The values of "a" for which the system has:
- No solutions: a ≠ -9
- A unique solution: a ≠ -9 and det(A) ≠ 0 (24a + 216 ≠ 0)
- Infinitely many solutions: a = -9
If "a" is not equal to -9, the system will either have a unique solution or no solution, depending on the value of det(A). If "a" is equal to -9, the system will have infinitely many solutions.
To determine the values of "a" for which the given system of linear equations has no solutions, a unique solution, or infinitely many solutions, we can use the concept of determinant.
The given system of equations can be written in matrix form as:
A * X = 0
where A is the coefficient matrix and X is the column vector of variables [x1, x2, x3].
The coefficient matrix A is:
| 2 -6 -2 |
| a 9 5 |
| 3 -9 -1 |
To analyze the solutions, we can examine the determinant of matrix A.
If det(A) ≠ 0, the system has a unique solution.
If det(A) = 0 and the system is consistent (i.e., there are no contradictory equations), the system has infinitely many solutions.
If det(A) = 0 and the system is inconsistent (i.e., there are contradictory equations), the system has no solutions.
Now, let's calculate the determinant of matrix A:
det(A) = 2(9(-1) - 5(-9)) - (-6)(a(-1) - 5(3)) + (-2)(a(-9) - 9(3))
= 2(-9 + 45) - (-6)(-a - 15) + (-2)(-9a - 27)
= 2(36) + 6a + 90 + 18a + 54
= 72 + 24a + 144
= 24a + 216
For the system to have:
- No solutions, det(A) must be equal to zero (det(A) = 0) and a ≠ -9.
- A unique solution, det(A) must be nonzero (det(A) ≠ 0).
- Infinitely many solutions, det(A) must be equal to zero (det(A) = 0) and a = -9.
Learn more about coefficient matrix
https://brainly.com/question/16355467
#SPJ11
18. 19. 21. The number of solutions to the equation in the interval 0 ≤ x ≤ 2π is A. 1 B. 2 A. B. 2sin²x - sin x-1=0 C. D. An air traffic controller on the ground sees a plane that has a 6.5 degree angle of elevation. If the plane is 2 kilometers from the airport, what is its current altitude? 228 m 57 m 2 km 18 km B. 3 4 C. D. Find the exact value for sin 20 if cos 0 = 4/5 and 0 is a first-quadrant angle A. 7/25 C. 24/7 24/25 D. 25/24
18. there are two solutions in the interval 0 ≤ x ≤ 2π.
19. the current altitude of the plane is approximately 226.406 meters.
21. Since cos 20 is not given, we cannot find the exact value of sin 20 without additional information or a trigonometric table.
18. The number of solutions to the equation 2sin²x - sin x - 1 = 0 in the interval 0 ≤ x ≤ 2π is:
C. 2
To solve this quadratic equation, we can factor it as follows:
2sin²x - sin x - 1 = 0
(2sin x + 1)(sin x - 1) = 0
Setting each factor equal to zero:
2sin x + 1 = 0 or sin x - 1 = 0
Solving for sin x in each equation:
2sin x = -1 or sin x = 1
sin x = -1/2 or sin x = 1
The solutions for sin x = -1/2 in the interval 0 ≤ x ≤ 2π are π/6 and 5π/6.
The solution for sin x = 1 in the interval 0 ≤ x ≤ 2π is π/2.
As a result, the range 0 x 2 contains two solutions.
19. The current altitude of the plane with a 6.5-degree angle of elevation, when it is 2 kilometers from the airport, can be calculated using trigonometry.
We can use the tangent function:
tan(angle) = opposite/adjacent
In this case, the opposite side is the altitude of the plane and the adjacent side is the distance from the airport.
tan(6.5 degrees) = altitude/2 kilometers
Using a calculator to find the tangent of 6.5 degrees, we have:
tan(6.5 degrees) ≈ 0.113203
altitude/2 = 0.113203
altitude = 0.113203 * 2
altitude ≈ 0.226406 kilometers
Converting the altitude to meters:
altitude ≈ 0.226406 * 1000
altitude ≈ 226.406 meters
As a result, the aircraft is currently flying at a height of about 226.406 metres.
21. To find the exact value of sin 20, we will use the trigonometric identity:
sin²θ + cos²θ = 1
Given that cos 0 = 4/5 and 0 is a first-quadrant angle, we can find sin 0 using the identity:
cos²θ + sin²θ = 1
Since θ is a first-quadrant angle, cos 0 = 4/5 implies sin 0 = √(1 - cos²0):
sin 0 = √(1 - (4/5)²)
sin 0 = √(1 - 16/25)
sin 0 = √(9/25)
sin 0 = 3/5
Now, we can find sin 20 using the half-angle formula for sin:
sin (20/2) = √((1 - cos 20)/2)
We cannot determine the precise value of sin 20 without additional information or a trigonometric table because cos 20 is not given.
learn more about interval
https://brainly.com/question/11051767
#SPJ11
At Sammy's Bakery, customers can purchase 13 cookies for $12.87. If a customer has only $4.50
to spend, what is number of cookies they can purchase?
Given 4 students in CS major, where: Bob and John are taking CSE116; John and Steve are taking CSE191. Amy, Amy, Consider the relation R on the set P = {Amy, Bob, John, Steve) and R is defined as: aRb if and only if a and b are classmates (only consider CSE116 and CSE191). What property isn't satisfied for this to be an equivalence relation?
The property that isn't satisfied for this relation to be an equivalence relation is transitivity.
To be an equivalence relation, a relation must satisfy three properties: reflexivity, symmetry, and transitivity. Reflexivity means that every element is related to itself. Symmetry means that if a is related to b, then b is related to a. Transitivity means that if a is related to b and b is related to c, then a must be related to c.
In this case, we have a relation R defined on the set P = {Amy, Bob, John, Steve}. The relation R is defined as aRb if and only if a and b are classmates in the courses CSE116 and CSE191.
Reflexivity is satisfied because each student is a classmate of themselves. Symmetry is satisfied because if a is a classmate of b, then b is also a classmate of a. However, transitivity is not satisfied.
To demonstrate the lack of transitivity, let's consider the students' enrollment in the courses. Bob and John are taking CSE116, and John and Steve are taking CSE191. Based on the definition of R, we can say that Bob is a classmate of John and John is a classmate of Steve.
However, this does not imply that Bob is a classmate of Steve. Transitivity would require that if Bob is a classmate of John and John is a classmate of Steve, then Bob must also be a classmate of Steve. But this is not the case here.
In conclusion, the relation R defined as aRb if and only if a and b are classmates does not satisfy the property of transitivity, which is necessary for it to be an equivalence relation.
The lack of transitivity in this relation can be illustrated by the enrollment of the students in specific courses. Transitivity would require that if a is related to b and b is related to c, then a must be related to c. In this case, Bob is related to John because they are classmates in CSE116, and John is related to Steve because they are classmates in CSE191.
However, Bob is not related to Steve because they are not classmates in any of the specified courses. This violates the transitivity property and prevents the relation from being an equivalence relation.
Learn more about:equivalence.
brainly.com/question/25197597
#SPJ11
This is business mathematics 2( MTH 2223). Please give
the type of annuity with explanation
Q2) Jeffrey deposits \( \$ 450 \) at the end of every quarter for 4 years and 6 months in a retirement fund at \( 5.30 \% \) compounded semi-annually. What type of annuity is this?
Since Jeffrey deposits the $450 at the end of every quarter, the type of annuity is an Ordinary Annuity.
What is an ordinary annuity?An ordinary annuity is a type of annuity where the payment occurs at the end of the period and not at the beginning like Annuity Due.
The ordinary annuity can be computed as follows using an online finance calculator.
Quarterly deposits = $450
Investment period = 4 years and 6 months (4.5 years)
Compounding period = semi-annually
N (# of periods) = 18 (4.5 years x 4)
I/Y (Interest per year) = 5.3%
PV (Present Value) = $0
PMT (Periodic Payment) = $450
P/Y (# of periods per year) = 4
C/Y (# of times interest compound per year) = 2
PMT made = at the of each period
Results:
FV = $9,073.18
Sum of all periodic payments = $8,100 ($450 x 4.5 x 4)
Total Interest = $973.18
Thus, the annuity is not an Annuity Due but an Ordinary Annuity.
Learn more about annuities at https://brainly.com/question/30100868.
#SPJ4
Find the future value of the ordinary annuity with the given payment and interest rate. PMT= $1200, money earns 8% compounded quarterly for 10 years a. $58,975 b. $73,475 c. $71,850 d. $72,483 e. $68,385
The future value of the ordinary annuity with a payment of $1200, earning 8% compounded quarterly for 10 years is $72,483 (Option d).
To find the future value of an ordinary annuity, we can use the formula:
[tex]FV = PMT * [(1 + r)^n - 1] / r[/tex]
Where:
FV is the future value of the annuity,
PMT is the payment amount,
r is the interest rate per period, and
n is the number of periods.
In this case, the payment amount is $1200, the interest rate is 8% (or 0.08), and the annuity is compounded quarterly, so the interest rate per quarter is 0.08/4 = 0.02. The number of periods is 10 years * 4 quarters per year = 40 quarters.
Plugging these values into the formula, we get:
FV = $1200 * [(1 + 0.02)⁴⁰ - 1] / 0.02
= $1200 * [(1.02)⁴⁰ - 1] / 0.02
≈ $72,483
Therefore, the future value of the ordinary annuity is approximately $72,483.
Learn more about: Future value
brainly.com/question/30787954
#SPJ11
Here are some more examples: (1+3)9 -36, (23) "26"236, 3"(22) = 3481, (2+3)"*2=5"*2=25, 3""(2+2)=3""4=81 (Here we have used" to denote exponentiation and you can also use this instead of a "caret" if you want). Try entering some of these and use the "Preview" button to see the result. The "correct" result for this answer blank is 36, but by using the "Preview" button, you can enter whatever you want and use WeBWorK as a hand calculator.
There is one other thing to be careful of. Multiplication and division have the same precedence and there are no universal rules as to which should be done first. For example, what does 2/3'4 mean? (Note that is the "division symbol", which is usually written as a line with two dots, but unfortunately, this "line with two dots" symbol is not on computer keyboards. Don't think of/ as the horizontal line in a fraction. Ask yourself what 1/2/2 should mean.) WeBWorK and most other computers read things from left to right, i.e. 2/3'4 means (2/3)4 or 8/3, IT DOES NOT MEAN 2/12. Some computers may do operations from right to left. If you want 2/(3°4)= 2/12, you have to use parentheses. The same thing happens with addition and subtraction. 1-3+2 = 0 but 1-(3+2)=-4. This is one case where using parentheses even if they are not needed might be a good idea, e.g. write (2/3)"4 even though you could write 2/3'4. This is also a case where previewing your answer can save you a lot a grief since you will be able to see what you entered.
Enter 2/3 4 and use the Preview button to see what you get.
The result of entering "2/3 4" and using the Preview button is 8/3.
The order of operations, also known as precedence rules, is crucial in mathematics to ensure consistent and accurate calculations. These rules dictate the order in which different mathematical operations should be performed when evaluating an expression.
The standard order of operations, often remembered using the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division from left to right, Addition and Subtraction from left to right), helps us determine which operations to prioritize.
When evaluating expressions, it is important to consider the order of operations. In this case, the expression "2/3 4" consists of a division operation followed by a multiplication operation. According to the rules of precedence, multiplication and division have the same level of precedence and should be evaluated from left to right.
Therefore, we first perform the division operation: 2 divided by 3, which gives us the fraction 2/3. Then, we proceed to the multiplication operation: multiplying the fraction 2/3 by 4. This yields a result of 8/3.
Learn more about Preview button
brainly.com/question/29855870
#SPJ11
Please help
Use the photo/link to help you
A. 105°
B. 25°
C. 75°
D. 130°
Answer:
C. 75°
Step-by-step explanation:
You want the angle marked ∠1 in the trapezoid shown.
TransversalWhere a transversal crosses parallel lines, same-side interior angles are supplementary. In this trapezoid, this means the angles at the right side of the figure are supplementary:
∠1 + 105° = 180°
∠1 = 75° . . . . . . . . . . . . subtract 105°
__
Additional comment
The given relation also means that the unmarked angle is supplementary to the one marked 50°. The unmarked angle will be 130°.
<95141404393>
Graph the linear function in questions 5 and 6.
1
y = -x-4
3
O A.
15.
O
2
X
The graph of the linear function y = -x - 4 will look like a straight line that passes through the points (-3, -1), (-2, -2), (0, -4), (1, -5), and (2, -6).
To graph the linear function y = -x - 4, we can start by plotting a few points and then connecting them with a straight line.
We'll choose some x-values and substitute them into the equation to find the corresponding y-values. Let's choose x = -3, -2, 0, 1, and 2.
When x = -3:
y = -(-3) - 4 = 3 - 4 = -1
So, we have the point (-3, -1).
When x = -2:
y = -(-2) - 4 = 2 - 4 = -2
So, we have the point (-2, -2).
When x = 0:
y = -(0) - 4 = 0 - 4 = -4
So, we have the point (0, -4).
When x = 1:
y = -(1) - 4 = -1 - 4 = -5
So, we have the point (1, -5).
When x = 2:
y = -(2) - 4 = -2 - 4 = -6
So, we have the point (2, -6).
Now, let's plot these points on a coordinate plane.
The x-axis represents the values of x, and the y-axis represents the values of y. We can plot the points (-3, -1), (-2, -2), (0, -4), (1, -5), and (2, -6).
After plotting the points, we can connect them with a straight line. Since the equation is y = -x - 4, the line will have a negative slope and will be sloping downward from left to right.
The graph of the linear function y = -x - 4 will look like a straight line that passes through the points (-3, -1), (-2, -2), (0, -4), (1, -5), and (2, -6).
Please note that without an actual graphing tool, I can only describe the process of graphing the function. The actual graph would be a line passing through the mentioned points.
For more such questions on linear function visit:
https://brainly.com/question/2248255
#SPJ8
At a sale this week, a sofa is being sold for $147.20 This is a 68% discount from the original price.What is the original price?
Answer: The original price is $460.
Step-by-step explanation: Since the sofa is sold at a 68% discount (0.68) from the original price, the sofa during the sale cost 32% (0.32) of the original price. Therefore, $147.20 = (0.32)* original price and dividing both sides by 0.32, the original price is $460.
Solve the system of equations. x + 2y + 2z = -16 4y + 5z = -31 Z=-3 a. inconsistent b. x = -3, y = -4, z = -2; (-3, -4,-2) c. None of the above d. x = -2, y = -3, z = -4; (-2, -3, -4) e. x = -2, y = -4, z = -3; (-2, -4, -3)
The solution to the system of equations is:
x = -2, y = -4, z = -3
So, the correct option is:
e. x = -2, y = -4, z = -3; (-2, -4, -3)
To solve the given system of equations:
1) x + 2y + 2z = -16
2) 4y + 5z = -31
3) z = -3
We can substitute the value of z from equation 3 into equations 1 and 2 to solve for x and y.
Substituting z = -3 into equation 1:
x + 2y + 2(-3) = -16
x + 2y - 6 = -16
x + 2y = -16 + 6
x + 2y = -10
Substituting z = -3 into equation 2:
4y + 5(-3) = -31
4y - 15 = -31
4y = -31 + 15
4y = -16
y = -16/4
y = -4
Now, substituting y = -4 back into equation 1:
x + 2(-4) = -10
x - 8 = -10
x = -10 + 8
x = -2
Therefore, the solution to the system of equations is:
x = -2, y = -4, z = -3
So, the correct option is:
e. x = -2, y = -4, z = -3; (-2, -4, -3)
Learn more about option
https://brainly.com/question/32701522
#SPJ11
Simplify
a) (4+√5) (4+√5)
Answer: 21 + 8√5
Step-by-step explanation:
(4+√5) (4+√5) >FOIL
16 + 4√5 + 4√5 + √5√5 >combine like terms
16 + 8√5 + 5
21 + 8√5
Answer:
8√5+21
Step-by-step explanation:
Simplify the given expression.
(4+√5) (4+√5)
Start by distributing, using F.O.I.L. (First, outer, inner, last).
(4+√5) (4+√5)
=> 4(4)+4(√5)+√5(4)+√5(√5)
Simplify what's above.
4(4)+4(√5)+√5(4)+√5(√5)
=> 16+4√5+4√5+5
=> 8√5+21
Thus, the given expression has been simplified.
QUESTION 5 Find all maximum, minimum and potential saddle points of the following function. f(x, y) = (y-2)(x² - y²).
The function f(x, y) = (y-2)(x² - y²) has a maximum point, a minimum point, and potential saddle points.
To find the maximum, minimum, and potential saddle points of the function f(x, y) = (y-2)(x² - y²), we need to calculate its first-order partial derivatives and second-order partial derivatives with respect to x and y.
1. Calculate the first-order partial derivatives:
∂f/∂x = 2x(y - 2) (partial derivative with respect to x)
∂f/∂y = x² - 2y (partial derivative with respect to y)
2. Set the partial derivatives equal to zero and solve for critical points:
∂f/∂x = 0 => 2x(y - 2) = 0
∂f/∂y = 0 => x² - 2y = 0
From the first equation:
Case 1: 2x = 0 => x = 0
Case 2: y - 2 = 0 => y = 2
From the second equation:
Case 3: x² - 2y = 0
Now we have three critical points: (0, 2), (0, -1), and (√2, 1).
3. Calculate the second-order partial derivatives:
∂²f/∂x² = 2(y - 2) (second partial derivative with respect to x)
∂²f/∂y² = -2 (second partial derivative with respect to y)
∂²f/∂x∂y = 0 (mixed partial derivative)
4. Use the second partial derivatives to determine the nature of each critical point:
For the point (0, 2):
∂²f/∂x² = 2(2 - 2) = 0
∂²f/∂y² = -2
∂²f/∂x∂y = 0
Since the second-order partial derivatives do not provide sufficient information, we need to perform further analysis.
For the point (0, -1):
∂²f/∂x² = 2(-1 - 2) = -6
∂²f/∂y² = -2
∂²f/∂x∂y = 0
The determinant of the Hessian matrix (second-order partial derivatives) is positive (0 - 0) - (0 - (-2)) = 2.
Since ∂²f/∂x² < 0 and the determinant is positive, the point (0, -1) is a saddle point.
For the point (√2, 1):
∂²f/∂x² = 2(1 - 2) = -2
∂²f/∂y² = -2
∂²f/∂x∂y = 0
The determinant of the Hessian matrix (second-order partial derivatives) is negative ((-2)(-2)) - (0 - 0) = 4.
Since the determinant is negative, the point (√2, 1) is a saddle point.
In summary:
- The point (0, 2) corresponds to a critical point, but further analysis is needed to determine its nature.
- The point (0, -1) is a saddle point.
- The point (√2, 1) is also a saddle point.
Please note that for the point (0, 2), additional analysis is
required to determine if it is a maximum, minimum, or a saddle point.
Learn more about saddle points visit
brainly.com/question/11013588
#SPJ11
i’m really bad at math does anyone know this question ? it’s from SVHS .
Answer: Choice B
Step-by-step explanation: On the left side, since its a straight line, no matter what x is, as long as x is less than or equal to -2, f(x) stays at 2 so the answer is choice b.
i. Write Z= -3 - 3i in polar form. Clearly show all the working.
ii. Find the value of Z^7 and write the answer in the form a+bi.
Note: Leave your answer in surd form.
i) The polar form of Z is:[tex]Z = 3\sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right),[/tex]
ii) [tex]Z^7 = -2187 - 2187i[/tex] and is expressed in the form a + bi
Polar Form of Z = -3 -3i.
In order to express the complex number -3-3i in polar form, we use the formula:
r = \sqrt {a^2 + b^2 }
where a = -3 and b = -3,
hence;[tex]r &= \sqrt {a^2 + b^2 } \\&= \sqrt {{\left( { - 3} \right)^2} + {\left( { - 3} \right)^2}} \\&= \sqrt {18} \\&= 3\sqrt 2 \[/tex]
We can calculate the argument [tex]\theta of Z as:\theta = \tan ^{ - 1} \left( {\frac{b}{a}} \right)[/tex]
where a = -3 and b = -3,
hence;
[tex]\theta &= \tan ^{ - 1} \left( {\frac{b}{a}} \right) \\&= \tan ^{ - 1} \left( {\frac{{ - 3}}{{ - 3}}} \right) \\&= \tan ^{ - 1} \left( 1 \right) \\&= \frac{\pi }{4} \[/tex]
Therefore, the polar form of Z is:
Z = [tex]3\sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)[/tex]
ii) Z^7 = -2187 - 2187i and is expressed in the form a + bi
Since we already have Z in polar form we can now easily find
Z^7.Z^7 = [tex]{\left( {3\sqrt 2 } \right)^7}{\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)^7}[/tex]
We can expand [tex]\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)^7[/tex] using De Moivre's theorem:
[tex]\left( {\cos \theta + i\sin \theta } \right)^n = \cos n\theta + i\sin n\ \\theta\\Therefore; \\Z^7 &= {\left( {3\sqrt 2 } \right)^7}\left( {\cos \frac{{7\pi }}{4} + i\sin \frac{{7\pi }}{4}} \right) \\&= 3^7\left( {2\sqrt 2 } \right)\left( {\cos \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) + i\sin \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right)} \right) \\&= 2187\sqrt 2 \left( { - \frac{1}{{\sqrt 2 }}} \right) + 2187i\left( { - \frac{1}{{\sqrt 2 }}} \right) \\&= - 2187 - 2187i \[/tex]
Thus, Z^7 = -2187 - 2187i and is expressed in the form a + bi
Learn more about Polar form from this link :
https://brainly.com/question/28967624
#SPJ11
Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7
A: ZABC is a right angle. (Given)
B: DB bisects ZABC. (Given)
C: m/ABD = m/CBD. (Definition of angle bisector)
D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.
A: Given: ZABC is a right angle.
B: Given: DB bisects ZABC.
C: To prove: m/CBD = 45°
D: Proof:
ZABC is a right angle. (Given)
DB bisects ZABC. (Given)
m/ABD = m/CBD. (Definition of angle bisector)
m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
Substitute m/CBD with m/ABD in equation (4).
m/ABD + m/ABD = 90°.
2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))
Divide both sides of equation (6) by 2.
m/ABD = 45°.
Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)
Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.
Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.
Therefore, m/ABD and m/CBD are equal.
For similar question on substitution property.
https://brainly.com/question/29058226
#SPJ8
Find the hcf by use continued division method of 540,629
To find the highest common factor (HCF) of 540 and 629 using the continued division method, we will perform a series of divisions until we reach a remainder of 0.The HCF of 540 and 629 is 1.
Step 1: Divide 629 by 540.
The quotient is 1, and the remainder is 89.
Step 2: Divide 540 by 89.
The quotient is 6, and the remainder is 54.
Step 3: Divide 89 by 54.
The quotient is 1, and the remainder is 35.
Step 4: Divide 54 by 35.
The quotient is 1, and the remainder is 19.
Step 5: Divide 35 by 19.
The quotient is 1, and the remainder is 16.
Step 6: Divide 19 by 16.
The quotient is 1, and the remainder is 3.
Step 7: Divide 16 by 3.
The quotient is 5, and the remainder is 1.
Step 8: Divide 3 by 1.
The quotient is 3, and the remainder is 0.
Since we have reached a remainder of 0, the last divisor used (in this case, 1) is the HCF of 540 and 629.
Therefore, the HCF of 540 and 629 is 1.
Learn more about factor here
https://brainly.com/question/6561461
#SPJ11
please answer as soon as possible please!
Answer: 3 sec
Step-by-step explanation:
They want to know how long? That is time, which is the x-axis. How long is your curve, it goes til 3 so the ball was in the air for 3 sec.
Is the following model linear? (talking about linear regression model)
y^2 = ax_1 + bx_2 + u.
I understand that the point is that independent variables x are linear in parameters (and in this case they are), but what about y, are there any restrictions? (we can use log(y), what about quadratic/cubic y?)
In a linear regression model, the linearity assumption refers to the relationship between the independent variables and the dependent variable.
It assumes that the dependent variable is a linear combination of the independent variables, with the coefficients representing the effect of each independent variable on the dependent variable.
In the given model, y^2 = ax_1 + bx_2 + u, the dependent variable y is squared, which introduces a non-linearity to the model. The presence of y^2 in the equation makes the model non-linear, as it cannot be expressed as a linear combination of the independent variables.
If you want to include quadratic or cubic terms for the dependent variable y, you would need to transform the model accordingly. For example, you could use a quadratic or cubic transformation of y, such as y^2, y^3, or even log(y), and include those transformed variables in the linear regression model along with the independent variables. This would allow you to capture non-linear relationships between the dependent variable and the independent variables in the model.
Learn more about linearity here
https://brainly.com/question/2030026
#SPJ11
12. In how many different ways can five dogs be lined up to be displayed at a dog show? 13. An ice cream parlor has 15 different flavors. Cynthia orders a banana split and has to select three different flavors. How many different selections are possible? 14. If a club consists of eight members, how many different arrangements of president and vice-president are possible?
12. The number of ways to line up five dogs is calculated using permutations, resulting in 120 different arrangements.
13. Cynthia can choose three flavors out of 15 options, and the number of different selections is calculated using combinations, resulting in 455 possibilities.
14. There are 56 different arrangements of president and vice-president from a club consisting of eight members, calculated using permutations.
12. 1: Identify that we need to find the number of arrangements (permutations) of the five dogs.
2: Use the formula for permutations: P(n, r) = n! / (n - r)!
3: Substitute the values: P(5, 5) = 5! / (5 - 5)!
4: Simplify the expression: P(5, 5) = 5! / 0! = 5! / 1 = 5 x 4 x 3 x 2 x 1 = 120
Therefore, there are 120 different ways the five dogs can be lined up for the dog show.
13. 1: Recognize that we need to find the number of combinations of three flavors from 15 options.
2: Use the formula for combinations: C(n, r) = n! / (r! * (n - r)!)
3: Substitute the values: C(15, 3) = 15! / (3! * (15 - 3)!)
4: Simplify the expression: C(15, 3) = 15! / (3! * 12!)
5: Calculate the factorial values: 15! = 15 x 14 x 13 x 12!, 3! = 3 x 2 x 1, 12! = 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
6: Substitute the factorial values: C(15, 3) = (15 x 14 x 13) / (3 x 2 x 1) = 455
Therefore, there are 455 different selections of three flavors possible for Cynthia's banana split.
14. 1: Recognize that we need to find the number of arrangements (permutations) of two positions (president and vice-president) from eight club members.
2: Use the formula for permutations: P(n, r) = n! / (n - r)!
3: Substitute the values: P(8, 2) = 8! / (8 - 2)!
4: Simplify the expression: P(8, 2) = 8! / 6!
5: Calculate the factorial values: 8! = 8 x 7 x 6!, 6! = 6 x 5 x 4 x 3 x 2 x 1
6: Substitute the factorial values: P(8, 2) = (8 x 7) / (6 x 5 x 4 x 3 x 2 x 1) = 56
Therefore, there are 56 different arrangements of president and vice-president possible from the eight club members.
Learn more about permutations visit
brainly.com/question/32644071
#SPJ11
Find the midpoint of the segment with the following endpoints. ( 10 , 7 ) and ( 2 , 1 )
Finding the midpoint of a line segment is easy.
In a two-dimensional Cartesian plane with known endpoints, the abscissa value of the midpoint is half the sum of the abscissa values of the endpoints, and the ordinate value is half the sum of the ordinate values of the endpoints.
Based on this information, we can comfortably say that the midpoint of this line segment is as follows;
Let the midpoint of this segment is [tex]M(x_{1},y_{1})[/tex].
[tex]x_{1}=(10+2)\div2=6[/tex][tex]y_{1}=(7+1)\div2=4[/tex]Hence, the midpoint of this segment is [tex](6,4)[/tex].
Evaluate the determinant of each matrix. [-4 3 2 0]
In the case of the given 1x4 matrix [-4 3 2 0], since it does not meet the requirement of being a square matrix, it does not have a determinant. The determinant is only applicable to matrices with dimensions of n x n, where n is a positive integer and hence, the determinant of the given matrix is undefined.
The given matrix is a 1x4 matrix, which means it has only one row and four columns. Determinants are defined for square matrices, so a 1x4 matrix does not have a determinant.
The determinant is a scalar value that represents certain properties of a square matrix, such as invertibility and the scaling factor of the linear transformation it represents. It is only defined for square matrices, which have an equal number of rows and columns.
In the case of the given 1x4 matrix [-4 3 2 0], since it does not meet the requirement of being a square matrix, it does not have a determinant. The determinant is only applicable to matrices with dimensions of n x n, where n is a positive integer.
Therefore, the determinant of the given matrix is undefined.
Learn more about matrix from the given link!
https://brainly.com/question/30715889
#SPJ11
-6-5-4
a
The graph above is a transformation of the function f(x) = |x|.
Write an equation for the function graphed above.
g(x)
=
An equation for the function graphed above is g(x) = |x - 1| - 2.
What is a translation?In Mathematics and Geometry, the translation of a graph to the right means adding a digit to the numerical value on the x-coordinate of the pre-image;
g(x) = f(x - N)
By critically observing the graph of this absolute value function, we can reasonably infer and logically deduce that the parent absolute value function f(x) = |x| was vertically translated to the right by 1 unit and 2 units down, in order to produce the transformed absolute value function g(x) as follows;
f(x) = |x|
g(x) = f(x - 1)
g(x) = |x - 1| - 2
In conclusion, the value of the variables A, B, and C are 4, 2, and 8 respectively.
Read more on function and translation here: brainly.com/question/31559256
#SPJ1
3. Consider the null hypothesis that the population mean, β
, of the radon in the New Brunswick house is equal to the EPA cutoff of 4 . (a) Write the null hypothesis as a mathematical statement about β
. (b) Write the alternative hypothesis as a mathematical statement about β
. (c) When testing this null hypothesis, are you doing a left-tail, right-tail or twotailed test? Why or why not? (d) What estimator of β
(not the number for the estimate itself) will you need to use to test the null hypothesis? What is the formula for the variance of this estimator? (Don't derive it, just write it down). Howcan you estimate this variance formula? How can you use the estimated variance to obtain a standard error for your estimator of β
? 4. Test the null hypothesis from Question 3 using a t-test. Assume you do not know the population distribution of radon. You will have to rely on the central limit theorem and approximate the null distribution of your t-statistic using the N(0,1) distribution. Carry out your test at the 5% significance level (α=0.05). Clearly explain how you compute the t-statistic. Clearly state the rejection rule you are using and how you obtained your critical value. What is the result of your test?
(a) The statement assumes that the population mean of radon in New Brunswick houses (β) is equal to the EPA cutoff of 4.
The null hypothesis can be written as:
H0: β = 4
(b) The alternative hypothesis can be written as:
Ha: β ≠ 4
This statement suggests that the population mean of radon in New Brunswick houses (β) is not equal to the EPA cutoff of 4.
(c) When testing this null hypothesis, a two-tailed test is used. This is because the alternative hypothesis does not specify a direction (greater than or less than), but instead allows for the possibility that the population mean can differ from the EPA cutoff in either direction.
(d) To test the null hypothesis, we need to use an estimator of β. In this case, the sample mean (x) will serve as the estimator of β. The formula for the variance of this estimator, assuming simple random sampling, is:
Var(x) = σ²/n
Here, σ represents the population standard deviation and n is the sample size. To estimate this variance formula, we need the sample standard deviation (s). The estimated variance formula becomes:
Var(x)≈ s²/n
To obtain a standard error for the estimator of β, we take the square root of the estimated variance:
SE(x) ≈ √(s²/n)
4. To test the null hypothesis using a t-test, we will compute the t-statistic using the formula:
t = (x-β) / (SE(x))
In this case, since β is known (4), the formula simplifies to:
t = (x- 4) / (SE(x))
To carry out the test at the 5% significance level (α = 0.05), we will compare the computed t-statistic to the critical value(s) from the t-distribution with appropriate degrees of freedom. The rejection rule is as follows: If the absolute value of the computed t-statistic is greater than the critical value(s), we reject the null hypothesis; otherwise, we fail to reject the null hypothesis.
The result of the test will indicate whether there is sufficient evidence to reject the null hypothesis or not.
Learn more about null hypothesis here: brainly.com/question/4436370
#SPJ11
The set of ordered pairs {(-2, -14), (1, 19), (2, 6), (3, -19)} defines a parabola. Which of the following sets of ordered pairs defines its inverse? A. {(14, 2), (-19, -1), (-6, -2), (19, -3)} B. {(2, 14), (-1, -19), (-2,-6), (-3, 19)} C. {(-14, -2), (19, 1), (6,2), (-19, 3)) D. {(-2, -14), (1, 19), (2, 6), (3, -19))
The set of ordered pairs that defines the inverse of the given parabola is option B: {(2, 14), (-1, -19), (-2, -6), (-3, 19)}.
To find the inverse of a function, we switch the x and y coordinates of each ordered pair. In this case, the given parabola has ordered pairs (-2, -14), (1, 19), (2, 6), and (3, -19). The inverse of these ordered pairs will be (y, x) pairs.
Option B provides the set of ordered pairs that matches this criterion: {(2, 14), (-1, -19), (-2, -6), (-3, 19)}. Each y value corresponds to its respective x value from the original set, satisfying the conditions for an inverse. Therefore, option B is the correct answer.
You can learn more about parabola at
https://brainly.com/question/29635857
#SPJ11
AB 8a 12b
=
SEE
8a 12b
ABCD is a quadrilateral.
A
a) Express AD in terms of a and/or b. Fully simplify your answer.
b) What type of quadrilateral is ABCD?
B
BC= 2a + 16b
D
2a + 16b
9a-4b
C
DC = 9a-4b
Not drawn accurately
Rectangle
Rhombus
Square
Trapezium
Parallelogram
a) AD can be expressed as AD = 6a - 4b.
b) ABCD is a parallelogram.
a) To express AD in terms of 'a' and/or 'b', we can observe that AD is the difference between AB and BC. Using the given values, we have:
AD = AB - BC
= (8a + 12b) - (2a + 16b)
= 8a + 12b - 2a - 16b
= 6a - 4b
Therefore, AD can be expressed as 6a - 4b.
b) Based on the given information, the shape ABCD is a parallelogram. This is because a parallelogram has opposite sides that are parallel and equal in length, which is satisfied by the given sides AB and DC.
for such more question on parallelogram
https://brainly.com/question/3050890
#SPJ8
Describe the Span Describe the span of {(1,0,0),(0,1,1),(1,1,1)}. Describe the span of {(−1,2),(2,−4)}. Is it in the Span? Is (1,−2) in the span of {(−1,2),(2,−4)} ? Is it in the Span? Is (1,0) in the span of {(−1,2),(2,−4)} ?
The span of {(1,0,0),(0,1,1),(1,1,1)} is the set of all vectors of the form (x - z, y - z, z), where x, y, and z are arbitrary. The span of {(-1,2),(2,-4)} is the set of all scalar multiples of (-1,2). Vector (1,-2) is in the span, but (1,0) is not.
For the set {(1,0,0),(0,1,1),(1,1,1)}, we can find the span by solving a system of linear equations:
a(1,0,0) + b(0,1,1) + c(1,1,1) = (x,y,z)
This gives us the following system of equations:
a + c = x
b + c = y
c = z
Solving for a, b, and c in terms of x, y, and z, we get:
a = x - z
b = y - z
c = z
Therefore, the span of the set {(1,0,0),(0,1,1),(1,1,1)} is the set of all vectors of the form (x - z, y - z, z), where x, y, and z are arbitrary.
For the set {(-1,2),(2,-4)}, we can see that the two vectors are linearly dependent, since one is a scalar multiple of the other. Specifically, (-1,2) = (-1/2)(2,-4). Therefore, the span of this set is the set of all scalar multiples of (-1,2) (or equivalently, the set of all scalar multiples of (2,-4)).
To determine if a vector is in the span of a set, we need to check if it can be written as a linear combination of the vectors in the set.
For the vector (1,-2), we need to check if there exist constants a and b such that:
a(-1,2) + b(2,-4) = (1,-2)
This gives us the following system of equations:
- a + 2b = 1
2a - 4b = -2
Solving for a and b, we get:
a = 0
b = -1/2
Therefore, (1,-2) can be written as a linear combination of (-1,2) and (2,-4), and is in their span.
For the vector (1,0), we need to check if there exist constants a and b such that:
a(-1,2) + b(2,-4) = (1,0)
This gives us the following system of equations:
- a + 2b = 1
2a - 4b = 0
Solving for a and b, we get:
a = 2b
b = 1/4
However, this implies that a is not an integer, so it is impossible to write (1,0) as a linear combination of (-1,2) and (2,-4). Therefore, (1,0) is not in their span.
To know more about span, visit:
brainly.com/question/32762479
#SPJ11
Given the following linear ODE: y' - y = x. Then a one-parameter solution of it is None of the mentioned y = x + 1 +ce™* y = -x-1+ ce* y = -x-1+ce-*
Correct answer is "None of the mentioned".
The given linear ODE is:y' - y = x
We want to find the one-parameter solution of the above linear ODE.For the linear ODE:y' + p(t)y = g(t), the solution is given byy = (1/u) [ ∫u g(t) dt + C ], where u is the integrating factor, which is given by u(t) = e^∫p(t)dt.
In our case,p(t) = -1, so we haveu(t) = e^∫-1dt= e^-t.The integrating factor isu(t) = e^-t.Multiplying both sides of the linear ODE by the integrating factor, we get:e^-ty' - e^-ty = xe^-t
Now, we have:(e^-ty)' = xe^-t∫(e^-ty)' dt = ∫xe^-t dtIntegrating both sides, we get:-e^-ty = -xe^-t - e^-t + C1
Multiplying both sides by -1, we get:e^-ty = xe^-t + e^-t + C2
Taking exponential on both sides, we get:e^(-t) * e^y = e^(-t) * (x + 1 + C2)or e^y = x + 1 + C2or y = ln(x + 1 + C2)
Therefore, the one-parameter solution of the given linear ODE is y = ln(x + 1 + C2), where C2 is an arbitrary constant. None of the options given in the question matches with the solution.
Hence, the correct answer is "None of the mentioned".
Learn more about one-parameter solution from the link :
https://brainly.com/question/32935095
#SPJ11
f(x) = x^2 + x − 6 Determine the x-intercepts and the y-intercept. And can you please explain how you got your answer
Answer:
x - intercepts are x = - 3, x = 2 , y- intercept = - 6
Step-by-step explanation:
the x- intercepts are the points on the x- axis where the graph of f(x) crosses the x- axis.
any point on the x- axis has a y- coordinate of zero.
let y = f(x) = 0 and solve for x, that is
x² + x - 6 = 0
consider the factors of the constant term (- 6) which sum to give the coefficient of the x- term (+ 1)
the factors are + 3 and - 2 , since
3 × - 2 = - 6 and 3 - 2 = - 1 , then
(x + 3)(x - 2) = 0 ← in factored form
equate each factor to zero and solve for x
x + 3 = 0 ( subtract 3 from both sides )
x = - 3
x - 2 = 0 ( add 2 to both sides )
x = 2
the x- intercepts are x = - 3 and x = 2
the y- intercept is the point on the y- axis where the graph of f(x) crosses the y- axis.
any point on the y- axis has an x- coordinate of zero
let x = 0 in y = f(x)
f(0) = 0² + 0 - 6 = 0 + 0 - 6 = - 6
the y- intercept is y = - 6
Find the vector x determined by B= {[ 1 1 -1 ] , [ -1 -2 3 ] , [ -2 0 3 ]} , [x] = [ -5 1 -9 ] [x]d =
To find the vector x determined by the set of vectors B and the given vector [x], we need to solve the system of linear equations formed by equating the linear combination of vectors in B to the given vector [x]. the vector x determined by B is:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
The step-by-step process of finding the vector x determined by B.
We are given the set of vectors B:
B = {[ 1 1 -1 ],
[-1 -2 3 ],
[-2 0 3 ]}
And the vector [x] = [ -5 1 -9 ].
1. Write the vectors in B as column vectors:
v₁ = [ 1 ]
[ 1 ]
[ -1 ]
v₂ = [ -1 ]
[ -2 ]
[ 3 ]
v₃ = [ -2 ]
[ 0 ]
[ 3 ]
2. We want to find the coefficients c₁, c₂, and c₃ such that:
c₁ * v₁ + c₂ * v₂ + c₃ * v₃ = [ -5 ]
[ 1 ]
[ -9 ]
3. Set up the system of equations using the coefficients:
c₁ * [ 1 ] + c₂ * [ -1 ] + c₃ * [ -2 ] = [ -5 ]
[ 1 ] [ -2 ] [ 1 ]
[ -1 ] [ 3 ] [ -9 ]
4. Write the system of equations in matrix form:
A * c = b
where A is the coefficient matrix, c is the column vector of coefficients c₁, c₂, and c₃, and b is the given vector [ -5, 1, -9 ].
The matrix A is:
A = [ 1 -1 -2 ]
[ 1 -2 0 ]
[ -1 3 3 ]
The column vector b is:
b = [ -5 ]
[ 1 ]
[ -9 ]
5. Calculate the inverse of matrix A:
[tex]A^(-1)[/tex] = [ -3/2 -1/2 1/2 ]
[ -1/2 -1/2 1/2 ]
[ 1/2 1/2 -1/2 ]
6. Multiply A^(-1) with b to find the vector c:
c =[tex]A^(-1)[/tex]* b
c = [ -3/2 -1/2 1/2 ] * [ -5 ] = [ -9 ]
[ -1/2 -1/2 1/2 ] [ 1 ] [ 1 ]
[ 1/2 1/2 -1/2 ] [ -9 ] [ -5 ]
7. Finally, calculate the vector x using the coefficients c and the vectors in B:
x = c₁ * v₁ + c₂ * v₂ + c₃ * v₃
= [ -3/2 -1/2 1/2 ] * [ 1 ] + [ -1/2 -1/2 1/2 ] * [ -1 ] + [ 1/2 1/2 -1/2 ] * [ -2 ]
x = [ -9 ] + [ 1/2 ] + [ 2/2 ]
[ 1 ] [ 1/2 ] [ 1/2 ]
[ -5 ] [ -1/2 ] [ 3/2 ]
Simplifying the expression, we get:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
Therefore, the vector x determined by B is:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
Learn more about system of linear equations visit
brainly.com/question/20379472
#SPJ11
Problem Consider the (real-valued) function f:R 2→R defined by f(x,y)={0x2+y2x3} for (x,y)=(0,0), for (x,y)=(0,0)
(a) Prove that the partial derivatives D1 f:=∂x∂ and D2 f:=∂y∂f are bounded in R2. (Actually, f is continuous! Why?) (b) Let v=(v1,v2)∈R2 be a unit vector. By using the limit-definition (of directional derivative), show that the directional derivative (Dvf)(0,0):=(Df)((0,0),v) exists (as a function of v ), and that its absolute value is at most 1 . [Actually, by using the same argument one can (easily) show that f is Gâteaux differentiable at the origin (0,0).] (c) Let γ:R→R2 be a differentiable function [that is, γ is a differentiable curve in the plane R2] which is such that γ(0)=(0,0), and γ'(t)= (0,0) whenever γ(t)=(0,0) for some t∈R. Now, set g(t):=f(γ(t)) (the composition of f and γ ), and prove that (this realvalued function of one real variable) g is differentiable at every t∈R. Also prove that if γ∈C1(R,R2), then g∈C1(R,R). [Note that this shows that f has "some sort of derivative" (i.e., some rate of change) at the origin whenever it is restricted to a smooth curve that goes through the origin (0,0). (d) In spite of all this, prove that f is not (Fréchet) differentiable at the origin (0,0). (Hint: Show that the formula (Dvf)(0,0)=⟨(∇f)(0,0),v⟩ fails for some direction(s) v. Here ⟨⋅,⋅⟩ denotes the standard dot product in the plane R2). [Thus, f is not (Fréchet) differentiable at the origin (0,0). For, if f were differentiable at the origin, then the differential f′(0,0) would be completely determined by the partial derivatives of f; i.e., by the gradient vector (∇f)(0,0). Moreover, one would have that (Dvf)(0,0)=⟨(∇f)(0,0),v⟩ for every direction v; as discussed in class!]
(a) The partial derivatives D1f and D2f of the function f(x, y) are bounded in R2. Moreover, f is continuous.
(b) The directional derivative (Dvf)(0, 0) exists for a unit vector v, and its absolute value is at most 1. Additionally, f is Gâteaux differentiable at the origin (0, 0).
(c) The function g(t) = f(γ(t)) is differentiable at every t ∈ R, and if γ ∈ C1(R, R2), then g ∈ C1(R, R).
(d) Despite the aforementioned properties, f is not Fréchet differentiable at the origin (0, 0).
(a) To prove that the partial derivatives ∂f/∂x and ∂f/∂y are bounded in R², we need to show that there exists a constant M such that |∂f/∂x| ≤ M and |∂f/∂y| ≤ M for all (x, y) in R².
Calculating the partial derivatives:
∂f/∂x = [tex](0 - 2xy^2)/(x^4 + y^4)[/tex]= [tex]-2xy^2/(x^4 + y^4)[/tex]
∂f/∂y = [tex]2yx^2/(x^4 + y^4)[/tex]
Since[tex]x^4 + y^4[/tex] > 0 for all (x, y) ≠ (0, 0), we can bound the partial derivatives as follows:
|∂f/∂x| =[tex]2|xy^2|/(x^4 + y^4) ≤ 2|x|/(x^4 + y^4) \leq 2(|x| + |y|)/(x^4 + y^4)[/tex]
|∂f/∂y| = [tex]2|yx^2|/(x^4 + y^4) ≤ 2|y|/(x^4 + y^4) \leq 2(|x| + |y|)/(x^4 + y^4)[/tex]
Letting M = 2(|x| + |y|)/[tex](x^4 + y^4)[/tex], we can see that |∂f/∂x| ≤ M and |∂f/∂y| ≤ M for all (x, y) in R². Hence, the partial derivatives are bounded.
Furthermore, f is continuous since it can be expressed as a composition of elementary functions (polynomials, division) which are known to be continuous.
(b) To show the existence and bound of the directional derivative (Dvf)(0,0), we use the limit definition of the directional derivative. Let v = (v1, v2) be a unit vector.
(Dvf)(0,0) = lim(h→0) [f((0,0) + hv) - f(0,0)]/h
= lim(h→0) [f(hv) - f(0,0)]/h
Expanding f(hv) using the given formula: f(hv) = 0(hv²)/(h³) = v²/h
(Dvf)(0,0) = lim(h→0) [v²/h - 0]/h
= lim(h→0) v²/h²
= |v²| = 1
Therefore, the absolute value of the directional derivative (Dvf)(0,0) is at most 1.
(c) Let γ: R → R² be a differentiable curve such that γ(0) = (0,0), and γ'(t) ≠ (0,0) whenever γ(t) = (0,0) for some t ∈ R. We define g(t) = f(γ(t)).
To prove that g is differentiable at every t ∈ R, we can use the chain rule of differentiation. Since γ is differentiable, g(t) = f(γ(t)) is a composition of differentiable functions and is therefore differentiable at every t ∈ R.
If γ ∈ [tex]C^1(R, R^2)[/tex], which means γ is continuously differentiable, then g ∈ [tex]C^1(R, R)[/tex] as the composition of two continuous functions.
(d) To show that f is
not Fréchet differentiable at the origin (0,0), we need to demonstrate that the formula (Dvf)(0,0) = ⟨∇f(0,0), v⟩ fails for some direction(s) v, where ⟨⋅,⋅⟩ denotes the standard dot product in R².
The gradient of f is given by ∇f = (∂f/∂x, ∂f/∂y). Using the previously derived expressions for the partial derivatives, we have:
∇f(0,0) = (∂f/∂x, ∂f/∂y) = (0, 0)
However, if we take v = (1, 1), the formula (Dvf)(0,0) = ⟨∇f(0,0), v⟩ becomes:
(Dvf)(0,0) = ⟨(0, 0), (1, 1)⟩ = 0
But from part (b), we know that the absolute value of the directional derivative is at most 1. Since (Dvf)(0,0) ≠ 0, the formula fails for the direction v = (1, 1).
Therefore, f is not Fréchet differentiable at the origin (0,0).
Learn more about partial derivative visit
brainly.com/question/32387059
#SPJ11