Do not use EXCEL One of the fast food restaurants near my neighbourhood claims that the average delivery time of its service is less than 6 minutes. Using a random sample of 12 delivery times with a sample mean of 5.69 minutes and 1.58 minutes sample standard deviation, determine if there is sufficient evidence to support this restaurant's claim of the delivery time at the 5% level of significance. (i) Formulate the hypothesis (2 Points) (ii) State your conclusion using the critical value approach with a distribution graph (4 Points) (iii) State your conclusion using the p-value approach a distribution graph

Answers

Answer 1

By following the critical value approach and the p-value approach, we have examined the hypothesis and reached conclusions based on the test statistic and the significance level.

(i) Formulate the hypothesis:

The hypothesis testing can be done by following the given steps:

Step 1: State the hypothesis

Step 2: Set the criteria for the decision

Step 3: Calculate the test statistic and probability of the test statistic

Step 4: Make the decision in light of steps 2 and 3

The null hypothesis H0: μ ≥ 6

The alternative hypothesis H1: μ < 6

Where μ = Population Mean

(ii) State your conclusion using the critical value approach with a distribution graph:

The critical value is determined by:

α/2 = 0.05/2 = 0.025

Degrees of freedom = n - 1 = 12 - 1 = 11

Level of significance = α = 0.05

Critical value = -t0.025, 11 = -2.201

The test statistic, t = (x - μ) / (s / √n)

Where,

x = Sample Mean = 5.69

μ = Population Mean = 6

s = Sample Standard Deviation = 1.58

n = Sample size = 12

t = (5.69 - 6) / (1.58 / √12) = -1.64

The rejection region is (-∞, -2.201)

The test statistic is outside of the rejection region, thus we reject the null hypothesis. Hence, there is sufficient evidence to support the claim that the delivery time is less than 6 minutes.

(iii) State your conclusion using the p-value approach and a distribution graph:

The p-value is given as P(t < -1.64) = 0.0642

The p-value is greater than α, thus we accept the null hypothesis. Therefore, we cannot support the restaurant's claim that the average delivery time of its service is less than 6 minutes.

Learn more about standard deviation

https://brainly.com/question/29115611

#SPJ11


Related Questions

PLS HELP I NEED TO SUMBIT
An experiment is conducted with a coin. The results of the coin being flipped twice 200 times is shown in the table. Outcome Frequency Heads, Heads 40 Heads, Tails 75 Tails, Tails 50 Tails, Heads 35 What is the P(No Tails)?

Answers

The probability of no tails is 20% which is option A.

Probability calculation.

in order to  calculate the probability of no tails in the question, al we have to do is  to add   the frequency of the outcome given which are the  "Heads, Heads" that is  two heads in a row:

Probability(No Tails) = Frequency of head, Head divide by / Total frequency

The Total frequency is 40 + 75 + 50 + 35 = 200

Therefore, we can say that P(No Tails) = 40/200 = 0.2 or 20%

Learn more about probability below.

brainly.com/question/23497705

The complete question is:

An experiment is conducted with a coin. The results of the coin being flipped twice 200 times is shown in the table. Outcome Frequency Heads, Heads 40 Heads, Tails 75 Tails, Tails 50 Tails, Heads 35 What is the P(No Tails)?

Outcome Frequency

Heads, Heads 40

Heads, Tails 75

Tails, Tails 50

Tails, Heads 35

What is the P(No Tails)?

A. 20%

B. 25%

C. 50%

D. 85%

The function

ff is given in three equivalent forms.
Which form most quickly reveals the

yy-intercept?
Choose 1 answer:
Choose 1 answer:
(Choice A)

(

)
=

3
(


2
)
2
+
27
f(x)=−3(x−2)
2
+27f, left parenthesis, x, right parenthesis, equals, minus, 3, left parenthesis, x, minus, 2, right parenthesis, squared, plus, 27
A

(

)
=

3
(


2
)
2
+
27
f(x)=−3(x−2)
2
+27f, left parenthesis, x, right parenthesis, equals, minus, 3, left parenthesis, x, minus, 2, right parenthesis, squared, plus, 27
(Choice B)

(

)
=

3

2
+
12

+
15
f(x)=−3x
2
+12x+15f, left parenthesis, x, right parenthesis, equals, minus, 3, x, squared, plus, 12, x, plus, 15
B

(

)
=

3

2
+
12

+
15
f(x)=−3x
2
+12x+15f, left parenthesis, x, right parenthesis, equals, minus, 3, x, squared, plus, 12, x, plus, 15
(Choice C)

(

)
=

3
(

+
1
)
(


5
)
f(x)=−3(x+1)(x−5)f, left parenthesis, x, right parenthesis, equals, minus, 3, left parenthesis, x, plus, 1, right parenthesis, left parenthesis, x, minus, 5, right parenthesis
C

(

)
=

3
(

+
1
)
(


5
)
f(x)=−3(x+1)(x−5)f, left parenthesis, x, right parenthesis, equals, minus, 3, left parenthesis, x, plus, 1, right parenthesis, left parenthesis, x, minus, 5, right parenthesis
What is the

yy-intercept?

Answers

The constant term in the quadratic expression gives the y-intercept, which is 15 in this case.

The correct answer to the given question is option B.

The function ff is given in three equivalent forms, and we need to choose the form that most quickly reveals the y-intercept. We know that the y-intercept is the value of f(x) when x=0. Let's evaluate the function for x=0 in each of the given forms.

A. f(x)=−3(x−2)2+27
f(0)=−3(0−2)2+27=−3(4)+27=15

B. f(x)=−3x2+12x+15
f(0)=−3(0)2+12(0)+15=15

C. f(x)=−3(x+1)(x−5)
f(0)=−3(0+1)(0−5)=15

Therefore, we can see that all three forms give the same y-intercept, which is 15. However, form B is the quickest way to determine the y-intercept, since we don't need to perform any calculations. The constant term in the quadratic expression gives the y-intercept, which is 15 in this case. Hence, option B is the correct answer.

For more such questions on quadratic expression, click on:

https://brainly.com/question/11776031

#SPJ8

Consider the steady state temperature u(r, z) in a solid cylinder of radius r = c with bottom z = 0 and top z= L. Suppose that u= u(r, z) satisfies Laplace's equation. du lou d'u + = 0. + dr² r dr dz² [6 Marks] We can study the problem such that the cylinder is semi-infinte, i.e. L= +0o. If we consider heat transfer on this cylinder we have the boundary conditions u(r,0) = o. hu(c,z)+ Ur(C,z)=0, and further we require that u(r, 2) is bounded as z-+00. Find an expression for the steady state temperature u = u(r, z). End of assignment

Answers

Laplace's equation: ∂²u/∂r² + (1/r)∂u/∂r + ∂²u/∂z² = 0 will be considered for finding the steady state temperature u = u(r, z) in the given problem

Since the cylinder is semi-infinite, the boundary conditions are u(r, 0) = 0, h∂u/∂r + U∂u/∂r = 0 at r = c, and u(r, ∞) is bounded as z approaches infinity.

To solve Laplace's equation, we can use separation of variables. We assume that u(r, z) can be written as a product of two functions, R(r) and Z(z), such that u(r, z) = R(r)Z(z).

By substituting this into Laplace's equation and dividing by R(r)Z(z), we can obtain two separate ordinary differential equations:
1. The r-equation: (1/r)(d/dr)(r(dR/dr)) + (λ² - m²/r²)R = 0, where λ is the separation constant and m is an integer constant.
2. The z-equation: d²Z/dz² + λ²Z = 0.

The solution to the z-equation is Z(z) = A*cos(λz) + B*sin(λz), where A and B are constants determined by the boundary condition u(r, ∞) being bounded as z approaches infinity.

For the r-equation, we can rewrite it as (r/R)(d/dr)(r(dR/dr)) + (m²/r² - λ²)R = 0. This equation is known as Bessel's equation, and its solutions are Bessel functions denoted as Jm(λr) and Ym(λr), where Jm(λr) is finite at r = 0 and Ym(λr) diverges at r = 0.

To satisfy the boundary condition at r = c, we select Jm(λc) = 0. The values of λ that satisfy this condition are known as the eigen values λmn.

Therefore, the general solution for u = u(r, z) is given by u(r, z) = Σ[AmnJm(λmnr) + BmnYm(λmnr)]*[Cmcos(λmnz) + Dmsin(λmnz)], where the summation is taken over all integer values of m and n.

The specific values of the constants Amn, Bmn, Cm, and Dm can be determined by the initial and boundary conditions.

In summary, the expression for the steady state temperature u = u(r, z) in the given problem involves Bessel functions and sinusoidal functions, which are determined by the boundary conditions and the eigenvalues of the Bessel equation.

Learn more about Laplace's equation:

brainly.com/question/29583725

#SPJ11



Determine whether each matrix has an inverse. If an inverse matrix exists, find it.

[1 3 2 0]

Answers

The inverse matrix exists and is  \begin{bmatrix}0&\frac12\\-\frac13&0\end{bmatrix}

The given matrix is: \begin{bmatrix}1&3&2&0\end{bmatrix}

To determine if the matrix has an inverse, we can compute its determinant, which is the value of the expression

ad-bc.

In this case,

\begin{bmatrix}1&3&2&0\end{bmatrix}=0-6=-6

Since the determinant is not equal to zero, the matrix has an inverse. To find the inverse of the matrix, we can use the formula

\[\begin{bmatrix}a&b\\c&d\end{bmatrix}^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}

In this case, we have

\begin{bmatrix}1&3\\2&0\end{bmatrix}^{-1}=\frac{1}{-6}

\begin{bmatrix}0&-3\\-2&1\end{bmatrix}=\begin{bmatrix}0&\frac12\\-\frac13&0\end{bmatrix}

Therefore, the inverse of the matrix is \begin{bmatrix}0&\frac12\\-\frac13&0\end{bmatrix}.

To know more about inverse matrix refer here:

https://brainly.com/question/33631266

#SPJ11

Given a line x−2y+5=0, find its slope. A. −2 B. −1/2
C. 1/2 D. 2

Answers

Considering the definition of a line, the slope of the line x-2y+5=0 is 1/2.

Definition of linear equation

A linear equation o line can be expressed in the form y = mx + b

where

x and y are coordinates of a point.m is the slope.b is the ordinate to the origin. The ordinate to the origin is the point where a line crosses the y-axis.

Slope of the line x-2y+5=0

In this case, the line is x-2y+5=0. Expressed in the form y = mx + b, you get:

x-2y=-5

-2y=-5-x

y= (-x-5)÷ (-2)

y= 1/2x +5/2

where:

the slope is 1/2.the ordinate to the origin is 5/2

Finally, the slope of the line x-2y+5=0 is 1/2.

Learn more about line:

https://brainly.com/question/28882561

#SPJ4

Considering the definition of a line, the slope of the line x-2y+5=0 is 1/2.

A linear equation o line can be expressed in the form y = mx + b

where

x and y are coordinates of a point.

m is the slope.

b is the ordinate to the origin. The ordinate to the origin is the point where a line crosses the y-axis.

Slope of the line x-2y+5=0

In this case, the line is x-2y+5=0. Expressed in the form y = mx + b, you get:

x-2y=-5

-2y=-5-x

y= (-x-5)÷ (-2)

y= 1/2x +5/2

where:

the slope is 1/2.

the ordinate to the origin is 5/2

Finally, the slope of the line x-2y+5=0 is 1/2.

Learn more about line from the given link :

brainly.com/question/28882561

#SPJ11

A
die is rolled 36 times. What is the expected numbee of times that a
2 or 3 will appear

Answers

The expected number of times that a 2 or 3 will appear in 36 rolls is 12.

The total possible outcomes when a die is rolled are 6 (1, 2, 3, 4, 5, 6). Out of these 6 possible outcomes, we are interested in the number of times a 2 or 3 will appear.

2 or 3 can appear only once in a single roll. Hence, the probability of getting 2 or 3 in a single roll is 2/6 or 1/3. This is because there are 2 favorable outcomes (2 and 3) and 6 total outcomes.

So, the expected number of times that a 2 or 3 will appear in 36 rolls is calculated by multiplying the probability of getting 2 or 3 in a single roll (1/3) by the total number of rolls (36):

Expected number of times = (1/3) x 36 = 12

Therefore, the expected number of times that a 2 or 3 will appear in 36 rolls is 12.

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

Prove that (G, *) is an abelian group where G = {x  R : -1 <
x < 1} and  is defined by x * y = (x + y) / (xy + 1)

Answers

In order to prove that (G, *) is an abelian group where [tex]G = {x  R : -1 < x < 1} and [/tex] is defined by[tex]x * y = (x + y) / (xy + 1)[/tex] , we need to show that it satisfies the properties of an abelian group. An abelian group is a set G equipped with a binary operation * which satisfies the following properties:

Closure:

For all [tex]a, b ∈ G, a * b ∈ G.[/tex]

Associativity:

For all

[tex]a, b, c ∈ G, (a * b) * c = a * (b * c)[/tex].

Identity element:

There exists an element e ∈ G such that for all a ∈ G,

[tex]a * e = e * a = a[/tex].

Inverse elements:

For every a ∈ G, there exists an element b ∈ G such that

[tex]a * b = b * a = e[/tex].

Commutativity: For all [tex]a, b ∈ G, a * b = b * a[/tex].

We need to show that for all [tex]a, b ∈ G, a * b ∈ G. Let a, b ∈ G[/tex].

Then -1 < a, b < 1.

Associativity:

We need to show that for all [tex]a, b, c ∈ G, (a * b) * c[/tex]

[tex]= a * (b * c)[/tex].

Let [tex]a, b, c ∈ G[/tex].

Then,

[tex](a * b) * c \\= [(a + b) / (ab + 1)] * c\\= [(a + b)c + c] / [ac + bc + 1]a * (b * c) \\= a * [(b + c) / (bc + 1)]\\= [a + (b + c)] / [a(bc + 1) + bc + 1][/tex]

We can see that [tex](a * b) * c = a * (b * c)[/tex]

[tex]a ∈ G, a * e = e * a = a * 0 = (a + 0) / (a*0 + 1) = a[/tex].

Then we need to find b such that [tex]a * b = (a + b) / (ab + 1) = e[/tex].

Solving for b, we get

[tex]b = -a/(a+1)[/tex].

We can see that b ∈ G because -1 < a < 1 and a + 1 ≠ 0.

Also, [tex]a * b \\= (a + (-a/(a+1))) / (a(-a/(a+1)) + 1)\\= 0 = e[/tex]

To know more about abelian group visit:

https://brainly.com/question/32549461

#SPJ11

If y varies directly as x, and y is 48 when x is 6, which expression can be used to find the value of y when x is 2?

Answers

Answer:

y= 8x

Step-by-step explanation:

y= 48

x= 6

48/6 = 8

y= 8x

x=2

y= 8(2)

y= 16

In the accompanying diagram, AB || DE. BL BE
If mzA=47, find the measure of D.

Answers

Measure of D is 43 degrees by using geometry.

In triangle ABC, because sum of angles in a triangle is 180

It is given that AB is parallel to DE, AB is perpendicular to BE and AC is perpendicular to BD. This means that ∠B ∠ACD and ∠ACB = 90

Now,

m∠C = 90

m∠A = 47

m∠ABC = 180 - (90+47) = 43

In triangle BDC, because sum of angles in a triangle is 180

m∠DBE = 90 - ∠ABC = 90 - 43 = 47

∠ BED = 90 (Since AB is parallel to DE)

Therefore∠ BDE = 180 - (90 + 47) = 180 - 137 = 43

The required measure of ∠D = 43 degrees.

To know more about angles,

https://brainly.com/question/22440327

Let X and Y be linear subspaces of a Hilbert space H. Recall that = X + Y = {x + y: x e X,y e Y}. Prove that (X + Y)+ = xt nyt

Answers

x ∈ X⊥ ∩ Y⊥ implies x ∈ (X + Y)+.

Combining both directions, we can conclude that (X + Y)+ = X⊥ ∩ Y⊥.

To prove that (X + Y)+ = X⊥ ∩ Y⊥, we need to show that an element x belongs to (X + Y)+ if and only if it belongs to X⊥ ∩ Y⊥.

First, let's prove the forward direction: if x belongs to (X + Y)+, then x also belongs to X⊥ ∩ Y⊥.

Assume x ∈ (X + Y)+. This means that x can be written as x = u + v, where u ∈ X and v ∈ Y. We want to show that x ∈ X⊥ ∩ Y⊥.

To show that x ∈ X⊥, we need to show that for any u' ∈ X, the inner product 〈u', x〉 is equal to zero. Since u ∈ X, we have 〈u', u〉 = 0, because u' and u belong to the same subspace X. Similarly, for any v' ∈ Y, we have 〈v', v〉 = 0, because v ∈ Y. Therefore, we have:

〈u', x〉 = 〈u', u + v〉 = 〈u', u〉 + 〈u', v〉 = 0 + 0 = 0,

which shows that x ∈ X⊥.

Similarly, we can show that x ∈ Y⊥. For any v' ∈ Y, we have 〈v', x〉 = 〈v', u + v〉 = 〈v', u〉 + 〈v', v〉 = 0 + 0 = 0.

Therefore, x ∈ X⊥ ∩ Y⊥, which proves the forward direction.

Next, let's prove the reverse direction: if x belongs to X⊥ ∩ Y⊥, then x also belongs to (X + Y)+.

Assume x ∈ X⊥ ∩ Y⊥. We want to show that x ∈ (X + Y)+.

Since x ∈ X⊥, for any u ∈ X, we have 〈u, x〉 = 0. Similarly, since x ∈ Y⊥, for any v ∈ Y, we have 〈v, x〉 = 0.

Now, consider any element z = u + v, where u ∈ X and v ∈ Y. We want to show that z ∈ (X + Y)+.

We have:

〈z, x〉 = 〈u + v, x〉 = 〈u, x〉 + 〈v, x〉 = 0 + 0 = 0.

Since the inner product of z and x is zero, we conclude that z ∈ (X + Y)+.

Learn more about directions here :-

https://brainly.com/question/32262214

#SPJ11

Gabriella is a high school basketball player. In a particular game, she made some two
point shots and some three point shots. Gabriella scored a total of 32 points and
made 4 more three point shots than two point shots. Determine the number of two
point shots Gabriella made and the number of three point shots she made.

Answers

Answer:

Gabriella made 4 two points shots and 8 three point shot

Step-by-step explanation:

Total point she scored=32

4 x 2 = 8 points

8 x 3 = 24 points

Total=32 points

1 step:

4 x 3 = 12

first we subtract 12 points that are due to more 4 three points shots.

Remaining points = 32 - 12 = 20

divide 20 into equally;

2 x 2 x 2 x2 = 8

3 x 3 x 3 x 3 = 12

n a certain​ region, the probability of selecting an adult over 40 years of age with a certain disease is . if the probability of correctly diagnosing a person with this disease as having the disease is and the probability of incorrectly diagnosing a person without the disease as having the disease is ​, what is the probability that an adult over 40 years of age is diagnosed with the​ disease? calculator

Answers

To calculate the probability that an adult over 40 years of age is diagnosed with the disease, we need to consider the given probabilities: the probability of selecting an adult over 40 with the disease,

the probability of correctly diagnosing a person with the disease, and the probability of incorrectly diagnosing a person without the disease. The probability can be calculated using the formula for conditional probability.

Let's denote the probability of selecting an adult over 40 with the disease as P(D), the probability of correctly diagnosing a person with the disease as P(C|D), and the probability of incorrectly diagnosing a person without the disease as having the disease as P(I|¬D).

The probability that an adult over 40 years of age is diagnosed with the disease can be calculated using the formula for conditional probability:

P(D|C) = (P(C|D) * P(D)) / (P(C|D) * P(D) + P(C|¬D) * P(¬D))

Given the probabilities:

P(D) = probability of selecting an adult over 40 with the disease,

P(C|D) = probability of correctly diagnosing a person with the disease,

P(I|¬D) = probability of incorrectly diagnosing a person without the disease as having the disease,

P(¬D) = probability of selecting an adult over 40 without the disease,

we can substitute these values into the formula to calculate the probability P(D|C).

Learn more about Probability here:

brainly.com/question/31828911

#SPJ11

The probability that Ekene will be alive in 5 years time is 3/4 and the probability that his wife Amina will be alive in 5 years time is 2/5. Find the probability that in 5 years time:
a) both of them will be alive
b) only Ekene will be alive.

Answers

a) The probability that both Ekene and Amina will be alive in 5 years time is 3/10.

b) The probability that only Ekene will be alive in 5 years time is 9/20.

a) Probability that both Ekene and Amina will be alive:

To find the probability that both Ekene and Amina will be alive in 5 years time, we use the principle of multiplication. Since Ekene's probability of being alive is 3/4 and Amina's probability is 2/5, we multiply these probabilities together to get the joint probability.

The probability of Ekene being alive is 3/4, which means there is a 3 out of 4 chance that he will be alive. Similarly, the probability of Amina being alive is 2/5, indicating a 2 out of 5 chance of her being alive. When we multiply these probabilities, we get:

P(Both alive) = (3/4) * (2/5) = 6/20 = 3/10

Therefore, the probability that both Ekene and Amina will be alive in 5 years time is 3/10.

b) Probability that only Ekene will be alive:

To find the probability that only Ekene will be alive in 5 years time, we need to subtract the probability of both Ekene and Amina being alive from the probability of Amina being alive. This gives us the probability that only Ekene will be alive.

P(Only Ekene alive) = P(Ekene alive) - P(Both alive)

We already know that the probability of Ekene being alive is 3/4. And from part (a), we found that the probability of both Ekene and Amina being alive is 3/10. By subtracting these two probabilities, we get:

P(Only Ekene alive) = (3/4) - (3/10) = 30/40 - 12/40 = 18/40 = 9/20

Therefore, the probability that only Ekene will be alive in 5 years time is 9/20.

Learn more about probability  here:-

https://brainly.com/question/32117953

#SPJ11

At the beginning of the school year, Oak Hill Middle School has 480 students. There are 270 seventh graders and 210 eighth graders

Answers

At the beginning of the school year, Oak Hill Middle School has a total of 480 students. Out of these students, there are 270 seventh graders and 210 eighth graders.

To determine the total number of students in the school, we add the number of seventh graders and eighth graders:

270 seventh graders + 210 eighth graders = 480 students

So, the number of students matches the total given at the beginning, which is 480.

Additionally, we can verify the accuracy of the information by adding the number of seventh graders and eighth graders separately:

270 seventh graders + 210 eighth graders = 480 students

This confirms that the total number of students at Oak Hill Middle School is indeed 480.

Therefore, at the beginning of the school year, Oak Hill Middle School has 270 seventh graders, 210 eighth graders, and a total of 480 students.

Learn more about graders here

https://brainly.com/question/33002456

#SPJ11



State whether the sentence is true or false. If false, replace the underlined term to make a true sentence.


The segment from the center of a square to the comer can be called the \underline{\text{radius}} of the square.

Answers

The statement "The segment from the center of a square to the corner cannot be called the 'radius' of the square" is false.

The term "radius" is commonly used in the context of circles and spheres, not squares. In geometry, the radius refers to the distance from the center of a circle or a sphere to any point on its boundary. It is a measure of the length between the center and any point on the perimeter of the circle or sphere.

In the case of a square, the equivalent term for the segment from the center to the corner is called the "diagonal." The diagonal of a square is the line segment that connects two opposite corners of the square, passing through its center. It is twice the length of the side of the square.

To know more about the diagonal of a square, refer here:

https://brainly.com/question/2693832#

#SPJ11

Use conditional or indirect proof to derive the following
logical truths.
~[(I ⊃ ~I) • (~I ⊃ I)]

Answers

We have derived the logical truth ~[(I ⊃ ~I) • (~I ⊃ I)] as I using indirect proof, showing that the negation leads to a contradiction.

To derive the logical truth ~[(I ⊃ ~I) • (~I ⊃ I)] using conditional or indirect proof, we assume the negation of the statement and show that it leads to a contradiction.

Assume the negation of the given statement:

~[(I ⊃ ~I) • (~I ⊃ I)]

We can simplify the expression using the logical equivalences:

~[(I ⊃ ~I) • (~I ⊃ I)]

≡ ~(I ⊃ ~I) ∨ ~(~I ⊃ I)

≡ ~(~I ∨ ~I) ∨ (I ∧ ~I)

≡ (I ∧ I) ∨ (I ∧ ~I)

≡ I ∨ (I ∧ ~I)

≡ I

Now, we have reduced the expression to simply I, which represents the logical truth or the identity element for logical disjunction (OR).

Learn more about logical truth

https://brainly.com/question/31303523

#SPJ11

Find two nontrivial functions f(x) and g(x) so f(g(x))= 7 /(x−10)5
f(x)=
g(x)=

Answers

Therefore,[tex]f(x) = 7/x^5[/tex] and g(x) = x - 10 are two nontrivial functions that satisfy the given equation [tex]f(g(x)) = 7/(x - 10)^5[/tex].

Let's find the correct functions f(x) and g(x) such that [tex]f(g(x)) = 7/(x - 10)^5[/tex].

Let's start by breaking down the expression [tex]7/(x - 10)^5[/tex]. We can rewrite it as[tex](7 * (x - 10)^(-5)).[/tex]

Now, we need to find functions f(x) and g(x) such that f(g(x)) equals the above expression. To do this, we can try to match the inner function g(x) first.

Let's set g(x) = x - 10. Now, when we substitute g(x) into f(x), we should get the desired expression.

Substituting g(x) into f(x), we have f(g(x)) = f(x - 10).

To match [tex]f(g(x)) = (7 * (x - 10)^(-5))[/tex], we can set [tex]f(x) = 7/x^5[/tex].

Therefore, the functions [tex]f(x) = 7/x^5[/tex] and g(x) = x - 10 satisfy the equation [tex]f(g(x)) = 7/(x - 10)^5.[/tex]

To know more about nontrivial functions,

https://brainly.com/question/31867461

#SPJ11

Patio furniture is on sale for $349.99. It is regularly $459.99.
What is the percent discount?

Answers

The percent discount on patio furniture is approximately 23.91%.

To calculate the percent discount, we first need to find the difference between the regular price and the sale price, which is $459.99 - $349.99 = $110.00.

Next, we divide the discount amount by the regular price and multiply it by 100 to convert it to a percentage: ($110.00 / $459.99) * 100 ≈ 23.91%.

Therefore, the percent discount on patio furniture is approximately 23.91%.

Learn more about Percent discount here

https://brainly.com/question/32837039

#SPJ11

Suppose that $2500 is placed in a savings account at an annual rate of 2.6%, compounded quarterly. Assuming that no withdrawals are made, how long will it take for the account to grow to $35007 Do not round any intermediate computations, and round your answer to the nearest hundreoth. If necessary, refer to the list of financial formular-

Answers

Answer:

time = 101.84 years

Step-by-step explanation:

The formula for compound interest is given by:

A(t) = P(1 + r/n)^(nt), where

A(t) is the amount in the account after t years (i.e., 35007 in this problem),P is principal (i.e., the deposit, which is $2500 in this problem),r is the interest rate (percentage becomes a decimal in the formula so 2.6% becomes 0.026),n is the number of compounding periods per year (i.e., 4 for money compounded quarterly since there are 4 quarters in a year),and t is the time in years.

Thus, we can plug in 35007 for A(t), 2500 for P, 0.026 for r, and 4 for n in the compound interest formula to find t, the time in years (rounded to the nearest hundredth) that it will take for the savings account to reach 35007:

Step 1:  Plug in values for A(t), P, r, and n.  Then simplify:

35007 = 2500(1 + 0.026/4)^(4t)

35007 = 2500(1.0065)^(4t)

Step 2:  Divide both sides by 2500:

(35007 = 2500(1.0065)^4t)) / 2500

14.0028 = (1.0065)^(4t)

Step 3:  Take the log of both sides:

log (14.0028) = log (1.0065^(4t))

Step 4:  Apply the power rule of logs and bring down 4t on the right-hand side of the equation:

log (14.0028) = 4t * log (1.0065)

Step 4:  Divide both sides by log 1.0065:

(log (14.0028) = 4t * (1.0065)) / log (1.0065)

log (14.0028) / log (1.0065) = 4t

Step 5; Multiply both sides by 1/4 (same as dividing both sides by 4) to solve for t.  Then round to the nearest hundredth to find the final answer:

1/4 * (log (14.0028) / log (1.0065) = 4t)

101.8394474 = t

101.84 = t

Thus, it will take about 101.84 years for the money in the savings account to reach $35007

Consider the following set of marks on a math test. (3 marks each) 67 71 74 83 99 91 84 56 72 77 65 98 41 84 71 77 73 63 85 81 88 94 83 71 68 62 56 68 71 70 a. Determine the quartiles of the data set. b. Suzanne's test score is in the data set and is in the 80 th percentile. Which mark is her test score?

Answers

a. The quartiles of the data set are Q1 = 68, Q2 = 73, and Q3 = 83.

b. Suzanne's test score which lies in the 80th percentile is 84.

a. Quartiles of the data set:

Let us sort the marks: 41, 56, 56, 62, 63, 65, 67, 68, 68, 70, 71, 71, 71, 72, 73, 74, 77, 77, 81, 83, 83, 84, 84, 85, 88, 91, 94, 99

The median of the data is 73.

The median of the lower half of the data is 68.

The median of the upper half of the data is 83.

Therefore, Q1 = 68, Q2 = 73, and Q3 = 83.

b. The 80th percentile:

Percentile can be calculated by using the formula:

Percentile = (Number of values below the given value / Total number of values) × 100

80 = (n/30) × 100

n = 24

From the sorted data, the 24th mark is 84.

Therefore, Suzanne's test score is 84.

Learn more about Quartiles here: https://brainly.com/question/28169373

#SPJ11

Which quadratic function shows the widest compared to the parent function y =

Oy=x²
O y = 5x²
Oy=x²
O y = 3x²

Answers

The quadratic function that shows the widest graph compared to the parent function y = x² is y = 5x².

The quadratic function that shows the widest graph compared to the parent function y = x² is y = 5x².

In a quadratic function, the coefficient in front of the x² term determines the shape of the graph.

When the coefficient is greater than 1, it causes the graph to stretch vertically compared to the parent function.

Conversely, when the coefficient is between 0 and 1, it causes the graph to compress vertically.

Comparing the given options, y = 5x² has a coefficient of 5, which is greater than 1.

This means that the graph of y = 5x² will be wider than the parent function y = x²

The graph of y = x² is a basic parabola that opens upward, symmetric around the y-axis.

By multiplying the coefficient by 5 in y = 5x², the graph stretches vertically, making it wider compared to the parent function.

On the other hand, the options y = x² and y = 3x² have coefficients of 1 and 3, respectively, which are both less than 5.

Hence, they will not be as wide as y = 5x².

For similar question on  quadratic function.

https://brainly.com/question/29051300  

#SPJ8

A poll questioned 500 students about their views on pizza for lunch at school. The results indicated that 75% of respondents felt that pizza was a must for lunch at school and would quit school if there was no pizza at lunch. a) Determine the 90% confidence interval. b) What is the margin of error for this response at the 90% confidence level? Question 4: A poll questioned 500 students about their views on pizza for lunch at school. The results indicated that 75% of respondents felt that pizza was a must for lunch at school and would quit school if there was no pizza at lunch. a) Determine the 90% confidence interval. ( 5 marks) b) What is the margin of error for this response at the 90% confidence level?

Answers

The 90% confidence interval is approximately 0.75 ± 0.028, or (0.722, 0.778).

To determine the 90% confidence interval and margin of error for the response that 75% of respondents felt that pizza was a must for lunch at school, we can use the formula for confidence intervals for proportions. a) The 90% confidence interval can be calculated as:

Confidence interval = Sample proportion ± Margin of error. The sample proportion is 75% or 0.75. To calculate the margin of error, we need the standard error, which is given by:

Standard error = sqrt((sample proportion * (1 - sample proportion)) / sample size).

The sample size is 500 in this case. Plugging in the values, we have: Standard error = sqrt((0.75 * (1 - 0.75)) / 500) ≈ 0.017.

Now, the margin of error is given by: Margin of error = Critical value * Standard error. For a 90% confidence level, the critical value can be found using a standard normal distribution table or a statistical software, and in this case, it is approximately 1.645. Plugging in the values, we have:

Margin of error = 1.645 * 0.017 ≈ 0.028.

Therefore, the 90% confidence interval is approximately 0.75 ± 0.028, or (0.722, 0.778). b) The margin of error for this response at the 90% confidence level is approximately 0.028. This means that if we were to repeat the survey multiple times, we would expect the proportion of students who feel that pizza is a must for lunch at school to vary by about 0.028 around the observed sample proportion of 0.75.

To learn more about confidence interval click here: brainly.com/question/32546207

#SPJ11

Assume that f(x, y, z) is a function of three variables that has second-order partial derivatives. Show that V×Vf=0

Answers

The vector calculus identity Vx(Vf) = 0 states that the curl of the gradient of any scalar function f of three variables with continuous second-order partial derivatives is equal to zero. Therefore, VxVf=0.

To show that VxVf=0, we need to use the vector calculus identity known as the "curl of the gradient" or "vector Laplacian", which states that Vx(Vf) = 0 for any scalar function f of three variables with continuous second-order partial derivatives.

To prove this, we first write the gradient of f as:

Vf = (∂f/∂x) i + (∂f/∂y) j + (∂f/∂z) k

Taking the curl of this vector yields:

Vx(Vf) = (d/dx)(∂f/∂z) i + (d/dy)(∂f/∂z) j + [(∂/∂y)(∂f/∂x) - (∂/∂x)(∂f/∂y)] k

By Clairaut's theorem, the order of differentiation of a continuous function does not matter, so we can interchange the order of differentiation in the last term, giving:

Vx(Vf) = (d/dx)(∂f/∂z) i + (d/dy)(∂f/∂z) j + (d/dz)(∂f/∂y) i - (d/dz)(∂f/∂x) j

Noting that the mixed partial derivatives (∂^2f/∂x∂z), (∂^2f/∂y∂z), and (∂^2f/∂z∂y) all have the same value by Clairaut's theorem, we can simplify the expression further to:

Vx(Vf) = 0

Therefore, we have shown that VxVf=0 for any scalar function f of three variables that has continuous second-order partial derivatives.

To know more about vector calculus identity, visit:

brainly.com/question/33469582

#SPJ11


4. A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b, by linear dielectric material of permittivity &. Find the potential at the center (relative to infinity)

Answers

The potential at the center of the metal sphere, relative to infinity, surrounded by linear dielectric material is:

V = (1 / 4πε) * (Q / a)

To find the potential at the center of the metal sphere surrounded by a linear dielectric material, we can use the concept of the electric potential due to a uniformly charged sphere.

The electric potential at a point inside a uniformly charged sphere is given by the formula:

V = (1 / 4πε₀) * (Q / R)

Where:

V is the electric potential at the center,

ε₀ is the permittivity of free space (vacuum),

Q is the charge of the metal sphere,

R is the radius of the metal sphere.

In this case, the metal sphere is surrounded by a linear dielectric material, so the effective permittivity (ε) is different from ε₀. Therefore, we modify the formula by replacing ε₀ with ε:

V = (1 / 4πε) * (Q / R)

The potential at the center is considered relative to infinity, so the potential at infinity is taken as zero.

Therefore, the potential at the center of the metal sphere, relative to infinity, surrounded by linear dielectric material is:

V = (1 / 4πε) * (Q / a)

Learn more about Linear Dielectric Material at

brainly.com/question/32289772

#SPJ4

The diagram below shows circle O with radii OL and OK.


The measure of OLK is 35º.
What is the measure of LOK?

Answers

Answer:

∠LOK  = 110

Step-by-step explanation:

Since OL = OK, ΔOLK is an isoceles triangle

Therefore, the angles opposite to the equal sides are also equal

i.e., ∠OKL = ∠OLK = 35°

Also, ∠OKL + ∠OLK + ∠LOK = 180°

⇒ 35 + 35 + ∠LOK  = 180

⇒ ∠LOK  = 180 - 35 - 35

⇒ ∠LOK  = 110

The Empire State building in New York City is approximately 1250 ft tall. How many U.S. nickels would be in a stack of the same height

Answers

Step-by-step explanation:

US nickels are .077  inches thick per nickel

1250 ft = 1250  ft * 12 inches / ft = 15 000 inches

15000 inches /  ( .077 in / nickel ) =

        194 805  nickels  ( stacked on their flat sides) equals the Empire State building

Two solutions to y'' - y' - 42y = 0 are y₁ = et, y2 = e 6t a) Find the Wronskian. W = b) Find the solution satisfying the initial conditions y(0) = 4, y'(0) = 54 y =

Answers

The Wronskian of the given solutions is W = 6e7t - e7t.

The Wronskian is a determinant used to determine the linear independence of a set of functions. In this case, we have two solutions, y₁ = et and y₂ = e6t, to the second-order linear homogeneous differential equation y'' - y' - 42y = 0.

To find the Wronskian, we need to set up a matrix with the coefficients of the solutions and take its determinant. The matrix would look like this:

| et     e6t   |

| et      6e6t |

Expanding the determinant, we have:

W = (et * 6e6t) - (e6t * et)

 = 6e7t - e7t

Therefore, the Wronskian of the given solutions is W = 6e7t - e7t.

Learn more about the Wronskian:

The Wronskian is a powerful tool in the theory of ordinary differential equations. It helps determine whether a set of solutions is linearly independent or linearly dependent. In this particular case, the Wronskian shows that the solutions y₁ = et and y₂ = e6t are indeed linearly independent, as their Wronskian W ≠ 0.

The Wronskian can also be used to find the general solution of a non-homogeneous linear differential equation by applying variation of parameters. By calculating the Wronskian and its inverse, one can find a particular solution that satisfies the given initial conditions or boundary conditions.

#SPJ11

Step 3:

To find the solution satisfying the initial conditions y(0) = 4 and y'(0) = 54, we can use the Wronskian and the given solutions.

The general solution to the differential equation is given by y = C₁y₁ + C₂y₂, where C₁ and C₂ are constants.

Substituting the given solutions y₁ = et and y₂ = e6t, we have y = C₁et + C₂e6t.

To find the particular solution, we need to determine the values of C₁ and C₂ that satisfy the initial conditions. Plugging in y(0) = 4 and y'(0) = 54, we get:

4 = C₁(1) + C₂(1)

54 = C₁ + 6C₂

Solving this system of equations, we find C₁ = 4 - C₂ and substituting it into the second equation, we get:

54 = 4 - C₂ + 6C₂

50 = 5C₂

C₂ = 10

Substituting C₂ = 10 into C₁ = 4 - C₂, we find C₁ = -6.

Therefore, the solution satisfying the initial conditions is y = -6et + 10e6t.

Learn more about linear independence

brainly.com/question/30884648

#SPJ11

The table represents a linear function.
X
-2
-1
0
1
2
y
-2
1
4
7
10
E
E
E
What is the slope of the function?
OO
-2
0 3
D
6
4

Answers

Answer:

C) 3

Step-by-step explanation:

To find the slope given a table with points, use the formula:
[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

Use the points:

(-2,-2) and (-1,1)

[tex]\frac{1+2}{-1+2}[/tex]

simplify

3/1

=3

So, the slope is 3.

Hope this helps! :)

Write the following system (a) as a vector equation involving a linear combination vectors and (b) as a matrix equation involving the product of a matrix and a vector on the left side and a vector on th eright side.

5x1 - 2x2 -x3 = 2

(a) 4x1 + 3x3 = 1

3x1 + x2 -2x3 = -4

(b) 2x1 - 2x2 = 1

Answers

The matrix equation is:

[[5, -2, -1], [4, 0, 3], [3, 1, -2]] * [x1, x2, x3] = [2, 1, -4]

(a) The given system can be written as a vector equation involving a linear combination of vectors as follows:

x = [x1, x2, x3]

v1 = [5, -2, -1]

v2 = [4, 0, 3]

v3 = [3, 1, -2]

b = [2, 1, -4]

The vector equation is:

x * v1 + x * v2 + x * v3 = b

(b) The given system can be written as a matrix equation involving the product of a matrix and a vector on the left side and a vector on the right side as follows:

A * x = b

Where:

A is the coefficient matrix:

A = [[5, -2, -1], [4, 0, 3], [3, 1, -2]]

x is the column vector of bz:

x = [x1, x2, x3]

b is the column vector of constants:

b = [2, 1, -4]

Learn more about matrix equation here :-

https://brainly.com/question/29132693

#SPJ11

Solve the IVP using Taylor's series(3rd deg polynomial). dy/dx = 3x2y; y(1)=1 y'(1) = y"(1) |y(1)= y(1.4) = (2 decimal places) True value at x=1.4 (2 decimal places)

Answers

The true value of y(1.4) is approximately 1.97.

The given differential equation is dy/dx = 3x^2y. The initial conditions are y(1) = 1, y'(1) = 0, and y''(1) = 0.

The Taylor series for y(x) with center x = 1 is given by

y(x) = 1 + x(y'(1)) + x^2/2(y''(1)) + x^3/6(y'''(1)) + ...

Substituting the initial conditions into the Taylor series gives

y(x) = 1 + x(0) + x^2/2(0) + x^3/6(0) + ...

y(x) = 1 + x^3/6

To find y(1.4), we can simply substitute x = 1.4 into the Taylor series. This gives

y(1.4) = 1 + (1.4)^3/6 = 1.97

The true value of y(1.4) is approximately 1.97. Therefore, the Taylor series approximation is accurate to within two decimal places.

Here is a table of the values of y(x) computed using the Taylor series and the true value of y(x):

x | Taylor series | True value

------- | -------- | --------

1 | 1 | 1

1.4 | 1.97 | 1.97

Learn more about value with the given link,

https://brainly.com/question/24078844

#SPJ11

Other Questions
John decides to raise the grade level of the product of his project. He is affecting: The project quality The project scope The project benchmarks The quality baseline Encuentre el mayor factor comn de 12 y 16 1 hectare is defined as 1 x 10^4 m^2. 1 acre is 4.356 x 10^4 ft. How many acres are in 2.0 hectares? (Do not include units in your answer). For each question, choose the sentence with more concise language.Question 1A. The stegosaurus was huge in size.B. The stegosaurus was huge.Question 2A. The wagon was the color red.B. The wagon was red.Question 3A. Since he got good grades, he decided to take the night off.B. Due of the fact that he got good grades, he made a decision to take the night off.Question 4A. In the summer season, many Vancouverites like to picnic in Stanley Park.B. In the summer, many Vancouverites like to picnic in Stanley ParkQuestion 5A. My dad told me to finish college.B. It was my dad who told me to finish college.Question 60.2 ptsA. Smoking in public places should be banned.B. I think smoking in public places should be banned.Question 70.2 ptsA. To get the facts of the case, the lawyer interviewed four witnesses.B. In order to get the true facts of the case, the lawyer interviewed four witnesses.Question 80.2 ptsA. Furthermore, Henry VIII also married six different women.B. Henry VIII also married six women.Question 90.2 ptsA. It is getting late, I thought.B. It is getting late, I thought to myself.Question 100.2 ptsA. The computer is sitting on top of the table.B. The computer is on the table.Question 110.2 ptsA. We as humans must conserve resources on planet Earth.B. We must conserve resources.Question 120.2 ptsA. Some people use computers only to do word processing.B. There are some people who use computers only to do word processing.Question 130.2 ptsA. She yelled at him.B. She yelled at him in a loud, angry voice.Question 140.2 ptsA. The shopper came to the conclusion that he should buy a loaf of bread.B. The shopper concluded that he should buy a loaf of bread.Question 150.2 ptsA. He was happy about the great gift.B. He was happy and joyful about the great gift. Answer should be no less than 1000 words.Question: Examine two social movements incontemporary Africa and discuss their relevance and significance incontemporary Africa. What is the resistance of a 12m long wire of 12 gauge copperwire at room temperature? The resistivity of copper at roomtemperature is 1.72 x 10-8 m and the diameter of 12gauge wire is 2.64 mm. "A 6.0-cm-tall object is 12 cm in front of a concave mirror thathas a 27 cm focal length.A.) Calculate the image position.B.) Calculate the image height. Type a positive value if theimage is upright Which of the following may increase the risk of breast cancer? a. Early menopause b. Having more than 3 children c. Becoming obese after menopause d. Breastfeeding A capacitor is charged using a 400 V battery. The charged capacitor is then removed from the battery. If the plate separation is now doubled, without changing the charge on the capacitors, what is the potential difference between the capacitor plates? A. 100 V B. 200 V C. 400 V D. 800 V E. 1600 V which action by u.s government is an example of monetary policy If the maximum duration of an activity is 10 and the minimumduration is 2, what is the variance for the activity time whenusing CPM analysis? During a non-flow polytropic process, a gas undergoes an expansion process can be represented as PV n = constant The initial volume is 0.1 m 3 , the final volume is 0.2 m 3 and the initial pressure is 3.5 bar. Determine the work for the process when (a) n=1.4, (b) n=1 and (c) n=0. In the case when the gas undergoes the process, PV 1.4 = constant, and it is given that the mass of the gas is 0.6 kg and the change in specific internal energy of the gas ( u2u1) in the process is 50 kJ/kg. Assume the change in kinetic energy and potential energy are neglectable. Determine (d) the net heat transfer of the process. Sonido en los odos de las vibraciones de la campana las llaves 2. f(x) = 4x x-9 a) Find the x- and y-intercepts of y = f(x). b) Find the equation of all vertical asymptotes (if they exist). c) Find the equation of all horizontal asymptotes (if they exist). d) Summarize three findings that support the hypothesis that women and men differ in the triggers of sexual jealousy. ANATOMY AND FUNCTION OF THE EYE QUESTIONS: 1. Give the location, composition and function of the structure of the eyeball. 2. Explain the refraction of light in the cornea. 3. Define: a. Blind spot b. Accommodation c. Myopia d. Astigmatism e. Glaucoma f. Conjunctivitis g. Hyperopia h. Visual Acuity A massive uniform string of a mass m and length hangs from the ceiling. Find the speedof a transverse wave along the string as a function of the height from the ceiling.Assume uniform vertical gravity with the acceleration . suppose ????:3 is a differentiable function which has an absolute maximum value ????0 and an absolute minimum m . suppose further that m A 5 kg ball takes 6.44 seconds for one revolution around the circle. What's the magnitude of the angular velocity of this motion? When she enters college, Simone puts $500 in a savings accountthat earns 3.5% simple interest yearly. At the end of the 4 years,how much money will be in the account?