Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure. If a light ray strikes its diamond air interface, the total internal reflection will occur in which of the following angle of incidence? (2.42-Index of Refraction for Diamond)
theta_{j} > 24.4 deg
(B) theta_{i} >= 20.9 deg
theta_{i} > 20.9 deg
0; 24.4"

Answers

Answer 1

Total internal reflection will occur if the angle of incidence (θi) is greater than or equal to 20.9 degrees.

When a light ray travels from a medium with a higher refractive index (in this case, diamond) to a medium with a lower refractive index (air), total internal reflection can occur under specific conditions. The critical angle is the angle of incidence at which the light ray is refracted along the interface rather than being transmitted into the second medium.

In this scenario, the critical angle can be determined using the equation sin(θc) = 1/n, where n is the refractive index of diamond (2.42). By solving for θc, we find that the critical angle is approximately 24.4 degrees.

For total internal reflection to occur, the angle of incidence (θi) must be greater than the critical angle (θc). In this case, since the critical angle is 24.4 degrees, any angle of incidence greater than or equal to 20.9 degrees will result in total internal reflection.

Therefore, if the angle of incidence (θi) is greater than or equal to 20.9 degrees, total internal reflection will occur at the diamond-air interface.

The concept of total internal reflection is important in various optical applications, such as fiber optics and prisms. It occurs when a light ray encounters an interface with a lower refractive index at an angle greater than the critical angle. This phenomenon allows for efficient transmission and manipulation of light.

Understanding the critical angle and conditions for total internal reflection is crucial in designing optical devices and systems. By controlling the angle of incidence, one can determine whether light will be refracted or undergo total internal reflection at an interface. The refractive indices of the materials involved play a significant role in determining the critical angle and the occurrence of total internal reflection.

Learn more about internal reflection

brainly.com/question/13088998

#SPJ11


Related Questions

3.) Given A = 2ax + 4ay - 3az and B = ax - ay. Find the following: e.) a vector of magnitude 10 with direction directly opposite to that of AXB 4.) Given A = 2ax + 4ay and B = bay - 4az. Find the following: C.) 5A B d.) 5( AB)

Answers

A vector of magnitude 10 with a direction directly opposite to that of AXB is -5(AXB)

To find a vector of magnitude 10 with a direction directly opposite to that of AXB, we need to follow these steps:

Firstly, we will find the vector AXB.

AXB =  I [(2i) (-j) - (4j)(-k)] - J [(2i)(2k) - (3k)(2i)] + K [(4j)(2i) - (3k)(-j)]

AXB =  -2i - 4j + 4k + 12i + 6j + 0k + 8j - 6i + 0k = 10i + 2j + 4k

We need a vector of magnitude 10 with a direction directly opposite to that of AXB, which is -10i - 2j - 4k.

Thus, a vector of magnitude 10 with a direction directly opposite to that of AXB is -5(AXB).

Now, let's move on to the second part:

Given A = 2ax + 4ay and B = bay - 4az.

C.) 5A B = 5[(2ax + 4ay) x (bay - 4az)]5A B = 10abxyi + 20abyj - 20abzk

D.) 5( AB) = 5[(2ax + 4ay) . (bay - 4az)]5( AB) = 10abxy - 20abz

To know more about magnitude please refer to:

https://brainly.com/question/30337362

#SPJ11


If a three-phase AC motor refuses to turn and makes a
"growling" sound, this is most likely to be caused by
A. overloading. C. worn bearings.
B. a loose armature coil. D. one disconnected lead.

Answers

If a three-phase AC motor refuses to turn and makes a "growling" sound, this is most likely to be caused by worn bearings.

AC motors are made up of several different components that work together to transform electrical energy into mechanical energy.

Bearings are critical components in any motor because they support the rotating shaft and maintain its alignment with other parts of the motor.

They also help reduce friction between the shaft and the stationary parts of the motor, ensuring smooth and efficient operation. When bearings wear out, they can produce a variety of unpleasant noises, including growling, grinding, and whining sounds.

This noise can be the result of friction between the shaft and the bearing or metal-on-metal contact. Additionally, worn bearings can cause the motor to seize, which prevents it from turning.

In conclusion, if a three-phase AC motor refuses to turn and makes a "growling" sound, the most likely cause is worn bearings.

Learn more about AC motor from the given link

https://brainly.com/question/18619348

#SPJ11

The parameters per phase referred to the primary of a 200 V, 3-phase, 4-pole, 50 Hz star-connected induction motor are as follows: R₁ = 0·11; X₁ = 0.352; R₂₁ = 0·13; X₂1 = 0·35; X = 14. Calculate the percentage error involved when the maximum torque of the machine is determined, neglecting stator impedance.

Answers

The percentage error when the maximum torque of the machine is determined, neglecting stator impedance is 2.37%.

The induction motor is one of the most widely used electrical machines. In many industrial applications, these machines are used. The main components of this machine are stator, rotor, and end rings. The stator winding is star connected and is rated 200 V, 3-phase, 4-pole, and 50 Hz.

The following are the primary phase parameters:R1 = 0.11,X1 = 0.352,R21 = 0.13,X21 = 0.35,Xm = 14.(1) The impedance of the rotor circuit, (R2/sX2), may be neglected when the rotor slip s is small. As a result, the value of rotor impedance is ignored.

So the equivalent circuit of the motor becomes(2) When the maximum torque of the motor is determined, the stator impedance is ignored. So, the motor's equivalent circuit becomes as follows:(3) In order to calculate the percentage error, we need to calculate the value of maximum torque with and without neglecting the stator impedance. The maximum torque that can be produced by the induction motor is given by the following formula:

Tmax = (3 Vph2/2ωS[X2 + (R2/s)])N/m

Where,Vph = phase voltage

ω = angular velocity

S = slip

N = number of turns per phase

R2 = rotor resistance per phase

X2 = rotor reactance per phase

M = number of poles

Using the given values, we can calculate Tmax with the following formula:

Tmax (neglecting stator impedance)

= (3 × 2002/2 × π × 50 × 0.0303[0.35 + (0.13/0.03)]) N/m

= 439.54 N/m

Tmax (considering stator impedance) = (3 × 2002/2 × π × 50 × 0.0303[0.35 + (0.13/0.03) + 0.352]) N/m

= 429.36 N/m

The percentage error can be calculated as follows:

Percentage error = [(Tmax (neglecting stator impedance) – Tmax (considering stator impedance))/Tmax (considering stator impedance)] × 100

= [(439.54 - 429.36)/429.36] × 100

= 2.37%

Therefore, the percentage error when the maximum torque of the machine is determined, neglecting stator impedance is 2.37%.

To learn more about torque visit;

https://brainly.com/question/30338175

#SPJ11

Because of their current amplification, phototransistors have much less sensitivity than photodiodes. Select one: O True O False

Answers

False Phototransistors have much higher sensitivity than photodiodes since they have the added advantage of current amplification. They have a much higher gain than photodiodes and can detect very low-level light, and they also require less external circuitry to amplify the current, making them ideal for a variety of applications

Phototransistors are similar to photodiodes in that they are both types of light detectors that convert light into a current. The difference between them is that phototransistors have an additional layer of a semiconductor that amplifies the current. As a result, phototransistors can detect even lower levels of light than photodiodes, and they are also less susceptible to external noise. They are frequently used in low-light applications where a high degree of sensitivity is needed.

To know more about Phototransistors visit:

https://brainly.com/question/30760782

#SPJ11

(b) Examine the circuit diagram shown in Fig. 5 and answer the question that follows. (The transistor is a Si transistor with a beta value of 80 .) (i) Calculate the current \( I_{B} \). (ii) Calculat

Answers

The current, IB is 70μA; the collector current, IC is 5.6mA, and the voltage between the collector and emitter, VCE is 1.49V.

The transistor is properly biased, it can amplify an AC signal at its input while providing isolation between its input and output.The operation of a transistor as an amplifier is due to the characteristics of the transistor.

There are two types of transistor namely the NPN and PNP. In this case, the transistor is an NPN transistor, it is biased in such a way that the base-emitter junction is forward-biased and the collector-base junction is reverse-biased.

The general expression for the current gain (β) of a transistor is: β = IC/IB,

where IC is the collector current and IB is the base current.

(i) We can calculate IB from the equation below:IB = (VBE / RB) = (0.7 / 10,000) = 70μA

(ii) The collector current IC can be calculated using the expression: IC = βIB = (80 × 70μA) = 5.6mA

(iii) The voltage between the collector and emitter, VCE can be obtained from the formula: VCE = VC – VE = VCC – ICRC – VBE = 12V – (5.6mA × 2.2kΩ) – 0.7V = 1.49V

To know more about transistor visit:

https://brainly.com/question/30335329

#SPJ11

1311 is an isotope of iodine used for the treatment of hyperthyroidism, as it is readily absorbed into the cells of the thyroid gland. With a half-life of 8 days, it decays into 131 xe*, an excited xenon atom. What percentage of an iodine 1311 sample decays after 24 days? In (2) 2= OA. 6.25% Decayed ti B. 12.5 % = In (2) = 0.0866 = 100-12-S = 87.5% 8 ✔C. 87.5% N = No -2 t OD. 93.8 % = e = 12.5 Remain" undecayed? élt

Answers

The correct answer is 12.5%, of an iodine 1311 sample decays after 24 days.

The percentage of an iodine 1311 sample that decays after 24 days is 93.8%.

Given that 1311 is an isotope of iodine used for the treatment of hyperthyroidism, as it is readily absorbed into the cells of the thyroid gland. With a half-life of 8 days, it decays into 131 xe*, an excited xenon atom.

Half-life of iodine-1311 (t₁/₂) = 8 days

Amount of iodine-1311 after n half-lives (n) = t / t₁/₂ = 24 / 8 = 3'

From the above equation, it can be understood that 1311 iodine is divided into 8 parts at every 8 days (half-life). So the iodine remaining after 24 days is 1/2³ or 1/8th of its original amount.

Amount of 1311 iodine remaining after 24 days = (1/2)³ = 1/8th of its original amount

Thus, 7/8 or 87.5% of the sample remains undecayed.

The amount of iodine decayed = 1 - 7/8 = 1/8th

The percentage of iodine decayed = (1/8) * 100 = 12.5%

The percentage of an iodine 1311 sample that decays after 24 days is 12.5%.

Hence, the correct answer is 12.5%.

To know more about excited xenon atom, visit:

https://brainly.com/question/7710503

#SPJ11

A 76 kg window cleaner uses a 9.5 kg ladder that is 6.8 m long. He places one end on the ground 4.4 m from a wall, rests the upper end against a cracked window, and climbs the ladder. He is 5.4 m up along the ladder when the window breaks. Neglect friction between the ladder and window and assume that the base of the ladder does not slip. When the window is on the verge of breaking, what are (a)the magnitude of the force on the window from the ladder, (b) the magnitude of the force on the ladder from the ground, and (c) the angle (relative to the horizontal) of that force on the ladder?

Answers

When the window is on the verge of breaking, the magnitude of the force on the window from the ladder is 691 N, the magnitude of the force on the ladder from the ground is 1117 N, and the angle (relative to the horizontal) of that force on the ladder is 63.5°.

Given,

The mass of the window cleaner = 76 kg

The mass of the ladder = 9.5 kg

The length of the ladder = 6.8 m

The distance between the wall and the ladder = 4.4 m

The height at which the window cleaner is when the window breaks = is 5.4 m

Assumptions made:

The base of the ladder does not slip. Neglect friction between the ladder and window.

Part (a):

The magnitude of the force on the window from the ladder

We will resolve the weight of the window cleaner and the ladder into components to get the force on the window from the ladder. Draw a free-body diagram of the window cleaner and the ladder. The forces acting on the ladder are: The weight of the ladder W LThe normal force N, exerted by the ground on the ladder

The force F, exerted by the wall on the ladder

The forces acting on the window cleaner are:

The weight of the window cleaner W C

The force exerted by the ladder on the window cleaner F CW L = 9.5 × 9.8 = 93.1 NW C = 76 × 9.8 = 745 N

The ladder is in equilibrium in the horizontal direction. Thus,

F = 0

We will now find the vertical components of W L and F to calculate the normal force N.

The angle made by the ladder with the horizontal is tan⁻¹(5.4/4.4) = 51.3°

The vertical component of W L = 93.1 × cos 51.3° = 60 N

The vertical component of F = F × sin 51.3°N = N + 60N = 0 + 60N = 60 N

The normal force N is equal to the vertical component of F + the vertical component of W C.N = 60 + 745 = 805 N

The force exerted by the ladder on the window cleaner F C = 745 N

The magnitude of the force on the window from the ladder is equal to the force exerted by the window cleaner on the ladder, i.e., 745 N.

Part (b): Magnitude of the force on the ladder from the ground

Since the ladder is in equilibrium in the horizontal direction, the force exerted by the ground on the ladder F G is equal in magnitude to the horizontal component of W L, and the horizontal component of

F.F G = W L × sin 51.3°F G

= 93.1 × sin 51.3°

= 70 N

The magnitude of the force on the ladder from the ground is equal to the magnitude of the force exerted by the ladder on the ground, i.e., 70 N.

Part (c): Angle (relative to the horizontal) of the force on the ladder

Draw the free-body diagram of the ladder once again. The forces acting on the ladder are:

The weight of the ladder W LThe normal force N, exerted by the ground on the ladder

The force F, exerted by the wall on the ladder

The force exerted by the ground on the ladder F G

We know that the ladder is in equilibrium in the horizontal direction. Thus, F G + F = 0⇒ F = -70 N

The force acting on the ladder can be resolved into horizontal and vertical components. The horizontal component of F is 0. The vertical component of F is

F sin θ = N - W L sin 51.3°

F sin θ = 0 - 93.1 × sin 51.3°

F sin θ = - 70

sin θ = -70/-691

sin θ = 0.101θ = sin⁻¹0.101 = 5.76°

Thus, the angle (relative to the horizontal) of the force on the ladder is 63.5°.

To learn more about distance:

https://brainly.com/question/26550516

#SPJ11

your experimental results. Exercise 3: Latent Heat of Vaporization of Water Table 13-4: Determination of latent heat of vaporization of water: Trial #2 Trial #1 Mass of Beaker #1 (g) 55,589 Mass of Beaker # 1 + 5 mL Water (g) 6.659 Mass of 5 mL Water (g) 6.07 9 Mass of Beaker #2 (g) 50.009 Mass of Beaker #2 + 100 mL Water (g) 36.409 Mass of 100 mL Water (g) 86.49 24°C Initial Temperature of 100 mL Water (°C) Final Temperature of 100 mL Water (°C) 68°C Latent Heat of Vaporization (J/g) Percent Error Use equations 13-1 and 13-5 to algebraically solve for the latent heat of vaporization of water: (show work) Q = MCAT Q=(0.0864 kg) (4186 )(68°C -24°C) =15913.5 J Q =MLx (0.0864 kg)(334 kJ/kg) = 28.9 J / Trial #3 Latent Heat of Vaporization Calculation and Percent Error for Trial #1: (show work) Ly = % error = Latent Heat of Vaporization Calculation and Percent Error for Trial #2: (show work) Lv = % error = Latent Heat of Vaporization Calculation and Percent Error for Trial #3: (show work) Ly = % error =

Answers

Latent Heat of Vaporization Calculation and Percent Error: percent error = (|3324.3 - 2260|/2260) × 100% = 47.2%Thus, the calculation and percent error for all three trials are given.

Here are the calculation and percent error for Trial #1:Mass of 5 mL of water (m) = 6.079 g

Density of water (p) = 1 g/mL

Therefore, the mass of 100 mL of water = 100 g

Initial temperature of 100 mL of water (t₁) = 24°C

Final temperature of 100 mL of water (t₂) = 68°C

Heat lost by water, Q = MCΔT

where, M is the mass of water, C is the specific heat capacity of water, and ΔT is the temperature change in water.C = 4.186 J/g °CM = 100 gΔT = (68°C - 24°C) = 44°C

Mass of 100 mL of water = 85.93 g

Initial temperature of 100 mL of water (t₁) = 24°C

Final temperature of 100 mL of water (t₂) = 68°C

Heat absorbed by the water is equal to the heat lost by the steam, i.e., Q = Lm where L is the latent heat of vaporization of water, and m is the mass of steam produced

.m = mass of water evaporated

= (mass of beaker + water) - mass of beaker

m = (55.589 + 6.659 + 5) g - (55.589 + 6.659) g

= 5 g

Therefore, L = Q/m = 16,621.4 J/5 g = 3,324.3 J/g

The accepted value for the latent heat of vaporization of water is 2,260 J/g

Therefore, percent error = (|3324.3 - 2260|/2260) × 100% = 47.2% Thus, the calculation and percent error for all three trials are given.

To know more about Vaporization visit :

https://brainly.com/question/32499566

#SPJ11







Calculate the voltage across 120 resistor shown in the circuit given below: (A) 6V (B) 9V (C) 12V (D) 10V 9V T 6Ω www 40 www 12Ω 0₁ 1A

Answers

The voltage across the 120-ohm resistor in the given circuit is 6V. To determine the voltage across the 120-ohm resistor, we need to calculate the voltage drop across it.

In the circuit, there is a current of 1A flowing through the circuit. Using Ohm's Law, we can calculate the voltage drop across a resistor by multiplying the current flowing through it with its resistance.

The total resistance in the circuit can be found by summing the resistances in series:

Total resistance = 6Ω + 40Ω + 12Ω + 120Ω = 178Ω

Using Ohm's Law, we can calculate the voltage drop across the 120-ohm resistor:

Voltage drop = Current * Resistance = 1A * 120Ω = 120V

However, we need to consider the voltage divider rule as there are other resistors connected in series. According to the voltage divider rule, the voltage drop across a resistor is proportional to its resistance compared to the total resistance in the circuit.

Applying the voltage divider rule, the voltage across the 120-ohm resistor is given by:

Voltage across 120-ohm resistor = Total voltage * (Resistance of 120-ohm resistor / Total resistance)

Voltage across 120-ohm resistor = 9V * (120Ω / 178Ω) ≈ 6V

Therefore, the correct answer is (A) 6V.

Learn more about voltage across here:

https://brainly.com/question/11427828

#SPJ11

The total kinetic energy and the total momentum of the system. The total energy but not necessarily the total momentum of the system. The total momentum but not necessarily the total kinetic energy of the system. d) Neither the total momentum nor the total kinetic energy of the system. The momentum of each object. (2) Which one of the following statements concerning the stretching of a metal rod is correct? a) If the stress is below the proportional limit the rod does not stretch. b) If the stress is in the plastic region the rod does not return to its orginal length. If the stress is below the elastic limit the strain is proportional to stress. If the stress is between the proportional and plastics limits the rod returns to its original length. e) If the stress is in the plastic region the rod will fracture. (3) 2. A block of wood m floats with 2/3 of its volume in water. A piece of metal is placed on top of the block so that the block is just submerged. The mass of the metal is: a) m/3 b) 3m/2 c) 2m/3 d) m/2 e) m (3) b) c) e d)

Answers

1. When two objects interact, the force exerted by one object on the other is equal in magnitude and opposite in direction to the force exerted by the second object on the first. This is known as Newton's Third Law of Motion. When the system of two objects is considered, the sum of the forces acting on both the objects is equal to the rate of change of the momentum of the system.

Therefore, option b) states that the total energy but not necessarily the total momentum of the system is conserved. The momentum of each object can be found by using the relation, momentum = mass x velocity.2. If the stress is below the proportional limit, the metal rod will return to its original length after the stress is removed.

Option d) is the correct statement because if the stress is between the proportional and plastics limits, the rod returns to its original length.3. A block of wood floats with 2/3 of its volume in water. The mass of the water displaced by the block is equal to the mass of the block. When the piece of metal is placed on top of the block,

Therefore, the mass of the metal is (2/3) x mass of the block, which is option b).

To know more about interact visit:

https://brainly.com/question/31385713

#SPJ11








The Observable Universe has a diameter of? 100,000 Light Years 92 Billion Light Years 50 Astronomical Units 14 Billion Light Years

Answers

The Observable Universe has a diameter of approximately 92 billion light-years. The correct answer is option : 92 Billion Light Years.

This measurement takes into account the current age of the Universe and the expansion of space over time. It represents the maximum distance that light has had the opportunity to travel since the Big Bang. However, it is important to note that the Observable Universe is not the entire Universe. Due to the expansion of space, there are regions beyond our observable reach. The 92 billion light-year measurement represents the scale of the observable portion, encompassing a vast expanse of galaxies, stars, and other celestial objects that we can potentially observe from Earth. Therefore the correct answer is option : 92 Billion Light Years.

To know more about Observable Universe, here

brainly.com/question/1351443

#SPJ4

Ten narrow slits are equally spaced 2.00 mm apart and illuminated with blue light of wavelength 477 nm.

(a) What are the angular positions (in degrees) of the second and fourth principal maxima? (Consider the central maximum to be the zeroth principal maximum.)

second principal maximum °

fourth principal maximum °

(b) What is the separation (in m) of these maxima on a screen 2.0 m from the slits? m

Answers

The location of the principal maxima of a diffraction pattern can be determined using the following equation: sinθ = mλ/d, where m is the order of the maximum (zero for the central maximum), λ is the wavelength of light, d is the separation between the slits, and θ is the angular position of the maximum.

The relationship between slit width, wavelength, and separation between slits can be used to calculate the angles of the principal maxima observed in a diffraction pattern.

What are the angular positions (in degrees) of the second and fourth principal maxima? (Consider the central maximum to be the zeroth principal maximum.)

Answer: second principal maximum ° = 24.5°

fourth principal maximum ° = 49.0°

The location of the principal maxima of a diffraction pattern can be determined using the following equation: sinθ = mλ/d, where m is the order of the maximum (zero for the central maximum), λ is the wavelength of light, d is the separation between the slits, and θ is the angular position of the maximum. For a pattern produced by ten slits separated by 2.00 mm, the distance between adjacent maxima can be calculated by using the equation d sinθ ≈ mλ, where d is the distance between adjacent slits and θ is the angle between the diffracted waves. When the ten narrow slits are equally spaced 2.00 mm apart and illuminated with blue light of wavelength 477 nm, the angular positions of the second and fourth principal maxima are given as follows:

Second principal maximum: sinθ = (1λ)/(d/2) = (1 × 477 nm)/(2.00 mm) = 0.119250

sinθ = 0.119250

θ = arc

sin(0.119250) = 24.5°

Fourth principal maximum: sinθ = (3λ)/(d/2) = (3 × 477 nm)/(2.00 mm) = 0.357750

sinθ = 0.357750

θ = arc

sin(0.357750) = 49.0°

What is the separation (in m) of these maxima on a screen 2.0 m from the slits?

Answer: m = 0.0824 m.

The separation of the maxima on the screen is given by the equation y = L tanθ, where L is the distance from the slits to the screen, θ is the angle between the diffracted waves and the central maximum, and y is the distance between adjacent maxima on the screen. For a screen 2.0 m from the slits, the separation between the second and fourth maxima can be calculated as follows: Second principal maximum: y = L tanθ = 2.0 m × tan(24.5°) = 0.4467 m

Fourth principal maximum: y = L tanθ = 2.0 m × tan(49.0°) = 0.9291 m

The distance between the second and fourth maxima on the screen is given by the difference between these two values: y = 0.9291 m – 0.4467 m = 0.4824 m ≈ 0.0824 m.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Two trains are on parallel tracks both traveling east, with train 1 ahead of train 2. Train 1 is traveling at 15.0 m/sec and blows a horn whose frequency is 192 Hz. If the frequency heard on the second train from horn 1 is 203 Hz, what is the speed of the second train?

Answers

Two trains are on parallel tracks both traveling east, with train 1 ahead of train 2, then the speed of the second train is 22.3 m/s.

From the question above, Frequency of horn of train 1, f₁ = 192 Hz

Frequency of horn of train 2 as heard by it, f₂ = 203 Hz

Speed of train 1, v₁ = 15.0 m/sec

Since train 1 is ahead of train 2, therefore, both trains are moving in the same direction.

Therefore, the apparent frequency of sound heard by train 2 will be given as:f' = (v + v₁) / (v - v₂) * f

Where,v = velocity of sound= 343 m/s

Putting the given values in the above formula, we have:

203 = (343 + 15.0) / (343 - v₂) * 192

Or, 343 - v₂ = 1.1282 x (343 + 15.0) / 203 x 192

Or, 343 - v₂ = 0.8946 x 358

Or, v₂ = 343 - 320.7

v₂ = 22.3 m/s

Hence, the speed of the second train is 22.3 m/s.

Learn more about frequency at

https://brainly.com/question/31947892

#SPJ11

PROBLEM (3) 6 marks Air at -5°C in the cylinder of an engine is compressed from an initial pressure of 1.00 atm and volume of 800 cc to a volume of 80 cc. Assume air behaves as an ideal gas with y- 1.40 and the compression is adiabatic. 1) Find the final pressure of the air. 800 m² 11000L=1m² 2) Find the final temperature of the air. :) Find the efficiency of the engine. 80m?

Answers

adiabatic compression equation for an ideal gas:

P₁V₁^γ = P₂V₂^γ

where:

P₁ and V₁ are the initial pressure and volume,

P₂ and V₂ are the final pressure and volume, and

γ is the specific heat ratio.

Given:

Initial pressure, P₁ = 1.00 atm

Initial volume, V₁ = 800 cc

Final volume, V₂ = 80 cc

Specific heat ratio, γ = 1.40

1) Finding the final pressure, P₂:

P₂ = P₁ * (V₁ / V₂)^γ

  = 1.00 atm *[tex](800 cc / 80 cc)^{1.40}[/tex]

  = 1.00 atm * 10^1.40

  ≈ 2.51 atm

Therefore, the final pressure of the air is approximately 2.51 atm.

2) Finding the final temperature:

To find the final temperature, we can use the adiabatic equation for temperature:

T₂ = T₁ * (P₂ / P₁)^((γ-1)/γ)

where:

T₁ is the initial temperature and T₂ is the final temperature.

Since the problem doesn't provide the initial temperature, we cannot determine the final temperature without that information.

3) Finding the efficiency of the engine:

The efficiency of the engine can be calculated using the formula:

Efficiency = (Work output / Heat input) * 100%

Since the problem doesn't provide any information about the work output or heat input, we cannot calculate the efficiency of the engine without that information.

to know more about pressure visit:

brainly.com/question/29341536

#SPJ11

If a scale shows that an individual has a mass of 68 kg, what is that individual's weight? (Show work and explain)

a. 68 kg
b. -667 N
c. either a or b
d. neither a nor b

Answers

The individual's weight is approximately 666.4 N. the individual's weight is 68 kg.

To determine the individual's weight, we need to use the formula:

Weight = mass × gravitational acceleration

The gravitational acceleration on Earth is approximately 9.8 m/s².

(a) Using the given mass of 68 kg:

Weight = 68 kg × 9.8 m/s² = 666.4 N

So, the individual's weight is approximately 666.4 N.

(b) -667 N is not a valid weight value in this case because weight is a scalar quantity and is always positive. Therefore, option (b) is incorrect.

(c) The correct answer is (a) 68 kg since weight is a measure of the force exerted on an object due to gravity, and it is equivalent to the product of mass and gravitational acceleration.

Therefore, the individual's weight is 68 kg.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

An ideal single-phase source, 240 V, 50 Hz, supplies power to a load resistor R = 100 Q via a single ideal diode. Calculate the average and rms values of the load current and the power dissipation. Calculate the circuit power factor and the ripple factor.

Answers

The answers to the given problem are:

Average load current,

IL = 1.2 A

RMS value of load current,

IRMS = 1.697 A

Power dissipation, P = 144 W

Power factor, cos(Φ) = 1

Ripple factor, γ = 0.3775.

A single-phase source, 240 V, 50 Hz, supplies power to a load resistor R = 100 Ω via a single ideal diode.

Here, the diode conducts only during the positive half-cycle of the applied voltage.

Therefore, the effective voltage of the circuit will be half of that of the AC source i.e., 120 V.  

Average value of the load current is given as

`IL` = `VL/RL`.

Therefore,

IL = 120/100

= 1.2 A.

The root-mean-square value of the current can be found as follows:

Peak voltage,

Vp = 240 V

Amplitude of voltage,

Vm = Vp/√2

= 240/1.414

= 169.7 V

Peak current,

Ip = Vp/RL

= 240/100

= 2.4 A

Amplitude of current,

Im = Ip/√2

= 2.4/1.414

= 1.697 A

Therefore, rms value of the current is

IRMS = Im

= 1.697 A

Power dissipation of the load can be calculated by using the formula:

P = V²/R

Therefore,

P = (120)²/100

= 144 W

The power factor of the circuit is given as:

cos(Φ) = R/Z

= R/√(R² + (XL - XC)²)

= 1/√(1 + tan²Φ)tan(Φ)

= √((1/cos²Φ) - 1)

= √((1/1²) - 1)

= 0

Therefore,

Φ = tan⁻¹(0)

= 0⁰cos(0)

= 1

Therefore, power factor

cos(0) = 1

The ripple factor (γ) of the circuit can be calculated as follows:

γ = √((I²rms - I²L)/I²L)

γ = √(((1.697)² - (1.2)²)/(1.2)²)

γ = 0.3775

Thus, the average and rms values of the load current and the power dissipation are 1.2 A and 1.697 A, and 144 W respectively.

The power factor and ripple factor are 1 and 0.3775, respectively.

The circuit can be shown as:  

Therefore, the answers to the given problem are:

Average load current,

IL = 1.2 ARMS value of load current,

IRMS = 1.697 A

Power dissipation, P = 144 W

Power factor, cos(Φ) = 1

Ripple factor, γ = 0.3775.

To know more about Power dissipation visit:

https://brainly.com/question/13499510

#SPJ11

When the voltage of the secondary is the same as the voltage of the primary, it is said to be a transformer of:

A. Neither high nor low

B. Discharge

C. There is not enough information to answer.

D. Fall

Answers

When the voltage of the secondary is the same as the voltage of the primary, it is said to be a transformer of Neither high nor low voltage.

What is a transformer?

A transformer is an electromagnetic gadget that is utilized to alter the voltage of an AC supply while keeping up with its force rating. It is a static gadget that comprises two copper loops or windings wound around a typical core. The transformation in voltage is accomplished by electromagnetic acceptance from one curl to the next.The two basic sorts of transformers are step-up and step-down transformers. A step-up transformer builds the voltage in the optional loop concerning the essential curl, while a step-down transformer lessens the voltage in the auxiliary winding concerning the essential curl.

learn more about voltage here

https://brainly.com/question/27861305

#SPJ11

A block of an unknown material is floating in a fluid, half-submerged. If the specific gravity of the fluid is 1.5, what is the block's density? (Use specifie gravity Pud/Pe and density of water P 1,000 k/m
A. 350kg/m
B. 8oO kgm
C. 900 kgm
D. 1,250 kg/m

Answers

The correct option is D, If the specific gravity of the fluid is 1.5, the block's density will be 1,500 kg/m.

The specific gravity (SG) of a substance is the ratio of the density of that substance to the density of another substance (usually water).

Given data:

Specific gravity (SG) = 1.5

Density of water (P) = 1,000 kg/m

We can use the formula for specific gravity to find the density of the unknown material:

SG = Density of unknown material/Density of water

Density of unknown material = SG x Density of water

Density of unknown material = 1.5 x 1,000

Density of unknown material = 1,500 kg/m

Therefore, the block's density is 1,500 kg/m.

Hence, the density of the block is 1,500 kg/m. Therefore, the correct option is D.

To know more about specific gravity, visit:

https://brainly.com/question/9100428

#SPJ11

Explanation:

Since specific gravity is 1.5

  the unknown fluid has density of 1500 kg / m^3

Now...for convenience , let's assume the block is 1 m^3

 the submerged half  of it displaces  1/2 m^3  , so it would have a buoyancy of 750 kg from the fluid....but the OTHER half of the block is above the fluid level....so the entire buoyancy of 750 kg   supports the entire  1 m^3 block

    so the block density is   750 kg/ 1 m^3 = 750 kg/m^3  <===but this is not an answer provided  as a choice <==== maybe choose answer B

The input power of the motor which is a 3phase induction motor is given as 90 KW, the motor has 8-poles, 460 V, 60HZ supply. The rotor electro motive force is making 120 complete alterations per minute. Compute the following,
Slip
Rotor speed
c. Rotor copper losses per phase

2) Design the equivalent circuit of the single phase induction motor with and without consideration of copper losses, with all illustrations applicable and equations of all parameters

Answers

1) Slip: The slip of the motor is calculated to be approximately 0.86667.

2) Rotor Speed: The rotor speed is calculated to be approximately 120 RPM.

3) Rotor Copper Losses per Phase: The rotor copper losses per phase are calculated to be approximately 2993.62 Watts.

To solve the problem, let's break it down step by step:

1. Slip Calculation:

The formula for slip is:

S = (Ns - N) / Ns

Given parameters:

- Number of poles, P = 8

- Frequency of supply, f = 60 Hz

Synchronous speed can be calculated using the formula:

Ns = (120 * f) / P

Ns = (120 * 60) / 8

Ns = 900 RPM

Substitute the values in the slip formula:

S = (900 - 120) / 900

S = 0.86667

2. Rotor Speed Calculation:

The formula for rotor speed is:

N = Ns * (1 - S)

Substitute the values:

N = 900 * (1 - 0.86667)

N = 120 RPM

3. Rotor Copper Losses per Phase Calculation:

The formula for rotor copper losses per phase is:

Pc = I^2 * Rr

Given parameters:

- Power transmitted to the rotor, Pf = 90 KW = 90,000 W

- Line voltage, Vs = 460 V

- Number of poles, P = 8

The current through each rotor phase can be calculated using the formula:

I = (Pf) / (Vs * √3 * P)

I = 90,000 / (460 * √3 * 8)

I = 78.72 A

The rotor resistance per phase can be calculated using the formula:

Rr = (1 - S) / (S^2) * ((Vs / (P * √3 * I)) - R2 / 2)

Given parameters:

- Rotor resistance at standstill, R2 = 0.05 ohm

- Slip, S = 0.86667

- Line voltage, Vs = 460 V

- Number of poles, P = 8

- Current, I = 78.72 A

Substitute the values:

Rr = (1 - 0.86667) / (0.86667^2) * ((460 / (8 * √3 * 78.72)) - 0.05 / 2)

Rr = 0.0548 ohm

Substitute the values in the rotor copper losses per phase formula:

Pc = I^2 * Rr

Pc = 78.72^2 * 0.0548

Pc = 2993.62 Watts

The equivalent circuit of the single-phase induction motor without considering copper losses and the equivalent circuit of the single-phase induction motor with considering copper losses are not provided in the given problem statement.

Thus, the solution is completed based on the calculations and available information.

Learn more about rotor speed

https://brainly.com/question/33224740

#SPJ11

what is the defining characteristic of a water cycle gizmo answers

Answers

The defining characteristic of a water cycle gizmo is its ability to simulate the natural water cycle in a controlled environment.

A water cycle gizmo is a device or model that demonstrates the various processes involved in the water cycle. It typically includes components that represent evaporation, condensation, precipitation, and runoff. The defining characteristic of a water cycle gizmo is its ability to simulate the natural water cycle in a controlled environment.

Water cycle gizmos often use simple mechanisms such as heat sources, condensation chambers, and pumps to mimic the processes that occur in nature. By using a water cycle gizmo, students can gain a hands-on experience and develop a deeper understanding of the water cycle.

Learn more:

About defining characteristic here:

https://brainly.com/question/29980329

#SPJ11

overcurrent protective devices on transformer primary may require increased sizing due to the magnetizing inrush current. (True or False)

Answers

True. Overcurrent protective devices on the primary side of a transformer may need to be sized larger to accommodate the magnetizing inrush current.

When a transformer is energized or switched on, it experiences a phenomenon called magnetizing inrush current. This inrush current is a momentary surge of current that occurs due to the magnetization of the transformer's core. It can be several times higher than the rated current of the transformer.

To ensure proper protection and prevent false tripping of the overcurrent protective devices, such as fuses or circuit breakers, on the primary side of the transformer, it is often necessary to size them larger. This means selecting protective devices with a higher current rating that can handle the initial surge of magnetizing inrush current without tripping prematurely. By increasing the sizing of the overcurrent protective devices, they can effectively accommodate the temporary overcurrent during the magnetizing inrush period, while still providing adequate protection for the transformer under normal operating conditions.

Therefore, to account for the magnetizing inrush current, it is common practice to increase the sizing of overcurrent protective devices on the primary side of the transformer.

Learn more about Overcurrent protective here:

https://brainly.com/question/30758146

#SPJ11

An electric bell connected to a battery is sealed inside a
large jar. What happens as the air is removed from the jar?

A) The bell's loudness decreases because sound waves
can not travel through a vacuum.
B) The bell's loudness increases because of decreased air
resistance.
C) The electric circuit stops working because
electromagnetic radiation can not travel through a
vacuum.
D) The bell's pitch decreases because the frequency of the
sound waves is lower in a vacuum than in air.

Answers

An electric bell connected to a battery is sealed inside a large jar. The bell's loudness decreases because sound waves can not travel through a vacuum. Option A is the correct answer

A vacuum is a space with no matter or air molecules. When the air is removed from the jar, the space inside the jar becomes a vacuum. The sound waves generated by the bell need a medium to travel through. Therefore, in a vacuum, the sound waves have no medium to travel through. This means that the bell's loudness decreases and it can't be heard as it produces no sound energy which can travel through a vacuum. The loudness of a sound is determined by the amplitude of the sound waves produced by the object.

The frequency of sound waves remains constant, and it is the number of vibrations per second.

Option A is the correct answer

To learn more on  sound waves :

https://brainly.com/question/16093793

#SPJ11

water is flowing at the rate of 6 m^3/min from a reservoir shaped like a______.

Answers

Water is flowing at the rate of 6 m^3/min from a reservoir shaped like a cylinder.A cylinder-shaped reservoir is a type of water storage structure. It is circular in shape and has a length of L and a radius of r.

The formula for calculating the volume of a cylinder is given as;V=πr²LFor a cylinder-shaped reservoir, water is flowing at the rate of 6 m^3/min. That means, the volume of water leaving the reservoir per minute is 6m³.A cylinder is a geometric shape with a volume that can be calculated using its radius and height.

Water is flowing from a cylinder-shaped reservoir at a rate of 6 m³/min. If the radius of the cylinder is r and the length is L, the formula for calculating the volume of the cylinder is V = πr²L. If the water is flowing out of the reservoir at a rate of 6 m³/min, then the volume of water leaving the reservoir per minute is also 6 m³.

To know more about structure visit:

https://brainly.com/question/33100618

#SPJ11


quickly please
7. If the retort temperature was 121 C and the highest temperature reached on cold point was value will be: a. 117 b.6 c. 1.8 d. 121 e. 4

Answers

The correct option is (c) 1.8.

Given: Retort temperature, t1 = 121°CCold point temperature, t2 =?

The value of the highest temperature reached on the cold point will be 117 °C.

Given t1 = 121°C and t2 = 117°C, the processing time and lethality are calculated by using the following formula: T = F0 / [((121 - Fo) / Z) + 1]Where T is the processing time, F0 is the lethality, Z is the temperature sensitivity valueThe temperature sensitivity value, Z is given as 10.

The lethality F0 is calculated by using the following formula:F0 = ((t1 - t2) / Z) × 10

Putting all the given values into the equation for F0:F0 = ((121°C - 117°C) / 10) × 10F0 = 4

The value of F0 obtained is 4.

Putting this value in the first equation: T = F0 / [((121°C - 4) / 10) + 1]T = 4 / [11.7]T = 0.34 minutes = 20.4 seconds

Hence, the correct option is (c) 1.8.

To know more about lethality please refer:

https://brainly.com/question/5041574

#SPJ11

Electric Power is generated in the falls and needed in Ohio we
have to transmit it. 110,000 V, 765,000 V, Why is it done in such
High voltage?

Answers

The reason why electric power is generated in the falls and needed in Ohio is transmitted in such high voltage is to ensure minimal loss of energy due to resistance.

In order to deliver the electricity from the generation site to the consumers, it is necessary to transmit the power over a distance which requires the use of power lines. When transmitting electric power, it is essential to maintain high voltage levels as power losses due to resistance in the transmission lines are proportional to the square of the current. This means that reducing the current will significantly reduce power losses and result in more efficient transmission of electrical power.

Increasing the voltage level of the electrical power transmitted can significantly reduce the amount of energy lost due to resistance.

This is because when the voltage is high, the current is lower, and therefore, the power loss due to resistance is also lower.High voltage is used in electrical transmission to reduce the amount of current that flows through the transmission line, thereby reducing the amount of power that is lost due to resistance. The power loss due to resistance in a transmission line is proportional to the square of the current flowing through it. Hence, by reducing the current, the power loss can be significantly reduced.

However, the voltage level needs to be high enough to overcome the resistance of the transmission line, and so, high voltage is used for long-distance transmission of electrical power.

To know more about Power visit:

https://brainly.com/question/27442707

#SPJ11

An aircraft is flying at 90 kts with respect to the surrounding air. Its heading is 270∘. The wind speed is 20kts and its direction is from the west. What is the true airspeed and ground speed of that aircraft?

Answers

The aircraft's airspeed refers to its speed relative to the surrounding air. In this case, the aircraft is flying at 90 knots (kts) with respect to the surrounding air and the ground speed of the aircraft is 50 knots.



To determine the true airspeed, we need to take into account the effect of the wind. The wind is blowing from the west at a speed of 20 kts. Since the aircraft is heading west (270 degrees), it will experience a headwind.

To calculate the true airspeed, we can use the following formula:

True Airspeed = Indicated Airspeed + Headwind

Since the aircraft is flying at 90 kts with respect to the surrounding air, the indicated airspeed is 90 kts. The headwind is 20 kts (opposite direction of the aircraft's heading), so we can substitute these values into the formula:

True Airspeed = 90 kts + (-20 kts)
True Airspeed = 70 kts

Therefore, the true airspeed of the aircraft is 70 knots.

The ground speed of the aircraft refers to its speed relative to the ground.

To calculate the ground speed, we need to consider the effect of both the aircraft's airspeed and the wind.

Since the wind is blowing from the west at a speed of 20 kts, and the aircraft is heading west (270 degrees), it will experience a headwind. This means that the aircraft's ground speed will be lower than its true airspeed.

To calculate the ground speed, we can use the following formula:


Ground Speed = True Airspeed - Headwind

Using the true airspeed of 70 kts and the headwind of 20 kts, we can substitute these values into the formula:

Ground Speed = 70 kts - 20 kts
Ground Speed = 50 kts

Therefore, the ground speed of the aircraft is 50 knots.

To know more about the ground speed

https://brainly.com/question/3264334

#SPJ11

A block of wood of volume 0.5 m^3 floats in a lake with 2/3 of its volume submerged. What is the largest mass that I can put on top of the block of wood without it sinking?

Answers

 largest mass that you can put on top of the block of wood without it sinking is 333.33 kg.

The largest mass that you can put on top of the block of wood without it sinking can be determined by considering the principle of buoyancy.

The principle of buoyancy states that an object will float if the buoyant force acting on it is equal to or greater than the force of gravity pulling it down.


To calculate the largest mass, we need to determine the buoyant force acting on the block of wood. The buoyant force is equal to the weight of the water displaced by the submerged portion of the block of wood.

Given that 2/3 of the block of wood's volume is submerged, the volume of water displaced is 2/3 * 0.5 m^3 = 1/3 m^3.

The density of water is approximately 1000 kg/m^3. Therefore, the mass of the displaced water is 1000 kg/m^3 * 1/3 m^3 = 333.33 kg.

Since the block of wood will float if the buoyant force is equal to or greater than the force of gravity, we can place a mass of up to 333.33 kg on top of the block without it sinking.

So, the largest mass that you can put on top of the block of wood without it sinking is 333.33 kg.

To learn more about principle of buoyancy :

https://brainly.com/question/28233715

#SPJ11

Your manager asked you to do a research about complex waveforms, he asked you to do the following: A) Define complex waveform and how it can be generated. B) What is the difference between a simple sinusoidal waveform and the complex one? C) Based on the definition decide whether the following waves are complex waveforms or not: 1) v₁ (t) = 10 sin (wt) 2) y(t)= 10sin(wt)-8sin(7wt) 3) v₂ (t) = 15 sin(wt +) 4) Sawtooth Wave and their relationship

Answers

waves 2 and 4 are complex waveforms, while waves 1 and 3 are simple sinusoidal waveforms.

A) A complex waveform refers to a waveform that is composed of multiple sinusoidal components with different frequencies, amplitudes, and phases. It is generated by combining or adding together multiple simple sinusoidal waveforms.

To generate a complex waveform, you can use techniques such as Fourier analysis or superposition. Fourier analysis allows you to decompose a complex waveform into its constituent sinusoidal components, while superposition involves adding together multiple simple waveforms with different frequencies and amplitudes to create a complex waveform.

B) The main difference between a simple sinusoidal waveform and a complex waveform is that a simple sinusoidal waveform consists of a single frequency component and has a regular, repetitive pattern. It can be represented by a single sine or cosine function. On the other hand, a complex waveform consists of multiple frequency components and has a more intricate pattern. It requires the combination of multiple sinusoidal functions to accurately represent its shape.

C) Let's analyze the given waves to determine whether they are complex waveforms:

1) v₁(t) = 10 sin(wt)

This is a simple sinusoidal waveform because it contains only one frequency component (w) and can be represented by a single sine function.

2) y(t) = 10 sin(wt) - 8 sin(7wt)

This is a complex waveform because it contains multiple frequency components (w and 7w) with different amplitudes and can't be represented by a single sine function.

3) v₂(t) = 15 sin(wt + φ)

This is a simple sinusoidal waveform because it contains only one frequency component (w) and can be represented by a single sine function. The phase shift φ does not make it a complex waveform.

4) Sawtooth Wave

A sawtooth wave is a complex waveform because it contains multiple frequency components that create a linearly increasing or decreasing pattern. It cannot be represented by a single sine or cosine function.

In summary, waves 2 and 4 are complex waveforms, while waves 1 and 3 are simple sinusoidal waveforms.

to know more about frequencies visit:

brainly.com/question/30783512

#SPJ11

A 40-kg crate is being pulled along a frictionless surface by a force of magnitude 140 N that makes an angle of 30° with the horizontal. The acceleration of the crate is?

Answers

ETo determine the acceleration of the crate, we need to resolve the applied force into its horizontal and vertical components. The horizontal component of the force will contribute to the acceleration, while the vertical component will not affect the motion of the crate on a frictionless surface.
Given:
Mass of the crate (m) = 40 kg
Magnitude of the applied force (F) = 140 N
Angle of the force with the horizontal (θ) = 30°

To find the horizontal component of the force (F_horizontal), we can use trigonometry:
F_horizontal = F * cos(θ)
F_horizontal = 140 N * cos(30°)
F_horizontal = 140 N * √3/2
F_horizontal = 140 N * 0.866
F_horizontal ≈ 121.24 N
Since there is no friction or vertical forces acting on the crate, the horizontal component of the applied force will be responsible for the acceleration.
Using Newton's second law of motion, which states that the force applied to an object is equal to the mass of the object multiplied by its acceleration (F = m * a), we can calculate the acceleration (a).
a = F_horizontal / m
a = 121.24 N / 40 kg
a ≈ 3.03 m/s²
Therefore, the acceleration of the crate is approximately 3.03 m/s².

To learn more about, Acceleration, click here, https://brainly.com/question/30827337

4: What are the three primary types of threaded fasteners? a) Rivets b) Wedges c) Nails d) Nuts e) Bolts f) Screws 5: For a thick cylindrical pressure vessel, what is close to the hoop stress if the internal pressure is Batm, and the inner and outer radii are 1m and 2m, respectively?

Answers

The three primary types of threaded fasteners are: d)Nuts, e) bolts and f)screws. Hence, the correct answer is d), e) and  f). Threaded fasteners are tools which are used for fastening objects together.

They are the most commonly used types of fasteners. There are different types of threaded fasteners, some of which include nuts, bolts, and screws. Nuts are used in conjunction with bolts, screws, and studs to fasten two or more objects together. Bolts are used to join together two or more objects using a nut. A screw is a type of fastener that is designed to thread into a tapped hole or to receive a nut. They are used to fasten objects together.

Hoops stress is the stress generated on the wall of a pressure vessel when pressure is applied on it from inside. It is calculated using the following formula:
σhoop= pd/2t
Where p is the internal pressure, d is the diameter, and t is the thickness of the cylindrical pressure vessel.
Given:
Internal pressure (p) =  Batm
Inner radius (r₁) = 1m
Outer radius (r₂) = 2m
We can find the thickness of the cylindrical pressure vessel using the formula for internal volume of a thick cylindrical vessel:
V = π/4 (r₂² - r₁²) * L
Where L is the length of the cylindrical vessel.
Rearranging the formula, we get:
t = (r₂² - r₁²) * L / (4V)

To know more about screws, refer

https://brainly.com/question/19533787

#SPJ11

Other Questions
Five moles of an ideal gas expand isothermally at 100 C to five times its initial volume. Find the heat flow into the system. a. 2.510 4J b. 1.110 4J c. 6.710 3J d. 2.910 3J e. 7.010 2J 24. The 50 cylindrical hole on the Plate Demo drawing wasinspected, and the followingdata was generated:Actual Local Sizes: 50.32 to 51.14 UAME Size: 50.25The coordinates of the axis endpoints w Column A 1. I is a lifestyle concept that involves the sequence Column B of occupations (paid and unpaid) in which one engages throughout a lifetime, including work, learning and leisure activities 2. is the process of setting career objectives and a. Values determining how to accomplish them 3. It really is a lifelong process, meaning that b. Career Path change, and every individual must continually make career and life decisions. 4. refers to the series of any combination of work e. Abilities d. Objectives c. Career roles, occupations, or jobs that a person moves through by design and coincidence as their f. Career Development roles, oceupations, the by desith through by career unfolds. 5. are an underlying, enduring trait useful for physical or mental. Given the ellipse 9x2 + 16y2 144 = 0Determine the length of the arc of the first quadrantDetermine the volume generated if the area on the first and second quadrants is revolved about the x-axis. escribe and summarize the company activity. Analyze theirbusiness model. If you were in charge of preparing their businessmodel for the 5 years to come, what would you do? What methodswould you wan Pipelining (any unnecessary stall cycles will be consideredwrong answer).Add $S0, $0, $0Loop: beq $S0, $S1, doneLw$t0, 0($S2)Addi $S2, $S2, 4Add $t0, $t0, 5Sw $t0, 0 ($S4)Addi $S4, $S4, 4Addi The relation between a country's level of saving and investment Explain the difference between Biophilia and Biomimicry. Use Integral Theory to support your answer.View keyboard shortcutsEditViewInsertFormatToolsTable12ptParagraphExplain the difference between Biophilia and Biomimicry. Use Integral Theory to support your answer. the ____ arrow displays the locations you have visited. 10 If an entry in a Relerence bst ia fonger than one line-socond and at subsequerh lines need to be indertsed haif an inch. False Thus 11. The APA style in referencing a book should be bormatled as the folowing Acthor, AA. (Tde of the book). Yea of puticiation. Publisher Cly, State: Publisher. Fane The 12. Author, A.A. (Publicaion Year). Article ste. Periodical riev, Volame (tssuel. pp.-pp. should be the format in referencing a jounal in print. Fase True 13. Look at this reference. What kind of materiat is being relerenced below? Tizani, A. (2013). Haverefs nursing guide to drugs (9h ed.). Chatswoed. Australa: Elseviof Rustralia. pural atide sock dhaptir? back web pare 14. Look at this reference. What kind od material is being relerenced? Schim, V. (2013). Oualfy of ife. In 1. M. Lutain 8 P. D. Lirsen (Eds.) Chronic Whess. impact and intervonions \{8th e4. pp. 183-206\} Buringlon, MA: Jones \& Bartleft Learning keb pape jourral a kde book sock chapter 15. Look at this reference. What kind of material is being relerenced? Tan, A. C. W., Emmerton, L. M. \& Hatingh, M. L. (2012) lssuess with medicaton supply and managertent in a rurat comntunity in Queensland. Austration Joumar of Rural Heath, 2063138143, doic 10,1111 . 1440 - 1684201201269 book web pape bock chapter oumai aticle 17. When you list your references at the end of your work, you should: have separate lists for joumals, books, websites have one long list for all your references arranged alphabetically by author have one long list arranged alphabetically by author, and thereafter chronologically, starting with the earliest date 18. For a journal article reference what should be italicised? the page numbers the author's name the joumal name joumal name and volume the title of the article 19. Is this a correct in-text citation? Thwaites (2007, p. 151) argued that 'Psychoanalysis is..... False True 20. Look at this reference. Is this a complete book reference? Daly, J., Speedy, S \& Jackson, D Contexts of nursing: An introduction, (4 4th ed.). Chatswood, Australia: Elsevier Australia. False True (A) Draw the outwards displacement diagram of a cam when the follower to move outwards through 50 mm during 160 of cam rotation. The displacement of the follower is to take place with uniform acceleration motion. (Note: Use 4 divisions). If the element with atomic number 66 and atomic mass 147 decays by alpha emission. How many neutrons does the decay product have? if a trader wants to sell options against existing stock positions with the hopes that theyll expire worthless, which type of strategy might she use? "Draw the IV graph for a MOSFET in deletion mode, with a drainsource current of 1.2 mA. Indicate this value on the graph. Thanks:)this is all the information i have for the question. hope it helps3. This question is about FETS and MOSETS a) State the main features of a field effect transistor. b) What are the main advantages of a MOSFET? c) Draw the IV graph for a MOSFET in deletion mode, with a drain source current of 1.2 mA. Indicate this value on the graph James buys a two-year bond with $1,000 face value and 10% coupon rate for $1,000 today. If one year later the market interest rate increases to 15% and James sells the bond, then his rate of return on this investment is _______% (negative if it is a loss). A small industrial plant with a three phase 415V supply contains the following equipment: (i) 20kW heating load at unity power factor (pf), (ii) 10kW lighting load at 0.95pf lagging, and (iii) 20KVA induction motor at 0.85pf lagging.(a) Determine the plant's total real and reactive powers.(b) What are the plant in-phase and out-of-phase currents? Draw the phasor diagram depicting voltage and current relationship.(c) The plant owner has decided to install a capacitor bank for power factor improvement. What capacitive reactance per phase, connected in delta, is needed to correct the plant power factor to unity? Based on previous question, when do you consider yourdeveloped system/software to be finished? 1. Five material requests (MRs) were received in theSan Juan materials warehouse during the first week of 2017, as follows:a. MR101 for direct materials for job number 1501- $250b. MR102 for direct materials for job number 1502 - $350c. MR103 for indirect materials issued to factory plant - $100d. MR104 for direct materials for job number 1501 - $400and. MR105 for direct materials for job number 1503 - $500Prepare journal entries to record the release of these materials.2. Company XX manufactures a single product in one department and uses a cost systemof process. During the month of May, the following productive activity took place:Units at the beginning of May 11,000Initial units completed with respect to material 100%Initial units completed relative to conversion costs 60%Units that started in May 105,000Units in progress as of May 31. 5,100Final units completed with respect to material 100%Final units completed relative to conversion costs 70%Cost information Initial inverntory Add Cost in Month MayDirect material $ 4,000 $ 76,040.00Direct labor 200 8,957.60General expenses 300 10,002.30------------------------------------------------------------------------------------------Total $ 4,500 $ 94,999.90a) Calculate the cost per equivalent unit for each of the three cost units.and in total.b) Compute the cost of the units completed in May and the cost at the end of the year.inventory in progress. How would diffusive hillslope processes differ between a hot, arid environment without vegetation and a wet, humid, forested environment? Hint: think about the hydrologic flow paths we talked about last week. For the following desired final device cross-section with silicon substrate and SiO2 filma) Calculate the film thickness for SiO2, if the deposition took place for 20 minutes with a small planar surface evaporation source in which i= 45, k=60, the evaporation rate is 4 x 10-3 gm/sec, the distance from the source to the wafer is 5 cm, and the density of the material being deposited equal 2.5 gm/cm3b) Design a process flow in order to fabricate this structure. Sketch the cross-section of your design and clearly indicate the method/equipment/chemical etc. that you would like to use in each step including lithography steps. Please use a minimum number of lithography steps.c) If you take two devices with the given final device cross-section and take it for further DRIE etching one with SF6/C4F8: 10s/5s and the other with SF6/C4F8: 30s/5s what would the cross-sections look like. Compare the two cross-sections and explain the difference between the two.