complementary function, which is the solution to the homogeneous equation y′′+4y=0. The characteristic equation associated with this equation is r^2 + 4 = 0, yielding the roots r = ±2i. Thus, the complementary function is of the form y_c(t) = c1xcos(2t) + c2xsin(2t), where c1 and c2 are constants.

Next, we find the particular solution by assuming a solution of the form y_p(t) = Axsin(2t) + Bxcos(2t), where A and B are constants. Differentiating y_p(t) twice and substituting into the differential equation, we obtain -4Axsin(2t) + 4Bxcos(2t) + 4Axsin(2t) + 4Bxcos(2t) = 3sin(2t). This simplifies to 8B*cos(2t) = 3sin(2t). Therefore, B = 3/8.

Using the initial conditions y(0) = 2 and y'(0) = -1, we substitute t = 0 into the general solution y(t) = y_c(t) + y_p(t) to find c1 = 2 and A = -1/4.

The final solution to the IVP is y(t) = 2xcos(2t) + (3/8)xcos(2t) - (1/4)xsin(2t), which can be simplified to y(t) = (25/8)xcos(2t) - (1/4)xsin(2t).

Learn more about homogeneous differential equation : brainly.com/question/14926412

#SPJ11

Struggling to work out the answer

Answers

Answer:

a) £7,500r = £7,920

r = 1.056 = 5.6%

b) £7,500(1.056¹⁰) = £12,933

Let u₁ = 0, u₂ = 1, and y 0 3. Observe that {u₁,u₂} is an orthogonal basis for W = Span {u₁,u₂}. 10 Write y as the sum of a vector in W and a vector orthogonal to W.

Answers

The expression y = y₂(u₂) + (y - y₂(u₂)) represents the decomposition of y into a vector in W and a vector orthogonal to W.

To write y as the sum of a vector in W and a vector orthogonal to W, we need to project y onto W and find the component of y that lies in W.

Since {u₁, u₂} is an orthogonal basis for W, we can use the projection formula:

projW(y) = (y ⋅ u₁) / (u₁ ⋅ u₁) * u₁ + (y ⋅ u₂) / (u₂ ⋅ u₂) * u₂

First, let's calculate the dot products:

u₁ ⋅ u₁ = |u₁|² = 0² + 1² = 1

u₂ ⋅ u₂ = |u₂|² = 1² + 0² = 1

Next, calculate the dot products of y with u₁ and u₂:

y ⋅ u₁ = (0)(y₁) + (1)(y₂) = y₂

y ⋅ u₂ = (0)(y₁) + (1)(y₂) = y₂

Now, substitute these values into the projection formula:

projW(y) = (y₂) / (1) * u₁ + (y₂) / (1) * u₂

= y₂ * u₁ + y₂ * u₂

= (0)(u₁) + y₂(u₂)

= y₂(u₂)

So, we can write y as the sum of a vector in W and a vector orthogonal to W as follows:

y = y₂(u₂) + (y - y₂(u₂))

The vector y₂(u₂) lies in W, and the vector (y - y₂(u₂)) is orthogonal to W.

Know more about vector orthogonal here:

https://brainly.com/question/31971350

#SPJ11

4. Consider the ODE blow: Use a step size of 0.25, where y(0) = 1. dy dx :(1+2x) √y (b) Euler's method of y (0.25). Evaluate the error. (5pt.)

Answers

Using Euler's approach, the error in the estimated value of y(0.25) is approximately 0.09375 or 0.094.

Given the ODE and initial condition as:

dy/dx = (1+2x)√y, y(0) = 1

Using Euler's method, we have to evaluate the value of y(0.25) with a step size of h = 0.25.

Step 1: Calculation of f(x,y)f(x, y) = dy/dx = (1+2x)√y

Step 2: Calculation of y(0.25)

Using Euler's method, we can approximate the value of y at x=0.25 as follows:y1 = y0 + hf(x0, y0)where y0 = 1, x0 = 0 and h = 0.25f(x0, y0) = f(0, 1) = (1+2(0))√1 = 1y1 = 1 + 0.25(1) = 1.25

Therefore, y(0.25) = 1.25.

Step 3: Calculation of the exact value of y(0.25)We can find the exact value of y(0.25) by solving the ODE:

dy/dx = (1+2x)√ydy/√y = (1+2x) dxIntegrating both sides:

∫dy/√y = ∫(1+2x)dx2√y = x^2 + 2x + C, where C is athe constant of integration Since y(0) = 1,

we can solve for C as follows: 2√1 = 0^2 + 2(0) + C => C = 2

Therefore, the exact solution of the ODE is given by:2√y = x^2 + 2x + 2Solving for y, we get:y = [(x^2 + 2x + 2)/2]^2

The exact value of y(0.25) is given by:y(0.25) = [(0.25^2 + 2(0.25) + 2)/2]^2= (2.3125/2)^2= 1.15625

Step 4: Calculation of the errorError = |Exact value - Approximate value|Error = |1.15625 - 1.25| = 0.09375

Therefore, the error in the approximate value of y(0.25) using Euler's method is 0.09375 or 0.094 (approx).

Learn more about Euler's method

https://brainly.com/question/30699690

#SPJ11



Write a polynomial function with the given zeros. x=1,2,3 .

Answers

A polynomial function with zeros at x = 1, 2, and 3 can be expressed as:

f(x) = (x - 1)(x - 2)(x - 3)

To determine the polynomial function, we use the fact that when a factor of the form (x - a) is present, the corresponding zero is a. By multiplying these factors together, we obtain the desired polynomial function.

Expanding the expression, we have:

f(x) = (x - 1)(x - 2)(x - 3)

     = (x² - 3x + 2x - 6)(x - 3)

     = (x² - x - 6)(x - 3)

     = x³ - x² - 6x - 3x² + 3x + 18

     = x³ - 4x² - 3x + 18

Therefore, the polynomial function with zeros at x = 1, 2, and 3 is f(x) = x³ - 4x² - 3x + 18.

To learn more about polynomial function, refer here:

https://brainly.com/question/11298461

#SPJ11

Solve the equation and check the solution a-21/2=11/2

Answers

The solution to the equation[tex](a - 2)/2 = 11/2 a = 13[/tex]. The equation holds true, so the solution [tex]a = 13[/tex]is correct.

To solve the equation [tex](a - 2)/2 = 11/2[/tex], we can begin by isolating the variable on one side of the equation.

Given equation: [tex](a - 2)/2 = 11/2[/tex]

First, we can multiply both sides of the equation by 2 to eliminate the denominators:

[tex]2 * (a - 2)/2 = 2 * (11/2)[/tex]

Simplifying:

[tex]a - 2 = 11[/tex]

Next, we can add 2 to both sides of the equation to isolate the variable "a":

[tex]a - 2 + 2 = 11 + 2[/tex]

Simplifying:

a = 13

Therefore, the solution to the equation [tex](a - 2)/2 = 11/2 is a = 13.[/tex]

To check the solution, we substitute the value of "a" back into the original equation:

[tex](a - 2)/2 = 11/2[/tex]

[tex](13 - 2)/2 = 11/2[/tex]

[tex]11/2 = 11/2[/tex]

The equation holds true, so the solution[tex]a = 13[/tex] is correct.

Learn more about equation

https://brainly.com/question/29657983

#SPJ11

The solution [tex]\(a = 32\)[/tex] satisfies the equation.

To solve the equation [tex]\(\frac{a}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex], we can start by isolating the variable [tex]\(a\)[/tex]

First, we can simplify the equation by multiplying both sides by 2 to eliminate the denominators:

[tex]\(a - 21 = 11\)[/tex]

Next, we can isolate the variable [tex]\(a\)[/tex] by adding 21 to both sides of the equation:

[tex]\(a = 11 + 21\)[/tex]

Simplifying further:

[tex]\(a = 32\)[/tex]

So, the solution to the equation is [tex]\(a = 32\)[/tex].

To check the solution, we substitute [tex]\(a = 32\)[/tex] back into the original equation:

[tex]\(\frac{32}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex]

[tex]\(16 - \frac{21}{2} = \frac{11}{2}\)[/tex]

[tex]\(\frac{32}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex]

Both sides of the equation are equal, so the solution [tex]\(a = 32\)[/tex] satisfies the equation.

Learn more about equation

brainly.com/question/29657983

#SPJ11

2) (10) Sue has a total of $20,000 to invest. She deposits some of her money in an account that returns 12% and the rest in a second account that returns 20%. At the end of the first year, she earned $3460 a) Give the equation that arises from the total amount of money invested. b) give the equation that results from the amount of interest she earned. c) Convert the system or equations into an augmented matrix d) Solve the system using Gauss-Jordan Elimination. Show row operations for all steps e) Answer the question: How much did she invest in each account?

Answers

From the solution, we can determine that Sue invested $1,750 in the account that returns 12% and $18,250 in the account that returns 20%.

a) Let x represent the amount of money invested in the account that returns 12% and y represent the amount of money invested in the account that returns 20%. The equation that arises from the total amount of money invested is:

x + y = 20,000

b) The interest earned from the account that returns 12% is given by 0.12x, and the interest earned from the account that returns 20% is given by 0.20y. The equation that arises from the amount of interest earned is:

0.12x + 0.20y = 3,460

c) Converting the system of equations into an augmented matrix:

[1 1 | 20,000]

[0.12 0.20 | 3,460]

d) Solving the system using Gauss-Jordan Elimination:

Row 2 - 0.12 * Row 1:

[1 1 | 20,000]

[0 0.08 | 1,460]

Divide Row 2 by 0.08:

[1 1 | 20,000]

[0 1 | 18,250]

Row 1 - Row 2:

[1 0 | 1,750]

[0 1 | 18,250]

Know more about augmented matrix here:

https://brainly.com/question/30403694

#SPJ11

(a) Find the work done by a force 5 i^ +3 j^ +2 k^ acting on a body which moves from the origin to the point (3,−1,2). (b) Given u =− i^ +2 j^ −1 k^and v = 2l −1 j^​ +3 k^ . Determine a vector which is perpendicular to both u and v .

Answers

a) The work done by the force F = 5i + 3j + 2k on a body moving from the origin to the point (3, -1, 2) is 13 units.

b) A vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k is -6i - 7j - 3k.

a) The work done by a force F = 5i + 3j + 2k acting on a body that moves from the origin to the point (3, -1, 2) can be determined using the formula:

Work done = ∫F · ds

Where F is the force and ds is the displacement of the body. Displacement is defined as the change in the position vector of the body, which is given by the difference in the position vectors of the final point and the initial point:

s = rf - ri

In this case, s = (3i - j + 2k) - (0i + 0j + 0k) = 3i - j + 2k

Therefore, the work done is:

Work done = ∫F · ds = ∫₀ˢ (5i + 3j + 2k) · (ds)

Simplifying further:

Work done = ∫₀ˢ (5dx + 3dy + 2dz)

Evaluating the integral:

Work done = [5x + 3y + 2z]₀ˢ

Substituting the values:

Work done = [5(3) + 3(-1) + 2(2)] - [5(0) + 3(0) + 2(0)]

Therefore, the work done = 13 units.

b) To find a vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k, we can use the cross product of the two vectors:

u × v = |i j k|

|-1 2 -1|

|2 -1 3|

Expanding the determinant:

u × v = (-6)i - 7j - 3k

Therefore, a vector that is perpendicular to both u and v is given by:

u × v = -6i - 7j - 3k.

Learn more about force

https://brainly.com/question/30507236

#SPJ11

b.1 determine the solution of the following simultaneous equations by cramer’s rule. 1 5 2 5 x x x x 2 4 20 4 2 10

Answers

By applying Cramer's rule to the given system of simultaneous equations, The solution is x = 2, y = 3, and z = 4.

Cramer's rule is a method used to solve systems of linear equations by evaluating determinants. In this case, we have three equations with three variables:

1x + 5y + 2z = 5

x + 2y + 10z = 4

2x + 4y + 20z = 10

To apply Cramer's rule, we first need to find the determinant of the coefficient matrix, D. The coefficient matrix is obtained by taking the coefficients of the variables:

D = |1 5 2|

   |1 2 10|

   |2 4 20|

The determinant of D, denoted as Δ, is calculated by expanding along any row or column. In this case, let's expand along the first row:

Δ = (1)((2)(20) - (10)(4)) - (5)((1)(20) - (10)(2)) + (2)((1)(4) - (2)(2))

  = (2)(20 - 40) - (5)(20 - 20) + (2)(4 - 4)

  = 0 - 0 + 0

  = 0

Since Δ = 0, Cramer's rule cannot be directly applied to solve for x, y, and z. This indicates that either the system has no solution or infinitely many solutions. To further analyze, we calculate the determinants of matrices obtained by replacing the first, second, and third columns of D with the constant terms:

Dx = |5 5 2|

    |4 2 10|

    |10 4 20|

Δx = (5)((2)(20) - (10)(4)) - (5)((10)(20) - (4)(2)) + (2)((10)(4) - (2)(2))

    = (5)(20 - 40) - (5)(200 - 8) + (2)(40 - 4)

    = -100 - 960 + 72

    = -988

Dy = |1 5 2|

    |1 4 10|

    |2 10 20|

Δy = (1)((2)(20) - (10)(4)) - (5)((1)(20) - (10)(2)) + (2)((1)(10) - (2)(4))

    = (1)(20 - 40) - (5)(20 - 20) + (2)(10 - 8)

    = -20 + 0 + 4

    = -16

Dz = |1 5 5|

    |1 2 4|

    |2 4 10|

Δz = (1)((2)(10) - (4)(5)) - (5)((1)(10) - (4)(2)) + (2)((1)(4) - (2)(5))

    = (1)(20 - 20) - (5)(10 - 8) + (2)(4 - 10)

    = 0 - 10 + (-12)

    = -22

Using Cramer's rule, we can find the values of x, y, and z:

x = Δx / Δ = (-988) / 0 = undefined

y = Δy / Δ = (-16) / 0 = undefined

z = Δz / Δ

Learn more about cramer's rule here:

https://brainly.com/question/18179753

#SPJ11

Find y as a function of x if y′′′+16y′=0 y(0)=0,y′(0)=20,y′(0)=−32. y(x)=

Answers

The final solution of function of x is : y(x) = 5 sin 4x + 1.6 cos 4x. Given the differential equation is `y′′′+16y′=0` with initial conditions `y(0)=0, y′(0)=20, y′(0)=−32`.

We need to find the value of y(x).Step-by-step explanation:Given the differential equation `y′′′+16y′=0`On integrating both sides, we get;y′′+16y= C1 where C1 is an arbitrary constant.

Again differentiating the above equation with respect to x, we get;y′′′+16y′= 0On integrating both sides, we get;y′′+16y= C2where C2 is another arbitrary constant.On applying the initial condition `y(0) = 0`, we get;C2 = 0 Hence, the differential equation can be rewritten as; y′′+16y=0On integrating both sides, we get;y′= C3 cos 4x + C4 sin 4xwhere C3 and C4 are arbitrary constants.

Again integrating the above equation with respect to x, we get;y= C5 sin 4x + C6 cos 4xwhere C5 and C6 are other arbitrary constants.On applying the initial condition `y′(0) = 20`, we get;C5 = 5Hence, the differential equation can be rewritten as;y = 5 sin 4x + C6 cos 4xOn applying the initial condition `y′′(0) = −32`, we get;-20C6 = −32C6 = 1.6 Hence, the final solution is;y(x) = 5 sin 4x + 1.6 cos 4x

Learn more about differential equation : https://brainly.com/question/14620493

#SPJ11

Other Questions
2. Rewrite log1112 using the change of base formula a) log12/log11 b) log11/log112 c) log(12/11) d) log(11/12) Which of the following would be more considered a good?Group of answer choicesAutomobilesAirplane rideTeachingCall Centre 4,5,6,8,9,9,10,12,12,12,17,17,18,18 Q17.Briefly describe the functional assessment tools for assessing older people. Include in your response: Assessment of patients with gait instability and fall risk Screening for cognitive impairment. 1. A circular plate (radius 2R) with a circular hole (radius R) has a mass M. If the plate is initially placed with a small angle on a horizontal plane as shown on the right, show that the plate shows a simple harmonic motion and then, find the frequency of the motion. The plate is rolling without sliding on the plane. (10 pts) P Please include Units, thanks a lot!5 : Mr. Fantastic can stretch his body to incredible lengths, just like a spring. He reaches out and catches an anti-tank missile with a mass of 26.8 kilograms traveling at 320 meters per second. Hes able to stop the missile, but not before he stretches out to a length of 7.6 meters.A: What is Mr. Fantastics spring constant?B: How much force must the missiles engine produce if it remains stationary while Mr. Fantastic is holding it? Explain your reasoning.C: How much energy does the missile have while Mr. Fantastic is holding it? What kind of energy is this?6 : Mimas has a mass of 3.75 1019 kilograms and orbits Saturn at an average distance of 185,539 kilometers. It takes Mimas about 0.94 days to complete one orbit.A: Use the orbit of Mimas to calculate the mass of Saturn.B: What is the gravitational force between Mimas and Saturn?C: How much work does Saturn do on Mimas over the course of one complete orbit? Over an orbit and a half? Assume Mimas has a circular orbit and explain your reasoning. Find the least squares solutions to [ 1 3 5 [ 31 1 0 x= 51 1 2 71 3 3 ] 3 ] Please explain this quote from Don Quixote."All these storms falling upon us are signs that the weather will soon clear and that things will go well for us; for neither good nor bad can last forever, and from this we can deduce that since this bad spell has lasted for a long time, a good one cannot be far away." 9. The wheels of semi tractor-trailer cab have a stiffness (k) of 2.52 x 104 N/m. When hitting a small bump, the wheels' suspension system oscillates with a period of 3.39 sec. Find the mass of the cab. 10. A particular jet liner has a cabin noise level of 10-5.15 W/m. What is this intensity in decibels? (Caution. The noise level value is not in scientific notation. Scientific notation does not accept non-whole number exponents. That is, handle it in exponent format instead of scientific notation. For example, you can express the value, "10-5.15, , as "104-5.15)" or whatever format your calculator uses for general exponential expressions.] 8. What best distinguishes perfect competition from monopolistic competition?a.One has barriers to entry; the other does not.b. One contains only large firms; the other does not.C.One is sanctioned by the government; the other is not.d. One has product differentiation; the other does not. Why were there fewer survivors at the end of Round Three? What is the smallest separation in m between two slits that will produce a second-order maximum for 775 nm red light? This is a Multiple Choice Question. Select the ONE answer you think is correct.When crusaders took their vow (oath)to journey to the Holy Sepulchre, theyswore the oath to God alone.swore the oath to the Pope, their local secular lord,and God.swore the oath to the Pope and God. Find the direction of theresultant vector. 0 = [ ? ](-6, 16)WV(13,-4)Round to the nearest hundredth 1. Find the maxima and minima of f(x)=x- (15/2)x2 + 12x +7 in the interval [-10,10] using Steepest Descent Method. 2. Use Matlab to show that the minimum of f(x,y) = x4+y2 + 2xy is 0. What are the pros and cons of Traditional TeachingStrategies? In the equation:work = applied force x displacementIs "work" net work? Or just the work of the one appliedforce? Your answer is partially correct. You are given a number of 32 resistors, each capable of dissipating only 1.9 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a 32 resistance that is capable of dissipating at least 9.2 W? Number i 211 Units No units Save for Later Attempts: 1 of 3 used Submit Answer 1 Mass=60kg Velocity=0.10m/s height=1.16m 9=0.99M15 2. Mass= 60kg Velocity 0. M/S accitration=1.04MIS height=2.89M 3. mass= . Velocity 20.11M/S height=4.02M allleration = 1.21M/S 4. Mass=60kg. Finding entiny Velocity 0.52M/S height=5.36M accleration = 1.68M/S velocity 0.6OMIS height = 5.73M accleration=1.76 MIS 5. Mass=60kg Every project manager must adhere to the 12 project management principles as listed in the 7th PMBOK for successful completion of a project and to ensure that the project is in the right direction. The application of these principles are crucial to obtain positive and successful project outcomes.As a project manager, describe Adaptability and Resilience project management principle from the 12 principles that is critical on how do you manage project and respond during the current COVID-19 pandemic for successful project outcomes (20marks).