Determine the frequency and say whether or not each of the
following signals is periodic. In case a signal is periodic,
specify its fundamental period.
1.) x(n) = sin(4n)
2.) x(n) = 1.2cos(0.25πn)
3.

Answers

Answer 1

1) Signal x(n) = sin(4n) is periodic with a fundamental period T = 4., 2) Signal x(n) = 1.2cos(0.25πn) is periodic with a fundamental period T = 8.

To determine the frequency and periodicity of the given signals, let's analyze each signal separately:

1) Signal: x(n) = sin(4n)

To find the frequency of this signal, we can observe the coefficient in front of 'n' in the argument of the sine function. In this case, the coefficient is 4. The frequency is determined by the formula f = k/T, where k is the coefficient and T is the fundamental period.

In the given signal, the coefficient is 4, which means the frequency is 4/T. To determine if the signal is periodic, we need to check if there exists a fundamental period 'T' for which the signal repeats itself.

For the given signal x(n) = sin(4n), we can see that the sine function completes one full cycle (2π) for every 4 units of n. Therefore, the fundamental period 'T' is 4, which means the signal repeats every 4 units of n.

Since the signal repeats itself after every 4 units of n, it is periodic. The fundamental period is T = 4.

2) Signal: x(n) = 1.2cos(0.25πn)

Similarly, to find the frequency of this signal, we can observe the coefficient in front of 'n' in the argument of the cosine function. In this case, the coefficient is 0.25π.

The frequency is determined by the formula f = k/T, where k is the coefficient and T is the fundamental period.

For the given signal x(n) = 1.2cos(0.25πn), the coefficient is 0.25π, which means the frequency is 0.25π/T. To determine if the signal is periodic, we need to check if there exists a fundamental period 'T' for which the signal repeats itself.

In this case, the cosine function completes one full cycle (2π) for every 0.25π units of n. Simplifying, we find that the cosine function completes 8 cycles within the interval of 2π. Therefore, the fundamental period 'T' is 2π/0.25π = 8.

Since the signal repeats itself after every 8 units of n, it is periodic. The fundamental period is T = 8.

The frequency of signal 1 is 4/T, and the frequency of signal 2 is 0.25π/T.

Learn more about coefficient at: brainly.com/question/1594145

#SPJ11


Related Questions

\( \sum_{n=1}^{500} n=1+2+3+4+\cdots+500 \)

Answers

The sum of the first 500 natural numbers is 62,625.

We are required to calculate the sum of the first 500 natural numbers.

The general formula for the sum of n terms in an arithmetic series is:S = n/2[2a+(n−1)d] wherea is the first termn is the number of terms

d is the common difference

First, let's identify the first term (a), common difference (d), and the number of terms (n).a = 1d = 1n = 500

Using the formula,S = n/2[2a+(n−1)d]S = 500/2[2(1)+(500−1)1]S = 250[2+499]S = 125(501)S = 62,625

Therefore, the sum of the first 500 natural numbers is 62,625.

Know more about arithmetic series

https://brainly.com/question/25277900

#SPJ11

Sloetch the graph of the functions
(a) f(x,y)=10−4x−5y
(b) f(x,y)=cosy

Answers

The graph of the function f(x, y) = 10 - 4x - 5y represents a plane with a negative slope intersecting the x-axis at 10/4 and the y-axis at 10. On the other hand, the graph of the function f(x, y) = cosy represents a periodic curve oscillating between -1 and 1 as y changes.

(a) The function f(x, y) = 10 - 4x - 5y represents a plane in three-dimensional space. The coefficients -4 and -5 determine the slope of the plane. Since both coefficients are negative, the plane has a negative slope. The constant term 10 determines the height at which the plane intersects the z-axis.

To sketch the graph, we can choose values for x and y to find corresponding values for z. For example, when x = 0 and y = 0, z = 10. This gives us a point on the plane. By connecting several such points, we can visualize the plane. The plane intersects the y-axis at the point (0, 2), and it intersects the x-axis at the point (2.5, 0).

(b) The function f(x, y) = cos y represents a curve in two-dimensional space. The cosine function has values ranging between -1 and 1. As y changes, the value of cos y oscillates between these extremes. The curve is periodic with a period of 2π, which means it repeats every 2π units of y.

To sketch the graph, we can choose values for y and calculate the corresponding values for f(x, y) using the cosine function. By plotting these points, we can observe the oscillatory behavior of the curve between -1 and 1. The graph has a wave-like shape that repeats itself as y increases or decreases.

Learn more about cosine function here:

https://brainly.com/question/3876065

#SPJ11

Find the function y(x) satisfying d2y​/dx2=8−12x,y′(0)=5, and y(0)=1

Answers

The required function y(x) satisfying the given differential equation is:y(x) = 4x² - 2x³ + 5x + 1.

The given differential equation is

d²y/dx² = 8 - 12x.

Given that y'(0) = 5 and y(0) = 1

To solve the given differential equation,Integrate both sides of the given differential equation with respect to x.

We get,

d²y/dx² = 8 - 12x

dy/dx = ∫(8 - 12x) dx

=> dy/dx = 8x - 6x² + C1

Integrate both sides of the above equation with respect to x.

We get,

y = ∫(8x - 6x² + C1) dx

=> y = 4x² - 2x³ + C1x + C2

Here, C1 and C2 are constants of integration.

To find C1 and C2, apply the given initial conditions to the above equation.

We get,y'(0) = 5

=> 8(0) - 6(0)² + C1 = 5

=> C1 = 5y(0) = 1

=> 4(0)² - 2(0)³ + C1(0) + C2 = 1

=> C2 = 1

Know more about the differential equation

https://brainly.com/question/1164377

#SPJ11

Suppose f is a coordinate system for a line L and P,Q ∈ L. If
f(P) = −4 and f(Q) = 7, find PQ.

Answers

The distance between points P and Q, PQ, is 11 units.

To find the distance between points P and Q on line L, given their corresponding function values in the coordinate system f, we can use the absolute value function.

The distance between two points can be calculated as the absolute value of the difference between their function values in the coordinate system.

Let's denote the distance between points P and Q as PQ. Given that f(P) = -4 and f(Q) = 7, we can find PQ as:

PQ = |f(Q) - f(P)|

PQ = |7 - (-4)|

PQ = |7 + 4|

PQ = |11|

Therefore, the distance between points P and Q, PQ, is 11 units.

To know more about distance of coordinates, visit:

https://brainly.com/question/32144496

#SPJ11

Use interval notation to indicate where
{x+2 if x < 0
f (x) = {eˣ if 0 ≤ x ≤ 1 is continuous
{2-x if x > 1
Answer: x∈
Note: Input U, infinity, and -infinity for union, [infinity], and −[infinity], respectively.

Answers

The function f(x) is continuous in the interval (-∞, 0) U [0, 1] U (1, ∞). This means that f(x) is continuous for all values of x except at the points x = 0 and x = 1.

For the interval (-∞, 0), the function f(x) is defined as x + 2. This is a polynomial function, which is continuous for all real values of x. Therefore, f(x) is continuous in the interval (-∞, 0).

For the interval [0, 1], the function f(x) is defined as e^x. The exponential function e^x is continuous for all real values of x, so f(x) is continuous in the interval [0, 1].

For the interval (1, ∞), the function f(x) is defined as 2 - x. This is a linear function, which is continuous for all real values of x. Therefore, f(x) is continuous in the interval (1, ∞).

By combining these intervals using interval notation, we can express the interval where f(x) is continuous as (-∞, 0) U [0, 1] U (1, ∞). This notation indicates that f(x) is continuous for all values of x except at the points x = 0 and x = 1.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Write a derivative formula for the function.
f(x) = (3 ln(x))e^x
f '(x) = _____

Answers

The derivative of the function f(x) = (3 ln(x))e^x can be calculated using the product rule. The derivative of the function f(x) = (3 ln(x))e^x is f'(x) = 3e^x (ln(x) + 1/x).

Using the product rule, we have the formula for the derivative: f'(x) = (3 ln(x))e^x * (d/dx)(e^x) + e^x * (d/dx)(3 ln(x)).

To find (d/dx)(e^x), we know that the derivative of e^x is simply e^x. Therefore, (d/dx)(e^x) = e^x.

To find (d/dx)(3 ln(x)), we apply the derivative of the natural logarithm. The derivative of ln(x) is 1/x. Therefore, (d/dx)(3 ln(x)) = 3 * (1/x).

Now, substituting these values back into the formula for the derivative, we have:

f'(x) = (3 ln(x))e^x * e^x + e^x * 3 * (1/x).

Simplifying further, we get:

f'(x) = 3e^x ln(x) * e^x + 3e^x/x.

Combining like terms, the final derivative formula is:

f'(x) = 3e^x (ln(x) + 1/x).

In summary, the derivative of the function f(x) = (3 ln(x))e^x is f'(x) = 3e^x (ln(x) + 1/x).

Learn more about deravative here:
brainly.com/question/25324584\

#SPJ11

Perform average value and RMS value calculations of:
-5 sin (500t+45°) + 4 V

Answers

The average value and RMS value calculations of the given waveform \(-5 \sin(500t + 45°) + 4V\) can be performed. To calculate the average value and RMS value of the given waveform.

To calculate the average value and RMS value of the given waveform, we need to first determine the mathematical representation of the waveform. The given waveform is a sinusoidal function with an amplitude of 5 and an angular frequency of 500 radians per second, phase-shifted by 45 degrees and offset by +4V.

The average value of a waveform is calculated by integrating the waveform over one period and dividing by the period. Since the waveform is a sine function, its average value over one period is zero, as the positive and negative values cancel each other out.

The RMS (Root Mean Square) value of a waveform is calculated by taking the square root of the average of the squared values of the waveform over one period. For a sine function, the RMS value is equal to the amplitude divided by the square root of 2. Therefore, the RMS value of the given waveform is \(\frac{5}{\sqrt{2}} \approx 3.54V\).

In summary, the average value of the given waveform is zero, while the RMS value is approximately 3.54V.

Learn more about  RMS value: brainly.com/question/22974871

#SPJ11

FL
Read the description of g below, and then use the drop-down menus to
complete an explanation of why g is or is not a function.
g relates a student to the English course the student takes in a school year.
pls help this makes no sense

Answers

The domain of g is the student.The range of g is the English course.g is a function because each student, or each element of the domain, corresponds to one element of the range.

When does a graphed relation represents a function?

A relation represents a function when each input value is mapped to a single output value.

In the context of this problem, we have that each student can take only one English course, hence the relation represents a function.

More can be learned about relations and functions at brainly.com/question/10283950

#SPJ1

Please show your answer to at least 4 decimal places.
Suppose that f(x, y) = x^2 - xy + y^2 − 5x + 5y with x^2 + y^2 ≤ 25.
1. Absolute minimum of f(x, y) is ______
2. Absolute maximum is _____

Answers

The absolute minimum value is - 10/3.

The absolute maximum value is 25.

Finding the absolute minimum of the function, using the method of partial differentiation. [tex]f(x, y) = x² - xy + y² − 5x + 5y∂f/∂x = 2x - y - 5∂f/∂y = - x + 2y + 5[/tex]. Solving, ∂f/∂x = 0 and ∂f/∂y = 0, we getx = 5/3, y = 5/3We have ∂²f/∂x² = 2, ∂²f/∂y² = 2, and ∂²f/∂x∂y = - 1, which give [tex]Δ = ∂²f/∂x² * ∂²f/∂y² - (∂²f/∂x∂y)²= 2 * 2 - (- 1)²= 4 - 1= 3[/tex]. Since Δ > 0 and ∂²f/∂x² > 0, we have the minimum as [tex]∂f/∂x = 2x - y - 5 = 0, ⇒ y = 2x - 5f(x, y) = x² - xy + y² − 5x + 5y= x² - x(2x - 5) + (2x - 5)² − 5x + 5(2x - 5)= 3x² - 20x + 25[/tex]. So, f(x, y) takes its absolute minimum at (5/3, 5/3) Absolute minimum value = 3(5/3)² - 20(5/3) + 25= - 10/3.

Since [tex]x² + y² ≤ 25[/tex], we have 2x ≤ 10 and 2y ≤ 10, which give x ≤ 5 and y ≤ 5. Since [tex]f(x, y) = x² - xy + y² − 5x + 5y[/tex], the value of f(x, y) is maximized at (5, 5), which is a point on the boundary of [tex]x² + y² = 25[/tex], and the absolute maximum value of the function is [tex]f(x, y) = x² - xy + y² − 5x + 5y= 5² - 5(5) + 5² − 5(5) + 5(5)= 25[/tex]. Hence, the absolute maximum value is 25.

learn more about absolute minimum

https://brainly.com/question/28767824

#SPJ11

Write a power series in x for the function
f (x) = 3 / 3 −6x

Answers

To write the power series in x for the given function [tex]f(x) = 3/3 - 6x[/tex], we use the formula of geometric progression:[tex]a + ar + ar² + ar³ +...+ arⁿ-¹ +...= a / (1 - r)[/tex] The formula of geometric series is [tex]1 / (1 - r) = 1 + r + r² + r³ +...+ rⁿ-¹ +...[/tex]

we have: [tex]1 / (1 - 2x) = 1 + 2x + 4x² + 8x³ +... + 2ⁿ xⁿ +...[/tex]

Thus, the power series in x for the given function[tex]f(x) = 3/3 - 6x is:1 + 2x + 4x² + 8x³ +... + 2ⁿ xⁿ +...[/tex]

This is the required answer.Note: The formula of geometric progression is [tex]a + ar + ar² + ar³ +...+ arⁿ-¹ +...= a / (1 - r)[/tex].

The formula of geometric series is [tex]1 / (1 - r) = 1 + r + r² + r³ +...+ rⁿ-¹ +...[/tex]

To know more about ratio visit:

https://brainly.com/question/13419413

#SPJ11

Find the partial derative f(x) for the function f(x, y) = √ (l6x+y^3)

Answers

The partial derivative ∂f/∂x of the function f(x, y) = √(16x + y^3) with respect to x is given by: ∂f/∂x = 8 / √(16x + y^3)

To find the partial derivative of f(x, y) with respect to x, denoted as ∂f/∂x, we treat y as a constant and differentiate f(x, y) with respect to x.

f(x, y) = √(16x + y^3)

To find ∂f/∂x, we differentiate f(x, y) with respect to x while treating y as a constant.

∂f/∂x = ∂/∂x (√(16x + y^3))

To differentiate the square root function, we can use the chain rule. Let u = 16x + y^3, then f(x, y) = √u.

∂f/∂x = ∂/∂x (√u) = (1/2) * (u^(-1/2)) * ∂u/∂x

Now, we need to find ∂u/∂x:

∂u/∂x = ∂/∂x (16x + y^3) = 16

Plugging this back into the expression for ∂f/∂x:

∂f/∂x = (1/2) * (u^(-1/2)) * ∂u/∂x

      = (1/2) * ((16x + y^3)^(-1/2)) * 16

      = 8 / √(16x + y^3)

Therefore, the partial derivative ∂f/∂x of the function f(x, y) = √(16x + y^3) with respect to x is given by:

∂f/∂x = 8 / √(16x + y^3)

To learn more about derivative click here:

brainly.com/question/32524872

#SPJ11

Compute the following expressions. When finding
complex numbers, write them in their algebraic form.
1) 1/(2+i) + 1/(1+2i) + 1/(2i-1)
2) abs(1/(2i-1)+1/(1+2i))
absolute value is also called the Modulu

Answers

To compute the expression 1/(2+i) + 1/(1+2i) + 1/(2i-1), we need to simplify each term individually.

Let's start by rationalizing the denominators. For the first term, we multiply the numerator and denominator by the conjugate of the denominator:

1/(2+i) * (2-i)/(2-i) = (2-i)/(5)

For the second term:

1/(1+2i) * (1-2i)/(1-2i) = (1-2i)/(5)

And for the third term:

1/(2i-1) * (-2i-1)/(-2i-1) = (-2i-1)/5

Now we can combine the terms:

(2-i)/(5) + (1-2i)/(5) + (-2i-1)/5 = (2-i + 1-2i - 2i-1)/5

= (3-5i-2i-1)/5

= (2-7i)/5

Therefore, the expression simplifies to (2-7i)/5.

To find the absolute value of 1/(2i-1) + 1/(1+2i), we first simplify the expression using the previous steps:

(2-7i)/5

The absolute value of a complex number a+bi is given by |a+bi| = √(a^2 + b^2).

For our expression, the absolute value is:

|2-7i|/5 = √(2^2 + (-7)^2)/5 = √(4 + 49)/5 = √53/5.

Hence, the absolute value of the expression is √53/5, which cannot be simplified further.

Learn more about Complex number here :

brainly.com/question/20566728

#SPJ11

the absolute threshold is defined as the minimum ____.

Answers

The absolute threshold is defined as the minimum detectable stimulus or intensity.

The absolute threshold refers to the minimum amount or level of a stimulus that is required for it to be detected or perceived by an individual. It is the point at which a stimulus becomes perceptible or noticeable to a person.

In sensory psychology, the absolute threshold is typically measured in terms of the lowest intensity or magnitude of a stimulus that can be detected accurately by a person at least 50% of the time. It represents the boundary between the absence of perception and the presence of perception.

The absolute threshold can vary depending on the sensory modality being tested. For example, in vision, it may refer to the minimum amount of light required for a person to see an object. In hearing, it may represent the minimum sound intensity needed for an individual to hear a tone.

Several factors can influence the absolute threshold, including individual differences, physiological factors, and the nature of the stimulus itself. Factors such as sensory acuity, attention, fatigue, and background noise can all affect an individual's ability to detect a stimulus.

To know more about threshold, refer here:

https://brainly.com/question/32414600

#SPJ4

Locate the absolute extrema of function g(x)(4x+5)/5 on closed interval [0,5]

Answers

The absolute extrema of the function g(x) = (4x + 5)/5 on the closed interval [0, 5] are absolute minimum: 1 at x = 0 and absolute maximum: 5 at x = 5.

To locate the absolute extrema of the function g(x) = (4x + 5)/5 on the closed interval [0, 5], we evaluate the function at the critical points and endpoints.

First, let's check the endpoints:

g(0) = (4(0) + 5)/5 = 5/5 = 1

g(5) = (4(5) + 5)/5 = 25/5 = 5

Now, let's find the critical point by setting the derivative of g(x) equal to zero: g'(x) = 4/5

Since the derivative is a constant, there are no critical points within the interval [0, 5]. Comparing the function values at the endpoints and critical points, we find that the absolute minimum is 1 at x = 0, and the absolute maximum is 5 at x = 5.

Therefore, the absolute extrema of the function g(x) = (4x + 5)/5 on the closed interval [0, 5] are:

Absolute minimum: 1 at x = 0

Absolute maximum: 5 at x = 5.

LEARN MORE ABOUT absolute extrema here: brainly.com/question/31339061

#SPJ11

Find the derivative of f(x)=ln(x)/√x
f’(x) = _______

Answers

The derivative of f(x) = ln(x)/√x is f'(x) = (1 - ln(x))/(2x√x).

To find the derivative of f(x), we can use the quotient rule and the chain rule of differentiation. Let's break down the steps:

Using the quotient rule, we have:

f'(x) = [√x(d/dx(ln(x))) - ln(x)(d/dx(√x))]/(√x)^2

The derivative of ln(x) with respect to x is simply 1/x. Therefore, the first term becomes:

√x * (1/x) = 1/√x

Now, let's find the derivative of √x using the chain rule:

d/dx(√x) = (1/2)(x^(-1/2))

Substituting this into the second term of the quotient rule, we have:

ln(x) * (1/2)(x^(-1/2))

Simplifying further:

f'(x) = (1/√x) - (ln(x)/2√x)

Combining the terms, we get:

f'(x) = (1 - ln(x))/(2x√x)

Therefore, the derivative of f(x) = ln(x)/√x is f'(x) = (1 - ln(x))/(2x√x).

Learn more about chain rule here:

brainly.com/question/30764359

#SPJ11

if you dilate a figure by a scale factor of 5/7 the new figure will be_____

Answers

If you dilate a figure by a scale factor of 5/7 the new figure will be Smaller.

When a figure is dilated by a scale factor less than 1, such as 5/7, the new figure will be smaller than the original. Dilation is a transformation that alters the size of a figure while preserving its shape. It involves multiplying the coordinates of each point in the figure by the scale factor.

When the scale factor is a fraction, the magnitude of the fraction represents the relative size of the dilation. In this case, the scale factor of 5/7 means that the new figure will be 5/7 times the size of the original figure. Since 5/7 is less than 1, the new figure will be smaller.

To understand this concept further, consider a simple example: a square with side length 7 units. If we dilate this square by a scale factor of 5/7, the new square will have side length (5/7) * 7 = 5 units. The new square is smaller than the original square because the scale factor is less than 1.

In summary, when a figure is dilated by a scale factor of 5/7, the new figure will be smaller than the original figure.

For more question on figure visit:

https://brainly.com/question/30824794

#SPJ8

Find all solutions of the following equation:
y(4) + 5y'' + 4y = 0
Using variation of parameters would be preferred but another method is fine.

Answers

The equation y(4) + 5y'' + 4y = 0 can be solved using variation of parameters or another method. The solutions are given by y(x) = C₁[tex]e^{(-x)}[/tex]+ C₂[tex]e^{(-4x)}[/tex] + C₃cos(x) + C₄sin(x), where C₁, C₂, C₃, and C₄ are constants.

To solve the given equation, we can use the method of variation of parameters. Let's consider the auxiliary equation [tex]r^4 + 5r^2[/tex] + 4 = 0. By factoring, we find ([tex]r^2[/tex] + 4)([tex]r^2[/tex] + 1) = 0. Therefore, the roots of the auxiliary equation are r₁ = 2i, r₂ = -2i, r₃ = i, and r₄ = -i. These complex roots indicate that the general solution will have a combination of exponential and trigonometric functions.

Using variation of parameters, we assume the general solution has the form y(x) = u₁(x)[tex]e^{(2ix)}[/tex] + u₂(x)[tex]e^{(-2ix)}[/tex] + u₃(x)[tex]e^{(ix)}[/tex] + u₄(x)[tex]e^{(-ix)}[/tex], where u₁, u₂, u₃, and u₄ are unknown functions to be determined.

To find the particular solutions, we differentiate y(x) with respect to x four times and substitute into the original equation. This leads to a system of equations involving the unknown functions u₁, u₂, u₃, and u₄. By solving this system, we obtain the values of the unknown functions.

Finally, the solutions to the equation y(4) + 5y'' + 4y = 0 are given by y(x) = C₁[tex]e^{(-x)}[/tex] + C₂[tex]e^{(-4x)}[/tex] + C₃cos(x) + C₄sin(x), where C₁, C₂, C₃, and C₄ are arbitrary constants determined by the initial or boundary conditions of the problem. This solution represents a linear combination of exponential and trigonometric functions, capturing all possible solutions to the given differential equation.

Learn more about equation here:

https://brainly.com/question/33336469

#SPJ11

Dolermine if the limit below exists, If it does exist, compule the fimit.
limx→10 √x²−x−42 / 8−2x
Rownte the fimit using the appropriate limat thecrem(s). Select the correct choice below and, if necessary, fil in any answer boxes to complele your choice.

Answers

The limit of the given expression as x approaches 10 is `-√3 / 3`. We can simplify the expression first. Notice that `x² - x - 42` can be factored as `(x - 7)(x + 6)`.

Plugging this into the expression, we get:

lim(x → 10) (√((x - 7)(x + 6))) / (8 - 2x)

Next, we can simplify further by factoring out a `√(x - 7)` from the numerator:

lim(x → 10) (√(x - 7) * √(x + 6)) / (8 - 2x)

Now we can use the property `lim(x → a) f(x) * g(x) = lim(x → a) f(x) * lim(x → a) g(x)` if both limits exist. Applying this property to our expression:

lim(x → 10) (√(x - 7)) * lim(x → 10) (√(x + 6)) / (8 - 2x)

Let's evaluate each limit separately:

1. lim(x → 10) (√(x - 7)):

  Plugging in `x = 10`, we get (√(10 - 7)) = √3.

2. lim(x → 10) (√(x + 6)):

  Plugging in `x = 10`, we get (√(10 + 6)) = √16 = 4.

Now we can substitute these values back into the original expression:

√3 * 4 / (8 - 2 * 10)

Simplifying further:

= 4√3 / (8 - 20)

= 4√3 / (-12)

= -√3 / 3

Therefore, the limit of the given expression as x approaches 10 is `-√3 / 3`.

Learn more about limit  here:

https://brainly.com/question/12207539

#SPJ11

Determine if the limit below exists, If it does exist, compute the limit.

limx→10 √x²−x−42 / 8−2x

Given the following transfer function:

H(z): 1.7/1 + 3.6 z^-1 - 0.5/1-0.9z^-1

a. Calculate its right-sided (causal) inverse z-transform h(n).
b. Plot its poles/zeros and determine its region of convergence (ROC).
c. Is the system stable?

Answers

a). u(n) is the unit step function, b). the ROC includes the entire z-plane except for the pole at z = 0.9 , c). the pole at z = 0.9 lies outside the unit circle, so the system is unstable.

a. To calculate the right-sided (causal) inverse z-transform h(n) of the given transfer function H(z), we can use partial fraction decomposition. First, let's rewrite H(z) as follows:

H(z) = 1.7/(1 + 3.6z^-1) - 0.5/(1 - 0.9z^-1)

By using the method of partial fractions, we can rewrite the above expression as:

H(z) = (1.7/3.6)/(1 - (-1/3.6)z^-1) - (0.5/0.9)/(1 - (0.9)z^-1)

Now, we can identify the inverse z-transforms of the individual terms as:

h(n) = (1.7/3.6)(-1/3.6)^n u(n) - (0.5/0.9)(0.9)^n u(n)

Where u(n) is the unit step function.

b. To plot the poles and zeros of the transfer function, we examine the denominator and numerator of H(z):

Denominator: 1 + 3.6z^-1 Numerator: 1.7

Since the denominator is a first-order polynomial, it has one zero at z = -3.6. The numerator doesn't have any zeros.

The region of convergence (ROC) is determined by the location of the poles. In this case, the ROC includes the entire z-plane except for the pole at z = 0.9.

c. To determine the stability of the system, we need to examine the location of the poles. If all the poles lie within the unit circle in the z-plane, the system is stable. In this case, the pole at z = 0.9 lies outside the unit circle, so the system is unstable.

Learn more about unit step function

https://brainly.com/question/32543758

#SPJ11

Problem 4 (12 pts.) Find the natural frequencies and mode shapes for the following system. 11 0 [ 2, 3][ 3 ]+[:][2] = [8] 1 3 -2 21 22 2 0 0 2 =

Answers

The system has two natural frequencies: λ₁ = 9 and λ₂ = unknown. The mode shapes corresponding to these frequencies are given by [14, 1] and are valid for any non-zero value of x₂.

To find the natural frequencies and mode shapes of the given system, we can set up an eigenvalue problem. The system can be represented by the equation:

[K]{x} = λ[M]{x}

where [K] is the stiffness matrix, [M] is the mass matrix, {x} is the displacement vector, and λ is the eigenvalue.

By rearranging the equation, we have:

([K] - λ[M]){x} = 0

To solve for the natural frequencies and mode shapes, we need to find the values of λ that satisfy this equation.

Substituting the given values into the equation, we obtain:

[ 11-λ 0 ][x₁] [2] [ 1 3-λ ] [x₂] = [8]

Expanding this equation gives:

(11-λ)x₁ + 0*x₂ = 2x₁ x₁ + (3-λ)x₂ = 8x₂

Simplifying further, we have:

(11-λ)x₁ = 2x₁ x₁ + (3-λ-8)x₂ = 0

From the first equation, we find:

(11-λ)x₁ - 2x₁ = 0 (11-λ-2)x₁ = 0 (9-λ)x₁ = 0

Therefore, we have two possibilities for λ: λ = 9 and x₁ can be any non-zero value.

Substituting λ = 9 into the second equation, we have:

x₁ + (3-9-8)x₂ = 0 x₁ - 14x₂ = 0 x₁ = 14x₂

So, the mode shape vector is:

{x} = [x₁, x₂] = [14x₂, x₂] = x₂[14, 1]

In summary, the system has two natural frequencies: λ₁ = 9 and λ₂ = unknown. The mode shapes corresponding to these frequencies are given by [14, 1] and are valid for any non-zero value of x₂.

Learn more about frequencies

https://brainly.com/question/254161

#SPJ11

Please help I need this answer asap


a
b
c
d​

Answers

Answer:

Step-by-step explanation:

b

f(t)=∫0t​tsint​dt…useL(∫0t​f(t)dt)=s1​F(s)

Answers

The given equation is \(f(t)=\int_0^t tsint dt\), and we are asked to use the Laplace transform to find \(L\left(\int_0^t f(t)dt\right)=\frac{1}{s}F(s)\). To apply the Laplace transform, we first need to find the Laplace transform of \(f(t)\).

We can rewrite \(f(t)\) as \(f(t)=t\int_0^t sint dt\) and then use the Laplace transform property \(\mathcal{L}\{t\cdot g(t)\}=-(d/ds)G(s)\), where \(G(s)\) is the Laplace transform of \(g(t)\). Applying this property, we have:

\[\mathcal{L}\{f(t)\}=-\frac{d}{ds}\left(\frac{1}{s^2+1}\right)=-\frac{-2s}{(s^2+1)^2}=\frac{2s}{(s^2+1)^2}\]

Now, to find the Laplace transform of \(\int_0^t f(t)dt\), we can use the property \(\mathcal{L}\{\int_0^t f(t)dt\}=\frac{1}{s}F(s)\). Plugging in the previously calculated Laplace transform of \(f(t)\), we get:

\[\mathcal{L}\left(\int_0^t f(t)dt\right)=\frac{1}{s}\cdot\frac{2s}{(s^2+1)^2}=\frac{2s}{s(s^2+1)^2}=\frac{2}{(s^2+1)^2}\]

Therefore, using the Laplace transform, we have \(L\left(\int_0^t f(t)dt\right)=\frac{1}{s}F(s)=\frac{2}{(s^2+1)^2}\).

Learn more about Laplace transform here: brainly.com/question/32645992

#SPJ11

For the past 10 periods, MAD was 25 units while total demand was 1,000 units. What was mean absolute percent error (MAPE)?
Multiple choice question.
10%
25%
50%
75%

Answers

The mean absolute percent error (MAPE) is 25%.

The mean absolute percent error (MAPE) is a measure of forecasting accuracy that quantifies the average deviation between predicted and actual values as a percentage of the actual values. In this case, the mean absolute deviation (MAD) is given as 25 units for the past 10 periods, and the total demand is 1,000 units.

To calculate the MAPE, we need to divide the MAD by the total demand and multiply by 100 to express it as a percentage. In this scenario, the MAPE is calculated as follows:

MAPE = (MAD / Total Demand) * 100

     = (25 / 1,000) * 100

     = 2.5%

Therefore, the MAPE is 2.5%, which means that, on average, the forecasts have a 2.5% deviation from the actual demand.

Learn more about: Percent

brainly.com/question/31323953

#SPJ11

A sample of tritium-3 decayed to 87% of its original amount after 5 years. How long would it take the sample (in years) to decay to 8% of its original amount?

Answers

Therefore, the sample would take approximately 20.65 years to decay to 8% of its original amount

Given: A sample of tritium-3 decayed to 87% of its original amount after 5 years.

To find: How long would it take the sample (in years) to decay to 8% of its original amount?

Solution: The rate of decay of tritium-3 can be modeled by the exponential function:

N(t) = N0e^(-kt), where N(t) is the amount of tritium remaining after t years, N0 is the initial amount of tritium, and k is the decay constant.

Using the given data, we can write two equations:

N(5) = 0.87N0   … (1)N(t) = 0.08N0     … (2)

Dividing equation (2) by (1), we get:

N(t)/N(5) = 0.08/0.87

N(t)/N(5) = 0.092

Given that N(5) = N0e^(-5k)

N(t) = N0e^(-tk)

Putting the above values in equation (3),

we get:

0.092 = e^(-t(k-5k))

0.092 = e^(-4tk)

Taking natural logarithm on both sides,

-2.38 = -4tk

Therefore,

t = -2.38 / (-4k)

t = 0.595/k   … (4)

Using equation (1), we can find k:

0.87N0 = N0e^(-5k)

e^(-5k) = 0.87

k = - ln 0.87 / 5

k = 0.02887

Using equation (4), we can now find t:

t = 0.595/0.02887

t = 20.65 years Therefore, the sample would take approximately 20.65 years to decay to 8% of its original amount.

To know more about exponential function, visit:

https://brainly.in/question/25125425

#SPJ11

L=p,7
M=5+p 1,7
if point LM =21 units
find p

Answers

Answer:

Is it a line? Please give more info

Step-by-step explanation:

Find the present value of the following ordinary simple
annuity,
Periodic Payment: $704
Payment Interval: 3 months
Term: 2.75 years
Interest Rate: 11%
Conversion Period: quarterly
(Round the final ans

Answers

The correct value  present value of the ordinary simple annuity is approximately $6,002.68.

To find the present value of the ordinary simple annuity, we can use the formula:

[tex]PV = P * (1 - (1 + r)^(-n)) / r[/tex]

Where:

PV = Present value

P = Periodic payment

r = Interest rate per period

n = Number of periods

In this case, the periodic payment is $704, the payment interval is 3 months, the term is 2.75 years, and the interest rate is 11% per year. Since the interest rate is provided as an annual rate, we need to convert it to a quarterly rate by dividing it by 4.

First, let's calculate the number of payment periods. Since the payment interval is 3 months and the term is 2.75 years, we have:

Number of periods (n) = Term (in years) / Payment interval (in years)

= 2.75 years / (1/4) years

= 11

Next, let's calculate the interest rate per quarter. Since the interest rate is 11% per year, we divide it by 4 to get the quarterly rate:

Interest rate per period (r) = Annual interest rate / Number of periods per year

= 11% / 4

= 0.11 / 4

= 0.0275

Now, we can calculate the present value (PV) using the formula:

PV = $704 *[tex](1 - (1 + 0.0275)^(-11)) / 0.0275[/tex]

Calculating this expression, we find that the present value (PV) is approximately $6,002.68.

Therefore, the present value of the ordinary simple annuity is approximately $6,002.68.

Learn more about compound interest here:

https://brainly.com/question/24274034

#SPJ11

Suppose that the series ∑c_nx^n has radius of convergence 15 and serles ∑d_nx^n has radius of convergence 16. What is the radius of convergence of the power series ∑(c_n+d_n)x^n ?
_________

Answers

Given that the series  ∑c_nxⁿ   has a radius of convergence 15 and series ∑d_nxⁿ  has a radius of convergence 16,

we need to find the radius of convergence of the power series ∑(c_n+d_n)xⁿ .

Radius of convergence for the power series can be found using the formula, R = 1/lim sup |aₙ[tex]|^{(1/n)[/tex]

Here, the power series ∑c_nxⁿ  has a radius of convergence 15,R₁ = 15

Thus, we get 1/lim sup |cₙ[tex]|^{(1/n)[/tex] = 1/15....(1)

Similarly, the power series ∑d_nxⁿ  has a radius of convergence 16,R₂ = 16

Therefore, 1/lim sup |dₙ[tex]|^{(1/n)[/tex]= 1/16...(2)

We need to find the radius of convergence of the power series ∑(c_n+d_n)xⁿ .

In order to find this, we can use the formula, R = 1/lim sup |(cₙ + dₙ)[tex]|^{(1/n)[/tex]

Multiplying numerator and denominator of (1) and (2) gives,

lim sup |cₙ[tex]|^{(1/n)[/tex] * lim sup |dₙ[tex]|^{(1/n)[/tex] = (1/15) * (1/16)lim sup |cₙ + dₙ[tex]|^{(1/n)[/tex] = lim sup |cₙ[tex]|^{(1/n)[/tex] * lim sup |dₙ[tex]|^{(1/n)[/tex]

Putting the value in the formula of R, we get,

R = 1/lim sup |cₙ + dₙ[tex]|^{(1/n)[/tex]

R = 1/lim sup |cₙ[tex]|^{(1/n)[/tex] * lim sup |dₙ[tex]|^{(1/n)[/tex]

R = 1/(1/15 * 1/16)R = 15.36

Therefore, the radius of convergence of the power series ∑[tex](c_n+d_n)[/tex]xⁿ  is 15.36.

To know more about convergence visit:

https://brainly.com/question/32608353

#SPJ11

Find the equation of the tangent plane to the surface defined by the equation e^xy + y^2e^(1-y) – z = 5 at the point (0, 1, -3).

Answers

The equation of the tangent plane to the surface at the point (0,1,-3) is `z = x + 2y - 1`.

The given equation of a surface is given by `f(x,y,z) = e^(xy) + y^2e^(1-y) – z = 5`.

The partial derivatives of this surface with respect to x and y are:

`∂f/∂x = ye^(xy)`

`∂f/∂y = xe^(xy) + 2ye^(1-y)``∂f/∂z = -1`

We can find the equation of the tangent plane by using the equation:

`z - z0 = (∂f/∂x) (x - x0) + (∂f/∂y) (y - y0)`where (x0, y0, z0) is the point of tangency.

To find the equation of the tangent plane at the point (0,1,-3), we need to find the values of the partial derivatives at that point:

`∂f/∂x = e^0 = 1`and `∂f/∂y = 0 + 2e^0 = 2`.

Substituting the values into the equation of the tangent plane gives:

`z - (-3) = 1(x - 0) + 2(y - 1)`or `z = x + 2y - 1`.

Therefore, the equation of the tangent plane to the surface at the point (0,1,-3) is `z = x + 2y - 1`.

The tangent plane to a surface at a given point is the plane that touches the surface at that point and has the same slope as the surface at that point.

The equation of the tangent plane can be found by finding the partial derivatives of the surface and plugging in the values of the point of tangency.

To know more about partial derivatives, visit:

https://brainly.com/question/28750217

#SPJ11

D(x) is the price, in dollars per unit, that consumers are willing to pay for x units of an item, and S(x) is the price, in dollars per unit, that producers are willing to accept for x units. Find (a) the equalibrium point, (b) the consumer surplus at fhe equilibrium point, and (c) the producer surplus at the equilibrium point. D(x)=7−x, for 0≤x≤7;S(x)=x+13​ (a) What are the coordinites of the equilibrium point? (Type an ordered pair).

Answers

Answer:

ASD 6+4

Step-by-step explanation:

3+123+4666+32432

If people are given one of two items of the same value and are given the choice to exchange it: 1. about 50 percent will make the change since half prefer the item they have and half prefer the item they do not have.

2. everyone will keep the first item since it was free.

3. everyone will trade since people like to trade.

4. most will keep the original item since people tend to value what they have more than a product that they do not.

Answers

Option 4, where most people keep the original item, aligns with psychological tendencies such as loss aversion and the endowment effect.

Among the given options, the most likely scenario is option 4: most people will keep the original item since people tend to value what they have more than a product they do not possess. This behavior can be attributed to the concept of loss aversion and the endowment effect.

Loss aversion refers to the tendency of individuals to strongly prefer avoiding losses rather than acquiring equivalent gains. In the context of the scenario, people may perceive the act of exchanging their original item as a potential loss because they already possess and value it. As a result, they may be reluctant to give up their original item, even if the alternative item is of equal value.

The endowment effect further strengthens this inclination to keep the original item. The endowment effect suggests that people assign a higher value to items they already possess compared to identical items that they do not own. This valuation bias stems from the psychological attachment and sense of ownership associated with the original item.

Given these behavioral biases, it is reasonable to expect that most individuals will choose to keep their original item rather than exchange it for an alternative item. This preference is driven by the aversion to perceived losses and the elevated value placed on the possession of the original item.

Learn more about most likely here:

https://brainly.com/question/26983839

#SPJ11

Other Questions
Which of the following statements is not true about Warner Bros. during the 1930s? 1.3 Sketch the typical customer profile (and his or her needs),who could benefit or find value from purchasing your product orservice. (30 Marks) blood leaving the right ventricle exits through the__________ valve. URGENT PLEASE!!!!!!!! Which of the following equations is FALSE?Right trianglesRS = 32QT = 16RT = 16QS = 32 An inductor is connected in parallel with the drain and source of an n-channel power MOSFET that is turned off. The drain to source voltage, Vds, is negative. There is a current, i, flowing through the inductor. (d) Derive a second order differential equation for the time, t, behaviour of the current, i. Define all the symbols used in your equations. By making a linear approximation for the relationship between current and voltage, show that the voltage decays You want to retire in 40 years as a millionaire (i.e., to have $1,000,000). If 6% is the average rate of return on the investment during this time period, then how much should you invest per month starting at the end of this month?a. $802b. $602c. $702d. $502 Find the intervals wheref(x)=x29is concave up/concave down. Provide the exact answers. 7. Find the equations of the tangent lines to the graph ofx2+y2=25which pass through the point (1, 8. Find the slope of the tangent line to the graph ofTan(x+2y)=x2+y2at the point(,0). Provide the exact and simplified answer. write an appropriately-styled business letter according to the context.-TASK 2Mr. Akbar Ali reached Jeddah from Istanbul on October 5, 2022. Upon his arrival, he found that his baggage had not arrived from Istanbul. He wrote a letter to the Customer Service Department of www.saudia.com to register his complaint. He expected that either his lost baggage would be located and sent back, or he would be offered compensation.You are the customer service manager at www.saudia.com . Write a letter to Mr. Akbar Ali to inform him that after two weeks, the lost baggage has not been found. You need to offer appropriate buffer and explanation before announcing the bad news. Before closing with a positive call to action of compensation package, offer a redirection or sweetener of future discounts on travel for him and his family. The following information pertains to Questions 1-3. A waveguide is formed from a hollow conducting tube of some cross section that is filled with a material having a dielectric constant (relative permittivity) of 2.56. The dominant mode of this waveguide is a TE mode with cutoff frequency of 6 GHz. The next higher order mode is a TM mode with a cutoff frequency of 8.5 GHz. Use c = 3 10 (m/s) as the speed of light in air and no = 1207 (2) as the intrinsic impedance of free space. What is the guide wavelength of the dominant mode at 7.8 GHz? Type your answer in millimeters to one place after the decimal. Question 2 What is the wave impedance of the dominant mode at 7.1 GHz? Type your answer in ohms to one place after the decimal. Question 3 1 pts 2 pts Assume all of the dielectric material is removed from the waveguide leaving an air-filled hollow tube. What is the cutoff frequency of the first higher order mode (the TM mode) of the waveguide in this case? Type your answer in GHz to three places after the decimal. Hint: Assume for this geometry that the cutoff wavenumber has the same value independent of the material filling the guide. T/F When anesthesia services are provided to the recipient of a liver transplant, report code 00796 Numerate the baseband transmission, and draw thewaveform of each type if Data is (1010110001) I would prefer matlab codeXc = (1.779 / 60) * 10^6 * ln D Problem 3 Write a computer program in any language to calculate the shunt capacitive reactance spacing factor for spaces equal to 0, 1, 2... and 49 feet, and thus verify Table A.5. of the american directors specializing in melodramas, comedies, and musicals, vincente minnelli and george cukor stand out for their shrewd use of: When assessing muscle tone and strength, the nurse would document normalfindings as:a."extremity muscle strength is 5/5 bilaterally"b."upper and lower extremity muscle strength is 5/5 bilaterally"c."upper and lower extremity muscle strength is 5/5"d."upper extremity muscle strength is 5/5 bilaterally" T/F: The hair cells in the cochlea are tonotopically organized such that hair cells near the base of the cochlea respond to high frequencies of sound while hair cells at the apex respond to low frequencies of sound. Is this correct if I have a transfer function of 5/s^2+6s+25 andan impulse function of 1/(.2s^2+1.2s+5)? a. Draw the circuit of an 8-bit Digital to Anlog (DAC) convetr. b. Find its resolution if the refrence volatge Vis SV. c. Find the output if the input is (11000011), Select all the statements that correctly describe the effect of temperature on the solubility of a solid in a given solvent.-The change in solubility with temperature can vary widely between different solutes.-In general, solids are more soluble at higher temperatures than at lower temperatures. Identify the type of automaton and obtain the regular expressioncorresponding to the following finite automatonplus put the regular expression of using a and b used in theautomata The common-emitter gain of a BJT operating as avoltage-controlled current source is = 450. If the collector current is 1mA, calculate thefollowing:a. Base currentb. Emitter currentc. Common ba