Define two functions f,g:R→R as follows. f(x)=3x+1 g(x)=x^2 Please write BOTH f∘g∘f^−1(x) and g∘f^−1∘f(x).

Answers

Answer 1

Given the functions f(x) = 3x + 1 and g(x) = x^2, we are asked to find the compositions f∘g∘f^−1(x) and g∘f^−1∘f(x). Therefore the correct answer is f∘g∘f^−1(x) = (x - 1)^2 / 9 g∘f^−1∘f(x) = x.

To find f∘g∘f^−1(x), we will follow these steps:


1. Find f^−1(x): To find the inverse function f^−1(x), we need to solve the equation f(x) = y for x.
  y = 3x + 1
  x = (y - 1) / 3

  So, the inverse function of f(x) is f^−1(x) = (x - 1) / 3.

2. Now, substitute f^−1(x) into g(x) to get g∘f^−1(x):
  g∘f^−1(x) = g(f^−1(x))

  g(f^−1(x)) = g((x - 1) / 3)

  Substituting g(x) = x^2, we get g((x - 1) / 3) = ((x - 1) / 3)^2

  Simplifying, we have ((x - 1) / 3)^2 = (x - 1)^2 / 9

  Therefore, f∘g∘f^−1(x) = (x - 1)^2 / 9.

Next, let's find g∘f^−1∘f(x):

1. Find f(x): f(x) = 3x + 1.

2. Find f^−1(x): We have already found f^−1(x) in the previous step as (x - 1) / 3.

3. Now, substitute f(x) into f^−1(x) to get f^−1∘f(x):
  f^−1∘f(x) = f^−1(f(x))

  f^−1(f(x)) = f^−1(3x + 1)

  Substituting f^−1(x) = (x - 1) / 3, we get f^−1(3x + 1) = (3x + 1 - 1) / 3 = x.

  Therefore, g∘f^−1∘f(x) = x.

To know more about "Inverse Function":

https://brainly.com/question/11735394

#SPJ11


Related Questions

Binomial Distribution is a Select one:

a. Mixed distribution

b Discrete distribution

c. Not a distribution at all

d. Continuous distribution

Answers

b. Discrete distribution. The Binomial Distribution is a discrete distribution. It is used to model the probability of obtaining a certain number of successes in a fixed number of independent Bernoulli trials, where each trial can have only two possible outcomes (success or failure) with the same probability of success in each trial.

The distribution is characterized by two parameters: the number of trials (n) and the probability of success in each trial (p). The random variable in a binomial distribution represents the number of successes, which can take on integer values from 0 to n.

The probability mass function (PMF) of the binomial distribution gives the probability of obtaining a specific number of successes in the given number of trials. The PMF is defined by the formula:

P(X = k) = (n choose k) * p^k * (1 - p)^(n - k)

where n choose k is the binomial coefficient, p is the probability of success, and (1 - p) is the probability of failure.

Since the binomial distribution deals with discrete outcomes and probabilities, it is considered a discrete distribution.

Learn more about probability here

https://brainly.com/question/251701

#SPJ11

the table below gives information about the meals chosen by 45 people in the restaurant. a) complete the table. b) how many people had pizza? c) how many people has salad or fruit?

Answers

b.)The number of people that has pizza would be = 22.

c.) The number of people that has salad or fruit = 6.

How to calculate the number of people who had pizza?

To calculate the number of people that had pizza, the following steps should be taken as follows:

The total number of people that are at the restaurant = 45 people.

For question b.)

From the given table, total number of people that had pizza = 22

That is;

The number of people that are pizza and fruit = 12-(6+3) = 3

The number of people that are pizza and yogurt = 5

The number of people that are pizza and ice cream = 22-(5+3) = 14

The total number of people that are pizza = 14+5+3 = 22

For question c.)

The total number of people that ate salad or fruit = 6 people.

Learn more about addition here:

https://brainly.com/question/30458444

#SPJ1

Verify (cos2x+sin2x)^2=1+sin4x

Answers

Answer:

See below for proof.

[tex] \\ [/tex]

Explanation:

To verify the given equality, we will have to apply several trigonometric identities.

Given equality:

[tex] \sf \big( cos(2x) + sin(2x) \big)^2 = 1 + sin(4x) [/tex]

[tex] \\ [/tex]

First, we will expand the left side of the equality using the following identity:

[tex] \sf (a + b)^2 = a^2 + 2ab + b^2 [/tex]

[tex] \\ [/tex]

We get:

[tex] \sf \big( \underbrace{\sf cos(2x)}_{a} + \overbrace{\sf sin(2x)}^{b} \big)^2 = cos^2(2x) + 2cos(2x)sin(2x) + sin^2(2x) \\ \\ \\ \sf = cos^2(2x) + sin^2(2x) + 2cos(2x)sin(2x) [/tex]

[tex] \\ [/tex]

We can simplify this expression applying the Pythagorean Identity.

[tex] \red{\begin{gathered}\begin{gathered} \\ \boxed { \begin{array}{c c} \\ \blue{ \: \sf{\boxed{ \sf Pythagorean \: Identity \text{:}}}} \\ \\ \sf{ \diamond \: cos^2(\theta) + sin^2(\theta) = 1 } \\ \end{array}}\\\end{gathered} \end{gathered}} [/tex]

[tex] \\ [/tex]

Letting θ = 2x, we get:

[tex] \sf \underbrace{\sf cos^2(2x) + sin^2(2x)}_{= 1} + 2cos(2x)sin(2x) = 1 + 2cos(2x)sin(2x) [/tex]

[tex] \\ [/tex]

Now, apply the Sine Double Angle Identity to simplify the rest of the expression:

[tex] \sf \blue{\begin{gathered}\begin{gathered} \\ \boxed { \begin{array}{c c} \\ \red{ \: \sf{\boxed{ \sf Sine \: Double \: Angle \: Identity \text{:}}}} \\ \\ \sf{ \diamond \: sin(2\theta) = 2cos(\theta)sin(\theta)} \\ \end{array}}\\\end{gathered} \end{gathered}} [/tex]

[tex] \\ [/tex]

Let θ = 2x and simplify:

[tex] \sf 1 + \underbrace{\sf 2cos(2x)sin(2x)}_{= sin(2 \times 2x )} = 1 + sin(2 \times 2x) = \boxed{\boxed{\sf 1 + sin(4x)}} [/tex]

[tex] \\ \\ \\ \\ [/tex]

▪️Learn more about trigonometric identities here:

↣https://brainly.com/question/17108481

The motion of a particle is defined by the function x = at³-bt² - ct + d where x is in centimeters and t is in seconds Determine the position of the particle when its acceleration is 12.5m/s² if a = 2.3, b = 3.1, c=5.2, and d = 16? Round off the final answer to two decimal places.

Answers

The position of the particle when its acceleration is 12.5 m/s² is approximately -2.633 cm.

The calculation step by step to determine the position of the particle when its acceleration is 12.5 m/s².

Given:

x = at³ - bt² - ct + d

a = 2.3

b = 3.1

c = 5.2

d = 16

acceleration = 12.5 m/s²

To find the position, we need to find the time value at which the particle's acceleration is 12.5 m/s² and then substitute that time value into the equation to calculate the position.

Step 1: Find the time value (t) when the acceleration is 12.5 m/s².

Given acceleration = d²x/dt² = 12.5 m/s²

12.5 = 2a

12.5 = 2(2.3)

12.5 = 4.6

Step 2: Substitute the time value (t) into the position equation x = at³ - bt² - ct + d.

x = (2.3)t³ - (3.1)t² - (5.2)t + 16

Substitute t = 4.6 into the equation:

x = (2.3)(4.6)³ - (3.1)(4.6)² - (5.2)(4.6) + 16

Calculating the expression:

x ≈ 12.227 - 6.940 - 23.92 + 16

x ≈ -2.633

Therefore, when the acceleration is 12.5 m/s², the position of the particle is approximately -2.633 centimeters.

Learn more about position of the particle visit

brainly.com/question/29053545

#SPJ11

(a) [8 Marks] Establish the frequency response of the series system with transfer function as specified in Figure 1, with an input of x(t) = cos(t). (b) [12 Marks] Determine the stability of the connected overall system shown in Figure 1. Also, sketch values of system poles and zeros and explain your answer with terms of the contribution made by the poles and zeros to overall system stability. x(t) 8 s+2 s² + 4 s+1 s+2 Figure 1 Block diagram of series system 5+

Answers

The collection gadget with the given transfer function and an enter of x(t) = cos(t) has a frequency response given through Y(s) = cos(t) * [tex][8(s+1)/(s+2)(s^2 + 4)][/tex]. The gadget is solid due to the poor real part of the pole at s = -2. The absence of zeros in addition contributes to system stability.

To set up the frequency reaction of the collection system, we want to calculate the output Y(s) inside the Laplace domain given the input X(s) = cos(t) and the transfer function of the device.

The switch function of the series machine, as proven in Figure 1, is given as H(s) = [tex]8(s+1)/(s+2)(s^2 + 4).[/tex]

To locate the output Y(s), we multiply the enter X(s) with the aid of the transfer feature H(s) and take the inverse Laplace remodel:

Y(s) = X(s) * H(s)

Y(s) = cos(t) * [tex][8(s+1)/(s+2)(s^2 + 4)][/tex]

Next, we want to determine the stability of the overall gadget. The stability is determined with the aid of analyzing the poles of the switch characteristic.

The poles of the transfer feature H(s) are the values of s that make the denominator of H(s) equal to 0. By putting the denominator same to zero and solving for s, we are able to find the poles of the machine.

S+2 = 0

s = -2

[tex]s^2 + 4[/tex]= 0

[tex]s^2[/tex] = -4

s = ±2i

The machine has one actual pole at s = -2 and complicated poles at s = 2i and s = -2i. To investigate balance, we observe the actual parts of the poles.

Since the real part of the pole at s = -2 is poor, the system is stable. The complicated poles at s = 2i and s = -2i have 0 real elements, which additionally contribute to stability.

Sketching the poles and zeros at the complex plane, we see that the machine has an unmarried real pole at s = -2 and no 0. The pole at s = -2 indicates balance because it has a bad real component.

In conclusion, the collection gadget with the given transfer function and an enter of x(t) = cos(t) has a frequency response given through Y(s) = cos(t) *[tex][8(s+1)/(s+2)(s^2 + 4)][/tex]. The gadget is solid due to the poor real part of the pole at s = -2. The absence of zeros in addition contributes to system stability.

To know more about the Laplace domain,

https://brainly.com/question/33309903

#SPJ4

The correct question is:

" Establish the frequency response of the series system with transfer function as specified in Figure 1, with an input of x(t) = cos(t). Determine the stability of the connected overall system shown in Figure 1. Also, sketch values of system poles and zeros and explain your answer in terms of the contribution made by the poles and zeros to overall system stability. x(t) 8 5 s+1 s+2 Figure 1 Block diagram of series system s+2 S² +4"

How many combinations without repetition are possible if n = 6 and r = 3?
20
56
27
18

Answers

Answer:

The correct answer is 20.

Step-by-step explanation:

The number of combinations without repetition, also known as "n choose r" or the binomial coefficient, can be calculated using the formula:

C(n, r) = n! / (r! * (n-r)!)

where "!" denotes the factorial function.

Let's calculate the number of combinations when n = 6 and r = 3:

C(6, 3) = 6! / (3! * (6-3)!)

= 6! / (3! * 3!)

= (6 * 5 * 4) / (3 * 2 * 1)

= 20

Therefore, when n = 6 and r = 3, there are 20 possible combinations without repetition.

Answer:

A) 20

Step-by-step explanation:

[tex]\displaystyle _nC_r=\frac{n!}{r!(n-r)!}\\\\_6C_3=\frac{6!}{3!(6-3)!}\\\\_6C_3=\frac{6!}{3!\cdot3!}\\\\_6C_3=\frac{6*5*4}{3*2*1}\\\\_6C_3=\frac{120}{6}\\\\_6C_3=20[/tex]



Find the indicated measure. Round to the nearest tenth.

The area of a circle is 52 square inches. Find the diameter.

Answers

The diameter of the circle is approximately 8.2 inches.

To find the diameter of a circle given its area, we can use the formula:

A =π[tex]r^2[/tex]

where A represents the area of the circle and r represents the radius. In this case, we are given the area of the circle, which is 52 square inches.

We can rearrange the formula to solve for the radius:

r = √(A/π)

Plugging in the given area, we have r = √(52/π). To find the diameter, we double the radius:

diameter = 2r

               = 2 * √(52/π)

               = 2 * √(52/3.14159)

               = 8.231 inches.

Rounding to the nearest tenth, we get a diameter of approximately 8.2 inches.

To learn more about diameter, refer here:

https://brainly.com/question/32968193

#SPJ11  



Verify the identity cscθ / secθ=cotθ . What is the domain of validity?

Answers

The identity cscθ / secθ = cotθ can be verified as true. The domain of validity for this identity is all real numbers except for the values of θ where secθ = 0.

To verify the identity cscθ / secθ = cotθ, we need to simplify the left-hand side (LHS) and compare it to the right-hand side (RHS).

Starting with the LHS:

cscθ / secθ = (1/sinθ) / (1/cosθ) = (1/sinθ) * (cosθ/1) = cosθ/sinθ = cotθ

Now, comparing the simplified LHS (cotθ) to the RHS (cotθ), we see that both sides are equal, confirming the identity.

Regarding the domain of validity, we need to consider any restrictions on the values of θ that make the expression undefined. In this case, the expression involves secθ, which is the reciprocal of cosθ. The cosine function is undefined at θ values where cosθ = 0. Therefore, the domain of validity for this identity is all real numbers except for the values of θ where secθ = 0, which are the points where cosθ = 0.

These points correspond to θ values such as 90°, 270°, and so on, where the tangent function is undefined.

To know more about  domain of validity refer here:

https://brainly.com/question/1407587

#SPJ11

You randomly choose one of the tiles. Without replacing the first tile, you randomly choose a second tile. Find the probability of the compound event. Write your answer as a fraction or percent rounded to the nearest tenth.



The probability of choosing a green tile and then a blue tile is
(please help me)

Answers

Answer:

explain it better

Step-by-step explanation:

The line L 1 ​ has an equation r 1 ​ =<6,4,11>+n<4,2,9> and the line L 2 ​ has an equation r 2 ​ =<−3,10,2>+m<−5,8,0> Different values of n give different points on line L 1 ​ . Similarly, different values of m give different points on line L 2 ​ . If the two lines intersect then r 1 ​ =r 2 ​ at the point of intersection. If you can find values of n and m.which satisfy this condition then the two lines intersect. Show the lines intersect by finding these values n and m hence find the point of intersection. The point of intersection is (?,?,?)

Answers

The two lines intersect at the point (-8, 18, 2).

The two given lines are given by the equations: r1 = <6, 4, 11> + n <4, 2, 9>r2 = <-3, 10, 2> + m <-5, 8, 0>

where n and m are the parameters. Two lines will intersect at the point where they coincide. That is, at the intersection point, r1 = r2.

We can equate r1 and r2 to find the values of m and n. <6, 4, 11> + n <4, 2, 9> = <-3, 10, 2> + m <-5, 8, 0>Equating the x-coordinates, we get:

6 + 4n = -3 - 5m Equation 1

Equating the y-coordinates, we get:4 + 2n = 10 + 8m Equation 2

Equating the z-coordinates, we get:11 + 9n = 2

Equation 3

Solving equation 3 for n, we get:n = -1

We can substitute n = -1 in equations 1 and 2 to find m.

From equation 1:6 + 4(-1) = -3 - 5mm = 1

Substituting n = -1 and m = 1 in the equation of line 1, we get:r1 = <6, 4, 11> - 1 <4, 2, 9> = <2, 2, 2>

Substituting n = -1 and m = 1 in the equation of line 2, we get:

r2 = <-3, 10, 2> + 1 <-5, 8, 0> = <-8, 18, 2>

Hence, the answer is (-8, 18, 2).

Learn more about equation at

https://brainly.com/question/27438433

#SPJ11

A portfolio is 70% invested in an index fund and 30% in a risk-free asset. The index fund has a standard deviation of returns of 15%. Calculate the standard deviation for the total portfolio returns.

Answers

The standard deviation for the total portfolio returns can be calculated using the weighted average of the standard deviations of the index fund and the risk-free asset. The standard deviation for the total portfolio returns is 10.5%.


The standard deviation of a portfolio measures the variability or risk associated with the portfolio's returns. In this case, the portfolio is 70% invested in an index fund (with a standard deviation of returns of 15%) and 30% invested in a risk-free asset.

To calculate the standard deviation of the total portfolio returns, we use the weighted average formula:

Standard deviation of portfolio returns = √[(Weight of index fund * Standard deviation of index fund)^2 + (Weight of risk-free asset * Standard deviation of risk-free asset)^2 + 2 * (Weight of index fund * Weight of risk-free asset * 1Covariance  between index fund and risk-free asset)]

Since the risk-free asset has a standard deviation of zero (as it is risk-free), the second term in the formula becomes zero. Additionally, the covariance between the index fund and the risk-free asset is also zero because they are independent. Therefore, the formula simplifies to:

Standard deviation of portfolio returns = Weight of index fund * Standard deviation of index fund

Plugging in the values, we get:

Standard deviation of portfolio returns = 0.70 * 15% = 10.5%

Hence, the standard deviation for the total portfolio returns is 10.5%. This means that the total portfolio's returns are expected to have a variability or risk represented by this standard deviation.

Learn more about standard deviation here : brainly.com/question/13498201

#SPJ11

Find dt/dw using the appropriate Chain Rule. Function Value w=x^2+y^2t=2 x=2t,y=5t dw/dt​= Evaluate dw/dt at the given value of t.

Answers

Using the Chain Rule, we find that dt/dw is equal to 1/58.

To find dt/dw using the Chain Rule, we'll start by expressing t as a function of w and then differentiate with respect to w.

w = x² + y²

t = 2x

From the given information, we can express x and y in terms of w as follows:

w = x² + y²

w = (2t)² + (5t)²

w = 4t² + 25t²

w = 29t²

Now, we'll find dt/dw using the Chain Rule. The Chain Rule states that if we have a composite function t(w), and w(x, y), then the derivative dt/dw can be expressed as:

dt/dw = (dt/dx) / (dw/dx)

First, we need to find dt/dx and dw/dx:

dt/dx = d(2x)/dx = 2

dw/dx = d(29t²)/dx = 58t

Now, we can find dt/dw:

dt/dw = (dt/dx) / (dw/dx) = 2 / (58t) = 1 / (29t)

To evaluate dt/dw at t = 2, we simply plug in t = 2 into the expression we found:

dt/dw = 1 / (29 * 2) = 1 / 58

So, dt/dw evaluated at t = 2 is 1/58.

To know more about Chain Rule, refer to the link below:

https://brainly.com/question/30764359#

#SPJ11

Katrina contributed $2,500 at the end of every year into an RRSP for 10 years. What nominal annual rate of interest will the RRSP earn if the balance in Katrina’s account just after she made her last contribution was $33,600?

Answers

The nominal annual rate of interest will the RRSP earn if the balance in Katrina’s account just after she made her last contribution was $33,600 is 6.414%.

How the rate of interest is computed:

The nominal annual rate of interest represents the rate at which interest is compounded to earn the desired future value.

The nominal annual rate of interest can be computed using an online finance calculator as follows:

N (# of periods) = 10 yeasr

PV (Present Value) = $0

PMT (Periodic Payment) = $2,500

FV (Future Value) = $33,600

Results:

I/Y (Nominal annual interest rate) = 6.414%

Sum of all periodic payments = $25,000

Total Interest = $8,600

Learn more about compound interest rate at https://brainly.com/question/24274034.

#SPJ4

The nominal annual rate of interest will the RRSP earn if the balance in Katrina’s account just after she made her last contribution was $33,600 is 6.4%.

Solution:

Let us find out the amount Katrina would have at the end of the 10th year by using the compound interest formula: P = $2,500 [Since the amount she invested at the end of every year was $2,500]

n = 10 [Since the investment is for 10 years]

R = ? [We need to find out the nominal annual rate of interest]

A = $33,600 [This is the total balance after the last contribution]

We know that A = P(1 + r/n)^(nt)A = $33,600P = $2,500n = 10t = 1 year (Because the interest is compounded annually)

33,600 = 2,500(1 + r/1)^(1 * 10)r = [(33,600/2,500)^(1/10) - 1] * 1r = 0.064r = 6.4%

Therefore, the nominal annual rate of interest will the RRSP earn if the balance in Katrina’s account just after she made her last contribution was $33,600 is 6.4%.

Note: Since the question asked for the nominal annual rate of interest, we did not need to worry about inflation.

To learn more about interest follow the given link

https://brainly.com/question/29451175

#SPJ11

339+ (62 - 12) ÷ 4 =
6.75
O 12
11
09
3

Answers

Answer:

351.5

Step-by-step explanation:

339+(62-12)/4

=339+50/4

=339+25/2

=339+12.5

=351.5

if 1 yard = 3 feet; 1 foot =12 how many inches are there in 5 yards

Answers

Answer:

Step-by-step explanation:

3x12=36inches in 1yard

5 yards= 5(36) =180 inches

1. Convert each true bearing to its equivalent quadrant bearing. [2 marks] a) 095° b) 359⁰ 2. Convert each quadrant bearing to its equivalent true bearing. [2 marks] a) N15°E b) S80°W 3. State the vector that is opposite to the vector 22 m 001°. [1 mark] 4. State a vector that is parallel, of equal magnitude, but not equivalent to the vector 250 km/h

Answers

To convert true bearings to equivalent quadrant bearings, we use the following rules:

a) For a true bearing of 095°:

Since 095° lies in the first quadrant (0° to 90°), the equivalent quadrant bearing is the same as the true bearing.

b) For a true bearing of 359°:

Since 359° lies in the fourth quadrant (270° to 360°), we subtract 360° from the true bearing to find the equivalent quadrant bearing.

359° - 360° = -1°

Therefore, the equivalent quadrant bearing is 359° represented as -1°.

To convert quadrant bearings to equivalent true bearings, we use the following rules:

a) For a quadrant bearing of N15°E:

We take the average of the two adjacent quadrants (N and E) to find the equivalent true bearing.

The average of N and E is NE.

Therefore, the equivalent true bearing is NE15°.

b) For a quadrant bearing of S80°W:

We take the average of the two adjacent quadrants (S and W) to find the equivalent true bearing.

The average of S and W is SW.

Therefore, the equivalent true bearing is SW80°.

The vector opposite to the vector 22 m 001° would have the same magnitude (22 m) but the opposite direction. Therefore, the opposite vector would be -22 m 181°.

A vector that is parallel, of equal magnitude, but not equivalent to the vector 250 km/h can be any vector with a different direction but the same magnitude of 250 km/h. For example, a vector of 250 km/h at an angle of 90° would be parallel and of equal magnitude to the given vector, but not equivalent.

Learn more about quadrant here

https://brainly.com/question/28587485

#SPJ11

Which represents where f(x) = g(x)?

f(4) = g(4) and f(0) = g(0)
f(–4) = g(–4) and f(0) = g(0)
f(–4) = g(–2) and f(4) = g(4)
f(0) = g(–4) and f(4) = g(–2)

Answers

Answer:

Step-by-step explanation:

The statement "f(4) = g(4) and f(0) = g(0)" represents where f(x) = g(x). This means that at x = 4 and x = 0, the values of f(x) and g(x) are equal.

In the other statements:

- "f(-4) = g(-4) and f(0) = g(0)" represents two separate equalities but not f(x) = g(x) because they are not both equal at the same value of x.

- "f(-4) = g(-2) and f(4) = g(4)" represents where f(x) and g(x) are equal at different values of x (-4 and 4), but not for all x.

- "f(0) = g(-4) and f(4) = g(-2)" represents where f(x) and g(x) are equal at different values of x (0 and -2), but not for all x.

Therefore, only the statement "f(4) = g(4) and f(0) = g(0)" represents where f(x) = g(x).

a) consider the utility function of Carin
U(q1,q2)=3 x q1^1/2 x q2^1/3
where q1 = total units of product 1 that Canrin consumes
q2= total units of product 2 that Carin consumes
U = total utility that Carin derives from her consumption of product 1 and 2
a )
(i) Calculate the Carin's marginal utilities from product 1 and 2
(MUq1=aU/aq1 and Uq2=aU/aq2)
(ii) calculatue. MUq1/MUq2 where q1=100 and q2=27
b) Bill's coffee shop's marginal cost (MC) function is given as
MC=100 - 2Q +0.6Q^2
where
MX= a total cost/aQ
Q= units of output
by calcultating a definite integral evaluate the extra cost in increasing production from 10 to 15 units

Answers

a) (i) Carin's marginal utilities from products 1 and 2 can be calculated by taking the partial derivatives of the utility function with respect to each product.

MUq1 = [tex](3/2) * q2^(1/3) / (q1^(1/2))[/tex]

MUq2 = [tex]q1^(1/2) * (1/3) * q2^(-2/3)[/tex]

(ii) To calculate MUq1/MUq2 when q1 = 100 and q2 = 27, we substitute the given values into the expressions for MUq1 and MUq2 and perform the calculation.

MUq1/MUq2 = [tex][(3/2) * (27)^(1/3) / (100^(1/2))] / [(100^(1/2)) * (1/3) * (27^(-2/3))][/tex]

Carin's marginal utility represents the additional satisfaction or utility she derives from consuming an extra unit of a particular product, holding the consumption of other products constant. In this case, the utility function given is [tex]U(q1, q2) = 3 * q1^(1/2) * q2^(1/3)[/tex], where q1 represents the total units of product 1 consumed by Carin and q2 represents the total units of product 2 consumed by Carin.

To calculate the marginal utility of product 1 (MUq1), we differentiate the utility function with respect to q1, resulting in MUq1 = (3/2) * q2^(1/3) / (q1^(1/2)). This equation tells us that the marginal utility of product 1 depends on the consumption of product 2 and the square root of the consumption of product 1.

Similarly, to calculate the marginal utility of product 2 (MUq2), we differentiate the utility function with respect to q2, yielding MUq2 = q1^(1/2) * (1/3) * q2^(-2/3). Here, the marginal utility of product 2 depends on the consumption of product 1 and the cube root of the consumption of product 2.

Moving on to part (ii) of the question, we are asked to find the ratio MUq1/MUq2 when q1 = 100 and q2 = 27. Substituting these values into the expressions for MUq1 and MUq2, we get:

MUq1/MUq2 = [tex][(3/2) * (27)^(1/3) / (100^(1/2))] / [(100^(1/2)) * (1/3) * (27^(-2/3))][/tex]

By evaluating this expression, we can determine the ratio of the marginal utilities.

Learn more about Carin's marginal

brainly.com/question/11130031

#SPJ11

carolyn and paul are playing a game starting with a list of the integers $1$ to $n.$ the rules of the game are: $\bullet$ carolyn always has the first turn. $\bullet$ carolyn and paul alternate turns. $\bullet$ on each of her turns, carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list. $\bullet$ on each of his turns, paul must remove from the list all of the positive divisors of the number that carolyn has just removed. $\bullet$ if carolyn cannot remove any more numbers, then paul removes the rest of the numbers. for example, if $n

Answers

 In the given game, if Carolyn removes the integer 2 on her first turn and $n=6$, we need to determine the sum of the numbers that Carolyn removes.

Let's analyze the game based on Carolyn's move. Since Carolyn removes the number 2 on her first turn, Paul must remove all the positive divisors of 2, which are 1 and 2. As a result, the remaining numbers are 3, 4, 5, and 6.
On Carolyn's second turn, she cannot remove 3 because it is a prime number. Similarly, she cannot remove 4 because it has only one positive divisor remaining (2), violating the game rules. Thus, Carolyn cannot remove any number on her second turn.
According to the game rules, Paul then removes the rest of the numbers, which are 3, 5, and 6.
Therefore, the sum of the numbers Carolyn removes is 2, as she only removes the integer 2 on her first turn.
To summarize, when Carolyn removes the integer 2 on her first turn and $n=6$, the sum of the numbers Carolyn removes is 2.

learn more about integers here

https://brainly.com/question/33503847

   

#SPJ11



the complete question is:

  Carolyn and Paul are playing a game starting with a list of the integers $1$ to $n.$ The rules of the game are: $\bullet$ Carolyn always has the first turn. $\bullet$ Carolyn and Paul alternate turns. $\bullet$ On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list. $\bullet$ On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed. $\bullet$ If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers. For example, if $n=6,$ a possible sequence of moves is shown in this chart: \begin{tabular}{|c|c|c|} \hline Player & Removed \# & \# remaining \\ \hline Carolyn & 4 & 1, 2, 3, 5, 6 \\ \hline Paul & 1, 2 & 3, 5, 6 \\ \hline Carolyn & 6 & 3, 5 \\ \hline Paul & 3 & 5 \\ \hline Carolyn & None & 5 \\ \hline Paul & 5 & None \\ \hline \end{tabular} Note that Carolyn can't remove $3$ or $5$ on her second turn, and can't remove any number on her third turn. In this example, the sum of the numbers removed by Carolyn is $4+6=10$ and the sum of the numbers removed by Paul is $1+2+3+5=11.$ Suppose that $n=6$ and Carolyn removes the integer $2$ on her first turn. Determine the sum of the numbers that Carolyn removes.

Name an angle pair that satisfies the following condition.


Two obtuse adjacent angles

Answers

An example of a pair of angles that satisfies the given condition of "two obtuse adjacent angles" is Angle A and Angle B, where Angle A and Angle B are adjacent angles and both are obtuse.

Adjacent angles are two angles that share a common vertex and a common side but have no common interior points.

Obtuse angles are angles that measure greater than 90 degrees but less than 180 degrees.

To meet the given condition, we can consider Angle A and Angle B, where both angles are adjacent and both are obtuse.

Since the condition does not specify any specific measurements or orientations, we can assume any two adjacent obtuse angles to satisfy the condition.

For example, let Angle A be an obtuse angle measuring 110 degrees and Angle B be another obtuse angle measuring 120 degrees. These angles are adjacent as they share a common vertex and a common side, and both angles are obtuse since they measure more than 90 degrees.

Therefore, Angle A and Angle B form an example of a pair of "two obtuse adjacent angles" that satisfies the given condition.

Learn more about obtuse angles visit:

brainly.com/question/30813354

#SPJ11

Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. In other words, given two integer arrays val[1...n] and weight[1…n] which represent values and weights associated with n items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item or don’t pick it (0-1 property). Data: W = 10 Val = [60 100 120 40] Weight = [2 4 6 3]

Answers

The maximum total value that can be put in the knapsack is 220.

How to solve for the maximum value using programming language

def knapSack(W, weight, val, n):

   K = [[0 for w in range(W + 1)] for i in range(n + 1)]

   # Build table K[][] in bottom up manner

   for i in range(n + 1):

       for w in range(W + 1):

           if i == 0 or w == 0:

               K[i][w] = 0

           elif weight[i-1] <= w:

               K[i][w] = max(val[i-1] + K[i-1][w-weight[i-1]],  K[i-1][w])

           else:

               K[i][w] = K[i-1][w]

   return K[n][W]

# The weight and value arrays

val = [60, 100, 120, 40]

weight = [2, 4, 6, 3]

n = len(val)

W = 10

print(knapSack(W, weight, val, n))  # It will print 220

Read more on subsets here https://brainly.com/question/28705656

#SPJ4

With W = 10, Val = [60, 100, 120, 40], and Weight = [2, 4, 6, 3], the maximum value subset with the given constraints is 220.

To solve this problem, we can use the 0-1 Knapsack algorithm. The algorithm works as follows:

Create a 2D array, dp[n+1][W+1], where dp[i][j] represents the maximum value that can be obtained with items 1 to i and a knapsack capacity of j.

Initialize the first row and column of dp with 0 since with no items or no capacity, the maximum value is 0.

Iterate through the items from 1 to n. For each item, iterate through the capacity values from 1 to W.

If the weight of the current item (weight[i]) is less than or equal to the current capacity (j), we have two options:

a. Include the current item: dp[i][j] = val[i] + dp[i-1][j-weight[i]]

b. Exclude the current item: dp[i][j] = dp[i-1][j]

Take the maximum of the two options and assign it to dp[i][j].

The maximum value that can be obtained is dp[n][W].

In this case, with W = 10, Val = [60, 100, 120, 40], and Weight = [2, 4, 6, 3], the maximum value subset with the given constraints is 220.

Learn more about Knapsack algorithm here:

https://brainly.com/question/30432103

#SPJ11

Linear Algebra

Question about additive inverse of vector space

1. Determine whether the set R2 with the operations

(x1,y1) + (x2,y2) = (x1x2,y1y2)

and

c(x1,y1) = (cx1,cy1)

solution(1)

This set is not a vector space because Axiom 5(additive inverse) fails.

The additive identity is (1,1) and so (0,0) has no additive inverse.

Axioms 7 and 8 also fail.

- I understood about additive identity, but I couldn't understand why (0,0) has no additive inverse.

- is it possible to be additive inverse as (0,0)?

2. Let V be the set of all positive real numbers. Determine whether V is a vector space with the following operations.

x + y = xy

cx = xc

Solution(2)

It is vector space.

The zero vector is 1 and additive inverse of x is 1/x.

(additive inverse) x + 1/x = x(1/x) = 1

- I don't understand why additive inverse is 1/x.

please help me understanding this concept

Answers

If we choose 1/x as the additive inverse of x, their sum is:

x + 1/x = (x^2 + 1) / x = 1

which is the additive identity in this set.

The additive inverse of a vector (x, y) in this set is defined as another vector (a, b) such that their sum is the additive identity (1, 1):

(x, y) + (a, b) = (1, 1)

Substituting the definition of the addition operation, we get:

(xa, yb) = (1, 1)

This implies that xa = 1 and yb = 1. If x or y is zero, then there is no solution for a or b, respectively. So, the vector (0, 0) does not have an additive inverse in this set.

The additive inverse of a positive real number x is its reciprocal 1/x, because:

x + 1/x = (x * x + 1) / x = (x^2 + 1) / x

Since x is positive, x^2 is positive, and x^2 + 1 is greater than x, so (x^2 + 1) / x is greater than 1. Therefore, if we choose 1/x as the additive inverse of x, their sum is:

x + 1/x = (x^2 + 1) / x = 1

which is the additive identity in this set.

Learn more about inverse here:

https://brainly.com/question/30339780

#SPJ11



Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .

Answers

The events of Jeremy's SAT score and his ACT score are independent.

Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.

The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.

Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.

To know more about independent events, refer here:

https://brainly.com/question/32716243#

#SPJ11

PLEASE HELP ASAP 50 POINTS!!!!!!!

Look at image

Answers

(a). The graph of y = f(½x) is shown in the image below.

(b). The graph of y = 2g(x) is shown in the image below.

How to draw the graph of the transformed functions?

In Mathematics and Geometry, the point-slope form of a straight line can be calculated by using the following mathematical equation (formula):

y - y₁ = m(x - x₁)

Where:

x and y represent the data points.m represent the slope.

First of all, we would determine the slope of this line;

Slope (m) = rise/run

Slope (m) = -2/4

Slope (m) = -1/2

At data point (0, -3) and a slope of -1/2, a linear equation for this line can be calculated by using the point-slope form as follows:

y - y₁ = m(x - x₁)

y + 3 = -1/2(x - 0)

f(x) = -x/2 - 3, -2 ≤ x ≤ 2.

y = f(½x)

y = -x/4 - 3, -2 ≤ x ≤ 2.

Part b.

By applying a vertical stretch with a factor of 2 to the parent absolute value function g(x), the transformed absolute value function can be written as follows;

y = a|x - h} + k

y = 2g(x), 0 ≤ x ≤ 4.

Read more on absolute value function here: brainly.com/question/28308900

#SPJ1

2. The enrollment of a small private pre-school was 225 in the year 2000. The enrollment was 400 in the year 2005. a. What is the average enrollment per year? b. Find the linear model that represents the enrollment of the pre-school t years after the year 2000. c. What year do you expect the enrollment to reach 1000 using the linear model. d. What do you expect the enrollment to be in the year 2025 using the linear model?

Answers

a.  The average enrollment per year is 35.

b. The linear model is: Enrollment = 35t + 225, where t is the number of years since 2000.

c. We expect the enrollment to reach 1000 in the year 2022 (2000 + 22).

d. We expect the enrollment to be 1125 in the year 2025.

The average enrollment per year is the difference in enrollment divided by the number of years:

Average enrollment per year = (400 - 225) / (2005 - 2000)

Average enrollment per year = 35

To find the linear model, we need to determine the slope and y-intercept. The slope is the average enrollment per year we just found, and the y-intercept is the enrollment in the starting year 2000:

Slope = 35

Y-intercept = 225

Therefore, the linear model is:

Enrollment = 35t + 225, where t is the number of years since 2000.

To find the year when the enrollment reaches 1000, we can substitute 1000 for Enrollment in the linear model and solve for t:

1000 = 35t + 225

775 = 35t

t = 22.14

Therefore, we expect the enrollment to reach 1000 in the year 2022 (2000 + 22).

To find the expected enrollment in the year 2025, we need to substitute t = 25 into the linear model:

Enrollment = 35(25) + 225

Enrollment = 1125

Therefore, we expect the enrollment to be 1125 in the year 2025.

Learn more about average enrollment: https://brainly.com/question/24187224

#SPJ11



Use a calculator and inverse functions to find the radian measures of all angles having the given trigonometric values.

angles whose sine is -1.1

Answers

The equation sinθ = -1.1 has no solution in the interval of 0 to 2π. The sine function has a range of -1 to 1, so there are no angles whose sine is -1.1.

The sine function is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse in a right triangle. The sine function has a range of -1 to 1, which means the sine of an angle can never be greater than 1 or less than -1.

In this case, we are given the value -1.1 as the sine of an angle. Since -1.1 is outside the range of the sine function, there are no angles in the interval of 0 to 2π that have a sine value of -1.1. Therefore, there are no radian measures of angles that satisfy the equation sinθ = -1.1.

It's important to note that the sine function can produce values outside the range of -1 to 1 when complex numbers are considered. However, in the context of real numbers and the interval specified, there are no solutions to the given equation.

Learn more about sine function here:

brainly.com/question/12015707

#SPJ11

Compute u + vand u- -3v. u+v= u-3v= 5 (Simplify your answer.) (Simplify your answer.) Witter Recreation....m43 PPN SOME Isitry BOCCHA point

Answers

u + v = 5

u - 3v = 5

To compute u + v, we add the values of u and v together. Since the given equation is u + v = 5, we can conclude that the sum of u and v is equal to 5.

Similarly, to compute u - 3v, we subtract 3 times the value of v from u. Again, based on the given equation u - 3v = 5, we can determine that the result of subtracting 3 times v from u is equal to 5.

It's important to simplify the answer by performing the necessary calculations and combining like terms. By simplifying the expressions, we obtain the final results of u + v = 5 and u - 3v = 5.

These equations represent the relationships between the variables u and v, with the specific values of 5 for both u + v and u - 3v.

Learn more about Variables

brainly.com/question/15078630

#SPJ11

A survey of 1520 Americans adults asked "Do you feel overloaded with too much information?" The results indicate that 88% of females feel information overload compared to 59% of males. The results are given in table. Overloaded Male Female Total Yes 434 687 1121 No 306 93 399

Total 740 780 1520 a. Construct contingency tables based on total percentages, row percentages, and column percentages. B. What conclusions can you reach from these analyses?

Answers

a)  Contingency tables: Total   100.00% 100.00%  100.00%

b) Based on the column percentages, we can see that among those who felt overloaded with too much information, a higher percentage were female (88.08%) compared to male (58.65%).

a. Contingency tables:

Total Percentages:

         Male   Female    Total

Yes      28.55%  45.20%   73.82%

No       20.13%   6.12%   26.18%

Total    48.68%  51.32%  100.00%

Row Percentages:

          Male   Female    Total

Yes       38.70%  61.30%  100.00%

No        76.69%  23.31%  100.00%

Total     48.68%  51.32%  100.00%

Column Percentages:

         Male   Female    Total

Yes      58.65%  88.08%   73.82%

No       41.35%  11.92%   26.18%

Total   100.00% 100.00%  100.00%

b. Based on the total percentages, we can see that overall, 73.82% of the survey respondents felt overloaded with too much information.

Based on the row percentages, we can see that a higher percentage of females (61.30%) felt overloaded with too much information compared to males (38.70%).

Based on the column percentages, we can see that among those who felt overloaded with too much information, a higher percentage were female (88.08%) compared to male (58.65%).

Therefore, we can conclude that there is a gender difference in terms of feeling overloaded with too much information, with a higher percentage of females reporting information overload compared to males.

Learn more about Contingency tables here:

https://brainly.com/question/30920745

#SPJ11

Consider this composite figure. Answer the following steps to find the volume of the composite figure. What is the volume of the 3 mm-tall cone

Answers

Answer:

We have to find the volume of the 3 mm-tall cone.

To find the volume of the 3 mm-tall cone, we need to first calculate the volume of the cylinder, then subtract the volume of the hemisphere, and then subtract the volume of the smaller cone. The steps to find the volume of the composite figure are given below:

Step 1: Find the volume of the cylinder using the formula for the volume of a cylinder.

Volume of the cylinder = πr²h = π(6)²(12) = 1,130.97 cubic mm

Step 2: Find the volume of the hemisphere using the formula for the volume of a hemisphere.

Volume of the hemisphere = 2/3πr³/2 = 2/3π(6)³/2 = 226.19 cubic mm

Step 3: Find the volume of the smaller cone using the formula for the volume of a cone.

Volume of the smaller cone = 1/3πr²h = 1/3π(3)²(4) = 37.7 cubic mm

Step 4: Subtract the volume of the hemisphere and the smaller cone from the volume of the cylinder to get the volume of the composite figure.

The volume of the composite figure = Volume of the cylinder - Volume of the hemisphere - Volume of the smaller cone

= 1,130.97 - 226.19 - 37.7= 867.08 cubic mm

Therefore, the volume of the 3 mm-tall cone is not given in the question. We can find the volume of the 3 mm-tall cone by subtracting the volume of the hemisphere and the smaller cone from the volume of the cylinder and then multiplying by the ratio of the height of the 3 mm-tall cones to the height of the cylinder.

The volume of cone: https://brainly.com/question/18767450

#SPJ11

Solve the following: x+y - (Hint: Are we able to make this separable?) x-y A. B. xydx+(2x² + y²-5) dy=0 C. y-y+y=2 sin 3x :

Answers

A) Solution to the differential equation is (1/2)[tex]x^2[/tex] + (1/2)[tex]y^2[/tex] - xy = C

B) Solution to the differential equation is (1/2)[tex]x^2[/tex]([tex]y^2[/tex] - 5) + (2/3)[tex]x^3[/tex]([tex]y^2[/tex] - 5) + (1/5)[tex]y^5[/tex] - (5/3)[tex]y^3[/tex] = C.

C) Solution to the differential equation is [tex]c_1[/tex][tex]e^{x/2[/tex]cos(√3x/2) + [tex]c_2[/tex][tex]e^{x/2[/tex]sin(√3x/2) - (1/4)sin(3x).

Let's solve the given differential equations:

A) x + y / x - y

To check if this equation is separable, we can rewrite it as:

(x + y)dx - (x - y)dy = 0

Now, let's rearrange the terms:

xdx + ydx - xdy + ydy = 0

Integrating both sides:

(1/2)[tex]x^2[/tex] + (1/2)[tex]y^2[/tex] - xy = C

Therefore, the solution to the differential equation is:

(1/2)[tex]x^2[/tex] + (1/2)[tex]y^2[/tex] - xy = C

B. xydx + (2[tex]x^2[/tex] + [tex]y^2[/tex] - 5)dy = 0

This equation is not separable. However, it is a linear differential equation, so we can solve it using an integrating factor.

First, let's rewrite the equation in standard linear form:

xydx + (2[tex]x^2[/tex] + [tex]y^2[/tex] - 5)dy = 0

=> xydx + 2[tex]x^2[/tex]dy + [tex]y^2[/tex]dy - 5dy = 0

Now, we can see that the coefficient of dy is [tex]y^2[/tex] - 5, so we'll consider it as the integrating factor.

Multiplying both sides of the equation by the integrating factor ([tex]y^2[/tex] - 5):

xy([tex]y^2[/tex] - 5)dx + 2[tex]x^2[/tex]([tex]y^2[/tex] - 5)dy + ([tex]y^2[/tex] - 5)([tex]y^2[/tex]dy) = 0

Simplifying:

x([tex]y^2[/tex] - 5)dx + 2[tex]x^2[/tex]([tex]y^2[/tex] - 5)dy + ([tex]y^4[/tex] - 5[tex]y^2[/tex])dy = 0

Now, we have a total differential on the left-hand side, so we can integrate both sides:

∫x([tex]y^2[/tex] - 5)dx + ∫2[tex]x^2[/tex]([tex]y^2[/tex] - 5)dy + ∫([tex]y^4[/tex] - 5[tex]y^2[/tex])dy = ∫0 dx

Simplifying and integrating:

(1/2)[tex]x^2[/tex]([tex]y^2[/tex] - 5) + (2/3)[tex]x^3[/tex]([tex]y^2[/tex] - 5) + (1/5)[tex]y^5[/tex] - (5/3)[tex]y^3[/tex] = C

Therefore, the solution to the differential equation is:

(1/2)[tex]x^2[/tex]([tex]y^2[/tex] - 5) + (2/3)[tex]x^3[/tex]([tex]y^2[/tex] - 5) + (1/5)[tex]y^5[/tex] - (5/3)[tex]y^3[/tex] = C

C. y" - y' + y = 2sin(3x)

This is a non-homogeneous linear differential equation. To solve it, we'll use the method of undetermined coefficients.

First, let's find the complementary solution by solving the associated homogeneous equation:

y" - y' + y = 0

The characteristic equation is:

[tex]r^2[/tex] - r + 1 = 0

Solving the characteristic equation, we find complex roots:

r = (1 ± i√3)/2

The complementary solution is:

[tex]y_c[/tex] = [tex]c_1[/tex][tex]e^{x/2[/tex]cos(√3x/2) + [tex]c_2[/tex][tex]e^{x/2[/tex]sin(√3x/2)

Next, we'll find the particular solution by assuming a form for [tex]y_p[/tex] that satisfies the non-homogeneous term on the right-hand side. Since the right-hand side is 2sin(3x), we'll assume a particular solution of the form:

[tex]y_p[/tex] = A sin(3x) + B cos(3x)

Now, let's find the derivatives of [tex]y_p[/tex]:

[tex]y_{p'[/tex] = 3A cos(3x) - 3B sin(3x)

[tex]y_{p"[/tex] = -9A sin(3x) - 9B cos(3x)

Substituting these derivatives into the differential equation, we get:

(-9A sin(3x) - 9B cos(3x)) - (3A cos(3x) - 3B sin(3x)) + (A sin(3x) + B cos(3x)) = 2sin(3x)

Simplifying:

-8A sin(3x) - 6B cos(3x) = 2sin(3x)

Comparing the coefficients on both sides, we have:

-8A = 2

-6B = 0

From these equations, we find A = -1/4 and B = 0.

Therefore, the particular solution is:

[tex]y_p[/tex] = (-1/4)sin(3x)

Finally, the general solution to the differential equation is the sum of the complementary and particular solutions:

y =[tex]y_c[/tex] + [tex]y_p[/tex]

= [tex]c_1[/tex][tex]e^{x/2[/tex]cos(√3x/2) + [tex]c_2[/tex][tex]e^{x/2[/tex]sin(√3x/2) - (1/4)sin(3x)

where [tex]c_1[/tex] and [tex]c_2[/tex] are constants determined by any initial conditions given.

To learn more about differential equation here:

https://brainly.com/question/12909556

#SPJ4

Other Questions
Jill is a 15 year old young women who had her menstural period at age 11. Recently, she has been experiencing double vision, headaches, and amenorrhea. A skull MRI indicates a pituitary adenoma. Blood tests indicate low estrogen, progesterone, and TSH levels.1. What is the relationship of the pituitary gland to the optic nerve and its role in controling sex hormones and thyroxine?2. Explain why this tumor must be surgically removed.3. Explain the effects that you would expect to see in PM caused by the reduced TSH level. How will these be treated after surgery? nterview any foreigner in your circle and find out what sort of communication problems s/he has encountered while being in a host country. Also, try to find out what strategies they have used to overcome such problems note the number of weeks of gestational age. is this babypremature? ssignment 5-Double Pipe Heat Exchanger I (Heat Transfer and LMTD) 1. Find the overall resistance per metre length for the following: i =1Y0 W/m 2 K, 0 =3XoW/m 2 K,1 1/4 in. standard type M copper tube, copper =399 W/mK. Make the calculations assuming no wall resistance, then again assuming wall resistance, compare the results. (Refer to the wall resistance equation through a cylinder from Heat Transfer) 1) How would Psychoanalytic/psychodynamic theory explain personality development differently than would Humanistic theory? Blood takes about 1.55 s to pass through a 2.00 mm long capillary. If the diameter of the capillary is 5.00m and the pressure drop is 2.65kPa, calculate the viscosity of blood. Assume = (Ns)/m 2 laminar flow. The type of unemployment that is not part of the natural rate of unemployment is ; if you lose your job fixing tube TVs because virtually nobody owns one anymore, you are unemployed.O frictional; structurallyO structural; cyclicallyO cyclical; frictionallyO cyclical; structurally If your stock portfolio grows at a 5% annual rate with compounding, about how long would it take for your portfolio to double in value?5 years7 yearsO 14 yearsO 20 years Calculate+the+present+value+of+a+5-year+increasing+quarterly+payable+annuity+immediate+that+has+an+initial+payment+of+$50+and+has+an+annual+effective+interest+rate+of+8% What is the freezing point of a solution containing 6.10 grams of benzene (molar mass = 78.0 g/mol) dissolved in 42.0 grams of paradichlorobenzene? The freezing point or pure paradichlorobenzene is 53 degrees celsius and the freezing-point depression constant (Kf) is 7.10 degrees C/m. The Fed does not directly control the Federal Funds rate. Instead it influences it by setting the IROB rate. So if The Fed raises the IROB Rate above the Federal Funds rate why will this eventually cause the Federal Fund Rate to increase? (a) Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e ^+2 =15 [2 marks] (ii) 4ln2x=10 [2 marks] (b) The weekly demand and supply functions for a product given by p=0.3x^2 +80 and p=0.5x^2 +0.3x+70 respectively, where p is the unit price in dollars and x is the quantity demanded in units of a hundred. (i) Determine the quantity supplied when the unit price is set at $100. [2 marks] (ii) Determine the equilibrium price and quantity. [2 marks] How do the phone calls from hallys mother affect his behavior? he assumes the role of boss with sam and willie. he chastises sam and willie for acting like children. he retreats into silence and does his homework. he starts to eat more sweets. Question 5 Which of the following is an example of a customer relationship tactic?Supplier evaluations.Buy one get one free offer.Competitive tendering.Personal gifts and presents to decision-takers. a rocket is launched from a tower. the height of the rocket, y in feet, is related to the time after launch, x in seconds, by the given equation. using this equation, find the time that the rocket will hit the ground, to the nearest 100th of second. y = 16x^2 + 89x+ 50 One year ago, Alpha Supply issued 15-year bonds at par. The bonds have a coupon rate of 6.5 percent and pay interest annually. Today, the market rate of interest on these bonds is 7.2 percent. How does the price of these bonds today compare to the issue price?Group of answer choices5.38 percent lower0.07 percent higher6.05 percent lower1.36 percent higher4.99 percent lower Let Gn = (0, 1+1/n). Prove that Gn =(0,1] is neither closed nor open. A long, straight wire lies along the x-axis and carries current I = 2.50 A in the +x-direction. A second wire lies in the xy-plane and is parallel to the x-axis at y = +0.800 m. It carries current I = 7.00 A, also in the +x-direction. Part A In addition to y[infinity], at what point on the y-axis is the resultant magnetic field of the two wires equal to zero? Express your answer with the appropriate units. ? y = Units Submit Value Request Answer What direction does the magnetic force point A car parked in the sun absorbs energy at a rate of 560 watts per square meter of surface area. The car reaches a temeperature at which it radiates energy at the same rate. Treating the car as a perfect blackbody radiator, find the temperature in degree Celsius. 4. Verbal Disputes Detecting Bias 238 form of inference: what looks. spia niret account, then that argumentation is biased. cm & fc clefir neig roce term argu qur from bias are the following: geographical regions covered in the program, and it clearly expressed a point of view on environmental issues favorable to the interests of the loggers. After the video was played to one class for a while, one observant child said, "Hey, it's a commercial!" 2. Evaluate how one should react critically to the claims made in the following cases. (a) During the dialogue on tipping, let's suppose that Helen argues as follows. HELEN: Look, Bob, 1 happen to know that you are a public relations consultant who has been hired by the Union of Restaurant Service Providers as part of their campaign to promote tipping. Your argu- ments in favor of tipping as a good practice should not be taken at face value. (b) A scientific report predicted staggering economic losses and unem- ployment if a ban on whiskey bottles made from vinyl chloride was put into effect by the U.S. Government. The report was produced by Arthur D. Little, a company hired by polymer industry officials (Proctor, Cancer Wars, p. 103). (c) A scientific policy research study based on a computer model showed that if advertising were taxed in Minnesota, not only the advertising industry but the state's entire economy would be dam- aged. The study was sponsored by the Communications Industry Coalition, an industry group (Cynthia Crossen, Tainted Truth: The Manipulation of Fact in America (New York: Simon & Schuster, 1994), p. 139). the critic in such a case, called the argument from bias, has the following that it is not taking the evidence on both sides of the issue into If a sequence of argumentation used in a dialogue shows indications The sequence of argumentation in this case shows such indications, Therefore the sequence of argumentation in this case is biased. The critical questions appropriate for use in responding to the argument 1. What is the context of dialogue, and in particular, is it a type of dia- logue that requires an argument to take evidence on both sides of an 2. What is the evidence for the charge that the argument is biased? How the argument from bias is properly used in evaluating an argument in a given case is by giving a reduction in plausibility to the weight of plausibility initially accorded to the given sequence of argumentation. The criticism assumes that the argument was supposed to be part of a particular type of dialogue, such as a critical discussion. In certain types of dialogue, such as a persuasion dialogue, it is important that an arguer takes the arguments on both sides of an issue into account and does not just automatically push ahead with the arguments for the side she advocates, completely ignoring or routinely discounting and rejecting the arguments for the other side. In other words, an argument is more plausible if it is based on a consideration of all the evidence in a case, on both sides of the issue, than if it is pushing only for one side and ignoring all the evidence, even if it may be good evidence, on the other side. So if an argument is biased, that is, if it pushes only for one side, we discount that argument as being of less worth. But we have to be very careful to realize that just because an argument is one-sided, it should not mean that it is worthless or that we should always or completely reject it. Even so, recognition of bias can be very important in how we judge an argument. issue into account? FOUR bids mon choic Verbal Disputes In a dialogue the point of view of the one side is opposed to that of the other side. The dialogue is supposed to resolve this disagreement by having each side put forward arguments. But in some instances the disagreement can be impossible to resolve this way because their parties are not arguing about the same thing. Their disagreement is merely verbal, meaning that they are using a key word differently. For example, consider the following dialogue. EXERCISE 63 1. Evaluate the argument in the following case. A videotape on trees and the environment was distributed free to teachers in the public school system as an educational tool for use in classes on geography and the environment. However, the video was produced by a logging company that had a large financial stake in the Carly: Derek finally got rid of that old Toyota of his and bought a new car. He's driving a new Honda now. Levon: No, Derek didn't buy himself a new car. That Honda is a good three years old.