The major organic product(s) of the reaction H2O + NaOH is/are NaOH and H2O. In the reaction of H2O + NaOH, water is consumed by the base NaOH to form the salt sodium hydroxide NaOH and water (H2O).
This reaction is a good example of a neutralization reaction, as it neutralizes the acidic H+ ion in water with the basic OH- ion in NaOH. H2O + NaOH → NaOH + H2ONaOH and H2O are the major organic products of the above reaction.
It is also a simple substitution reaction in which under the presence of aqueous NaOH, bromide ion is replaced by hydroxide ion as it is a better leaving group than hydroxide ion.
To know more about NaOH visit:
https://brainly.com/question/20573731
#SPJ11
solid lead(ii) nitrate is slowly added to 150 ml of a sodium iodide solution until the concentration of lead ion is 0.0231 m. the maximum amount of iodide remaining in solution is
Solid lead(II) nitrate is slowly added to 150 ml of a sodium iodide solution until the concentration of lead ion is 0.0231 m. The maximum amount of iodide remaining in solution is 0.0462 M.
0.0231 mol/L is given as the concentration of lead(II) ion. The molar ratio of the lead(II) ion to the iodide ion is 1:2.
Thus, to calculate the concentration of iodide ions, you must first determine the moles of lead(II) ion present. Then use the 1:2 molar ratio to determine the moles of iodide ion present.
In 150 ml of a sodium iodide solution, the number of moles of lead nitrate is calculated as follows:
Molarity = moles of solute/ liters of solution
0.0231 mol/L = moles of lead nitrate/0.150 L (since, 150 ml = 0.150 L)
Moles of lead nitrate = 0.003465 mol
The number of moles of iodide ion is twice the number of moles of lead ion because the molar ratio of lead to iodide ions is 1:2.
Thus, moles of iodide ion present = 2 × 0.003465 mol = 0.00693 mol
Now we can find the concentration of iodide ions present in the solution.The volume of the solution is 150 ml, which is equal to 0.150 L.
Iodide ion concentration = moles of iodide ion / liters of solution= 0.00693 mol/0.150 L= 0.0462 M
Therefore, the maximum amount of iodide remaining in solution is 0.0462 M.
Learn more about concentration :
https://brainly.com/question/26255204
#SPJ11
Select the correct electron configuration for Te (Z= 52)_ A) [Kr] 552 4d0 5p6 B) [Kr] 552 4f4 C) [Kr] 532 5p6 488 D) [Kr] 552 4dl0 5pA E) [Kr] 552 5d0 51A'
The correct electron configuration for Te (Z= 52) is option C) [Kr] 532 5p6 4d8.What is electronic configuration The are electronic configuration is a distribution of electrons in an atom in different energy levels
It is the representation of an atom's electrons shells and subshells.Electronic configuration of Te The atomic number of Te is 52. The electronic configuration of Te is shown as:[Kr] 5s² 4d¹⁰ 5p⁴We can use the following information to determine the correct electronic configuration:52 protons are in the nucleus of the atom of there are 52 electrons. We will fill these electrons following the Aufbau Principle, Pauli’s exclusion principle, and Hund's rule.
The electronic configuration for Te is:[Kr] 4d¹⁰ 5s² 5p⁴Now we can distribute these 52 electrons in the electronic configuration, which gives us the following configuration:[Kr] 5s² 4d¹⁰ 5p⁴The main answer is the option that contains the correct electron configuration, which is option C) [Kr] 532 5p6 4d8. is:[Kr] 5s² 4d¹⁰ 5p⁴ can be written as [Kr] 5s² 4d¹⁰ 5p⁴ or [Kr] 5s² 4d¹⁰ 5p6 4d⁸ or [Kr] 5s² 4d¹⁰ 5p6 4d⁹. When we fill the orbitals with electrons, we must follow the Aufbau principle, Pauli's exclusion principle, and Hund's rule is that the electron configuration of Te is [Kr] 5s² 4d¹⁰ 5p⁴, and the correct option is C) [Kr] 532 5p6 4d8.
To know more about electrons Visit;
https://brainly.com/question/28977387
#SPJ11
what is the only active site not used in the second round of fatty acid synthase?
The condensing enzyme active site is the only active site not used in the second round of fatty acid synthase.
Fatty acid synthase is an enzyme complex involved in the synthesis of fatty acids. It consists of multiple functional domains or active sites, each responsible for specific chemical reactions in the fatty acid synthesis process. During the second round of fatty acid synthesis, all active sites except the condensing enzyme active site are utilized.
The condensing enzyme active site is involved in the initial condensation of malonyl-ACP (acyl carrier protein) with the growing fatty acid chain. After the first round of synthesis, the growing fatty acid chain is transferred to a different active site, and the condensing enzyme active site remains unutilized in the subsequent rounds.
You can learn more about fatty acid at
https://brainly.com/question/17352723
#SPJ11
The second round of the fatty acid synthesis pathway begins with a new cycle, and this time acetyl-ACP rather than malonyl-ACP is used as the substrate to initiate chain elongation. As a result, malonyl transferase is no longer used, and the other six catalytic activities in fatty acid synthase take over the process of elongating the fatty acid chain. Therefore, Malonyl transferase is the only active site not used in the second round of fatty acid synthase.
Fatty acid synthase is a multifunctional protein enzyme that synthesizes long-chain saturated fatty acids. The synthesis of saturated fatty acids occurs in the cytoplasm of prokaryotes and in the cytoplasmic face of the endoplasmic reticulum (ER) in eukaryotes. Fatty acid synthase contains seven catalytic activities: ketoacyl synthase, ketoacyl reductase, ketoacyl dehydrase, enoyl reductase, malonyl transferase, β-ketoacyl reductase, and acyl carrier protein (ACP). The only active site not used in the second round of fatty acid synthase is malonyl transferase.Malonyl transferase is an active site that attaches the malonyl group to the malonyl-ACP during the first round of the fatty acid synthesis. Malonyl group transfer is essential for elongating fatty acids, since it serves as the building block for the growing chain. The second round of the fatty acid synthesis pathway begins with a new cycle, and this time acetyl-ACP rather than malonyl-ACP is used as the substrate to initiate chain elongation. As a result, malonyl transferase is no longer used, and the other six catalytic activities in fatty acid synthase take over the process of elongating the fatty acid chain. Therefore, Malonyl transferase is the only active site not used in the second round of fatty acid synthase.
To know more about fatty acid visit:
https://brainly.com/question/31752492
#SPJ11
the limiting reagent in the production of 1-bromobutane is 1-butanol
The production of 1-bromobutane involves the reaction of 1-butanol with hydrobromic acid. The reaction is as follows:CH3CH2CH2CH2OH + HBr → CH3CH2CH2CH2Br + H2OHere, 1-butanol is the limiting reagent.
The limiting reagent is the reactant that is present in the least amount and thus, limits the amount of product that can be produced from the reaction.The given equation shows that one mole of 1-butanol reacts with one mole of HBr to produce one mole of 1-bromobutane and one mole of water. So, the amount of 1-bromobutane that can be produced depends on the amount of 1-butanol available for the reaction. If there is less 1-butanol than HBr, the reaction will stop when all the 1-butanol has reacted, and there will be excess HBr left over.
The production of 1-bromobutane has a theoretical yield that can be calculated based on the stoichiometry of the reaction. However, the actual yield may be less than the theoretical yield due to various factors such as incomplete reactions, side reactions, and losses during the reaction process.In conclusion, 1-butanol is the limiting reagent in the production of 1-bromobutane since it is present in the least amount and limits the amount of product that can be produced from the reaction.
To know more about hydrobromic acid visit;-
https://brainly.com/question/29034636
#SPJ11
Which one of the following is the strongest intermolecular force experienced by noble gases? a) London dispersion forces b) Dipole-dipole interactions c) Hydrogen bonding d) lon-ion interactions
The strongest intermolecular force experienced by noble gases is London dispersion forces. Therefore, option (a) is the correct answer.
London dispersion forces are the weakest type of intermolecular forces that occur due to instantaneous fluctuations in the electron cloud around an atom or molecule. They are also known as van der Waals forces and exist between all atoms and molecules.
The magnitude of London dispersion forces increases with the increase in size of the atoms or molecules, as the number of electrons in the electron cloud increases, which leads to more significant fluctuations.
The noble gases (He, Ne, Ar, Kr, Xe, Rn) are inert gases with stable electron configurations and exist as monatomic gases at room temperature. Therefore, London dispersion forces are the only intermolecular force experienced by noble gases. Hence option A is the correct answer.
Learn more about London dispersion forces: https://brainly.com/question/1454795
#SPJ11
(0)
NMR are not included for these products (contained one haloalkane compound and alcohol compound). Why might NMR not be an ideal way to determine structures in a mixture? In other words, why is NMR not used to determine structure in a mixture?
NMR is not an ideal way to determine structures in a mixture because it cannot differentiate between different compounds in the mixture. In other words, it does not provide information on which peaks correspond to which individual compounds in the mixture, making it difficult to determine the structures of individual compounds.
Nuclear magnetic resonance (NMR) spectroscopy is an analytical chemistry technique that provides information on the number and type of atoms in a molecule, the connectivity between those atoms, and the three-dimensional arrangement of atoms in a molecule.However, NMR is not an ideal way to determine structures in a mixture because all of the peaks from all of the different compounds in the mixture will overlap, making it difficult to distinguish between the different compounds.
As a result, other analytical techniques such as gas chromatography (GC) or liquid chromatography (LC) are often used to separate the individual compounds in the mixture before NMR analysis to obtain information about each compound separately.
To know more about compounds visit :
https://brainly.com/question/24972577
#SPJ11
how many moles of hydrochloric acid could be produced from 85.4 g of iron(iii) chloride?
The 0.435 mol of hydrochloric acid can be produced from 85.4 g of iron(III) chloride. We need to calculate the number of moles of hydrochloric acid can be produced from 85.4 g of iron(III) chloride.
The balanced chemical equation for the reaction of iron(III) chloride with hydrochloric acid is FeCl3 + 3HCl → 3Cl + FeCl2 + H2OThe molar mass of iron(III) chloride (FeCl3) is calculated as: Fe = 1 × 55.845 = 55.845gCl3 = 3 × 35.453 = 106.359gFeCl3 = 162.204 g/mol Number of moles of FeCl3 can be calculated by using the following formula.
Number of moles = mass of substance / molar mass= 85.4 g / 162.204 g/mol= 0.5266 mol According to the stoichiometry of the reaction, 1 mole of FeCl3 reacts with 3 moles of HCl. Therefore, the number of moles of HCl produced = 0.5266 mol FeCl3 × 3 mol HCl/1 mol FeCl3= 1.5798 mol.
To know more about hydrochloric acid visit:
https://brainly.com/question/14006357
#SPJ11
an example of an extensive property of matter is: a) hardness or b) mass?
An example of an extensive property of matter is mass.
What is matter?Matter is anything that has mass and takes up space. Matter can be classified into two main categories, namely pure substances and mixtures. Mixtures can be further divided into homogeneous and heterogeneous mixtures.Properties of matterProperties of matter can be classified as intensive and extensive properties.
An intensive property of matter does not depend on the amount of matter present. Density, boiling point, and color are examples of intensive properties of matter.An extensive property of matter depends on the amount of matter present. Mass, volume, and length are examples of extensive properties of matter.
learn more about extensive property here
https://brainly.com/question/18390161
#SPJ11
What is the orbital hybridization of a central atom that has one lone pair and bonds to four other atoms?
sp
sp2
sp3
sp3d
sp3d2
The orbital hybridization of a central atom that has one lone pair and bonds to four other atoms is sp3. The sp3 hybridization is the result of combining 3p orbitals and one s orbital in the valence shell to create four sp3 hybrid orbitals.
The hybrid orbitals all have the same energy and shape, and they're all spaced out at a 109.5-degree angle. The sp3 hybridization is commonly seen in molecules with tetrahedral geometry, such as methane (CH4), water (H2O), and ammonia (NH3). The four hybrid orbitals of the central atom in these molecules are used to form four bonds with the surrounding atoms, resulting in a tetrahedral shape.
Read more about hybridization here;https://brainly.com/question/22765530
#SPJ11
Draw the products formed when phenol(C6H5OH) is treated with each reagent. Give an explanation. c. CH3CH2Cl, AlCl3 l. product in (c), then KMnO4
When phenol (C6H5OH) is treated with CH3CH2Cl, AlCl3, the major product obtained is 2-ethoxyphenol or ortho-ethoxyphenol. This reaction takes place in the presence of aluminum trichloride (AlCl3) as a catalyst.The main answer to the given question is that the product formed when phenol is treated with CH3CH2Cl,
AlCl3 is 2-ethoxyphenol or ortho-methoxyphenyl.The balanced chemical equation for this reaction is given below:Explanation:In the presence of anhydrous aluminum trichloride (AlCl3), phenol reacts with ethyl chloride (CH3CH2Cl) and forms ortho-methoxyphenyl or 2-methoxyphenyl as the major product.When AlCl3 acts as a catalyst, it accepts an electron from CH3CH2Cl, forming a positively charged ethyl carbocation. After that, it is attacked by the electron-rich aromatic ring of phenol to form a resonance-stabilized carbocation.After the generation of the carbocation, a nucleophilic attack on the carbocation takes place by the lone pair of electrons on the oxygen atom of the phenoxide ion.
A proton is removed from oxygen at the final stage of the reaction, producing the product, i.e., 2-methoxyphenyl or ortho-ethoxyphenol. 2-methoxyphenyl is a type of phenol that is soluble in ethanol, ether, and benzene. It is used in the manufacture of dyes and synthetic fragrances.The next part of the question, i.e., product in (c), then KMnO4 can be understood as follows:When ortho-methoxyphenyl is treated with KMnO4, it undergoes oxidative cleavage to produce ethanedioic acid or oxalic acid as the major product.The balanced chemical equation for this reaction is given below:In the presence of alkaline KMnO4 solution, ortho-ethoxyphenol reacts to produce ethanedioic acid (H2C2O4).The reaction takes place via the breakage of the aromatic ring and the oxidation of carbon atoms. KMnO4 acts as an oxidizing agent in this reaction, oxidizing the carbon atoms present in the ortho-ethoxyphenol to carbon dioxide (CO2) and the carboxylic acid.
To know more about aluminum trichloride visit:
https://brainly.com/question/5199611
#SPJ11
how many moles of oxygen must be placed in a 3.00 l container to exert a pressure of 2.00 atm at 25.0°c? formula: pv = nrt(r = 0.0821 latm/molk) which variables are given? pressure
To determine the number of moles of oxygen required to achieve a pressure of 2.00 atm in a 3.00 L container at [tex]25.0^0C[/tex], we can use the ideal gas law equation PV = nRT.
In the given formula PV = nRT, the variables provided are pressure (P), volume (V), and temperature (T). The pressure is given as 2.00 atm, and the volume is stated as 3.00 L. The temperature is given as [tex]25.0^0C[/tex], but it needs to be converted to Kelvin (K) for the equation. To convert Celsius to Kelvin, we add 273.15 to the Celsius value, resulting in 298.15 K.
Using the ideal gas law equation, we rearrange it to solve for the number of moles (n) of oxygen: n = PV / RT. Plugging in the given values, we have n = (2.00 atm) * (3.00 L) / [(0.0821 L * atm / (mol * K)) * (298.15 K)]. By performing the calculation, we can find the number of moles of oxygen needed.
To get the accurate result, ensure that the temperature is always in Kelvin and use the correct units for other variables.
Learn more about ideal gas law here:
https://brainly.com/question/30458409
#SPJ11
Sucrose commonly called table sugar undergoes hydrolysis (reaction with water) produce fructose and glucose
C12H22O11+H2O-> C6H12O6+C6H12O6
This reaction is of considerable importance in the candy industry. First, fructose is sweeter than sucrose. Second a mixture of fructose and glucose called invert sugar does not crystallize so the candy containing this sugar would be chewy rather than brittle as candy containing sucrose crystals would be. A) From the following data determine the order of the reaction. B) how long does it take to hydrolyze 95 percent of sucrose? C) explain why the rate law does not include h2o even though water is a reactant.
Time (min) C12H22011 (M)
0 .500
60.0 .400
96.4 .350
157.5 .280
From the graphs I created in excel I believe its 1st order reaction. I have no idea how to answer or even start parts B and C?
Part A:From the data given in the table, the time taken for the concentration of sucrose to drop from 0.5 M to 0.4 M is 60 minutes. This means that a 10% decrease in sucrose concentration occurs in 60 minutes. Similarly, the time taken for the concentration of sucrose to drop from 0.4 M to 0.35 M is (96.4 - 60) = 36.4 minutes.
Therefore, the reaction is first-order.
Part B: In a first-order reaction, the rate constant (k) can be calculated from the half-life (t1/2) as follows:
t1/2 = (0.693/k)
Therefore, it takes 112.6 minutes to hydrolyze 95% of sucrose.
Part C: The rate law for a reaction gives the relationship between the rate of the reaction and the concentrations of the reactants.
Therefore, the rate of the reaction depends only on the concentration of sucrose (which is decreasing) and not on the concentration of water.
Part A:From the data given in the table, the time taken for the concentration of sucrose to drop from 0.5 M to 0.4 M is 60 minutes. This means that a 10% decrease in sucrose concentration occurs in 60 minutes. Similarly, the time taken for the concentration of sucrose to drop from 0.4 M to 0.35 M is (96.4 - 60) = 36.4 minutes.
Thus, a 5% decrease in sucrose concentration occurs in 36.4 minutes.
Similarly, the time taken for the concentration of sucrose to drop from 0.35 M to 0.28 M is (157.5 - 96.4) = 61.1 minutes. Thus, a 7% decrease in sucrose concentration occurs in 61.1 minutes.
So, we can see that as the concentration of sucrose decreases, the time taken for a given percentage decrease in concentration also decreases. This is a characteristic of a first-order reaction.
Therefore, the reaction is first-order.
Part B: In a first-order reaction, the rate constant (k) can be calculated from the half-life (t1/2) as follows:
t1/2 = (0.693/k)
Here, t1/2 = 60 minutes (time taken for 50% hydrolysis),
k = 0.693/t1/2 = 0.693/60 = 0.01155 min-1
To calculate the time taken for 95% hydrolysis, we can use the following equation:
ln([A]/[A]0) = -kt
where [A]0 is the initial concentration of sucrose, [A] is the concentration of sucrose at time t, and k is the rate constant. Rearranging the equation, we get:
t = (1/k)ln([A]0/[A])
Here, [A]0 = 0.5 M and [A] = 0.05 M (95% hydrolysis)
Substituting these values and k = 0.01155 min-1, we get:
t = (1/0.01155)ln(0.5/0.05) = 112.6 minutes
Therefore, it takes 112.6 minutes to hydrolyze 95% of sucrose.
Part C: The rate law for a reaction gives the relationship between the rate of the reaction and the concentrations of the reactants. The rate law for the hydrolysis of sucrose is given as follows:
rate = k[C12H22O11]
Since the rate law does not include H2O even though it is a reactant, we can conclude that the reaction is not affected by the concentration of water. This is because the concentration of water remains almost constant throughout the reaction (since it is the solvent). Therefore, the rate of the reaction depends only on the concentration of sucrose (which is decreasing) and not on the concentration of water.
To know more about first-order reaction visit:
https://brainly.com/question/15909753
#SPJ11
Chloroform was used as an anesthetic in the early days of surgery. If its density is 1.586 g/mL, what is the mass of 225 mL? OA) 357 g B) 1.60 g C) 2258 D) 151 g
We can use the formula below to calculate the mass of chloroform.Mass = Density × Volume Mass = 1.586 g/mL × 225 mL Mass = 357 gTherefore, the mass of 225 mL of chloroform with a density of 1.586 g/mL is 357 g. Answer: OA) 357 g
Chloroform was used as an anesthetic in the early days of surgery. If its density is
1.586 g/mL,
the mass of 225 mL is 357 g.What is density?Density is defined as mass per unit volume. It is calculated by dividing the mass of an object by its volume. It is often measured in grams per milliliter (g/mL).How to calculate mass?We have the density of chloroform, and the volume of chloroform. So, we can use the formula below to calculate the mass of chloroform.
Mass = Density × Volume Mass = 1.586 g/mL × 225 mL Mass = 357 g
Therefore, the mass of 225 mL of chloroform with a density of
1.586 g/mL is 357 g.
Answer: OA) 357 g
To know more about chloroform visit:
https://brainly.com/question/17409636
#SPJ11
Determine if either isomer of [Cr(NH3)2(ox)2]? is optically active.
Determine if either isomer of is optically active.
fac isomer
cis isomer
trans isomer
mer isomer
none of the above
The fac and cis isomers of [Cr(NH3)2(ox)2] are not optically active. An optically active compound rotates the plane of polarized light, but both the fac and cis isomers of [Cr(NH3)2(ox)2] lack a center of chirality.
The coordination compound [Cr(NH3)2(ox)2] has four possible isomers: fac, cis, trans, and mer. In this compound, ox represents an oxalate ion, and NH3 represents ammonia molecules. The formula of the compound is given by: [Cr(NH3)2(ox)2].Isomerism arises when a single coordination compound exists in various forms, each with a distinct arrangement of ligands.
These isomers could be categorized into a few different groups: Fac isomer Cis isomer Trans isomer Mer isomer. The coordination compound in question has two distinct isomers: the fac isomer and the cis isomer. However, neither of these isomers is optically active, which is what we'll look at in this article.
To know more about compounds visit:-
https://brainly.com/question/14117795
#SPJ11
what is the final temperature (in °c) of 940.1 g of water (specific heat = 4.184 j/g・ °c) at 24.20 °c that absorbed 950.0 j of heat?
Final temperature = 24.20 °C + 0.256 °C = 24.456 °C, Therefore, the final temperature of the water is 24.456 °C. The temperature change of a substance is calculated using the formula, ΔT = q / m
ΔT = change in temperatureNow, substituting the given values,ΔT = 950 J / 940.1 g * 4.184 J/g·°C = 0.256 °CTherefore, the temperature of the water changes by 0.256 °C. Now, to find the final temperature, we add the initial temperature (24.20 °C) to the temperature change (0.256 °C).Final temperature = 24.20 °C + 0.256 °C = 24.456 °CTherefore, the final temperature of the water is 24.456 °C.
The temperature change of a substance is calculated using the formula, ΔT = q / m * cwhere q = heat absorbed, m = mass of the substance, c = specific heat capacity of the substance, ΔT = change in temperatureNow, substituting the given values,ΔT = 950 J / 940.1 g * 4.184 J/g·°C = 0.256 °C
To know more about temperature visit:-
https://brainly.com/question/7510619
#SPJ11
what is the mathematical expression relating flow of heat using terms qcomb, qrxn, and qwater
The mathematical expression relating the flow of heat involving the terms [tex]q_{comb}, q_{rxn}[/tex] and [tex]q_{water}[/tex] can be determined using the principle of conservation of energy and the equation [tex]q_{comb}+ q_{rxn}+q_{water}=0[/tex].
In thermodynamics, the flow of heat is governed by the principle of conservation of energy, which states that energy cannot be created or destroyed but can only be transferred or transformed from one form to another.
The equation relating the flow of heat can be expressed as [tex]q_{comb}+ q_{rxn}+q_{water}=0[/tex], where [tex]q_{comb}[/tex] represents the heat released or absorbed during a combustion process, [tex]q_{rxn}[/tex]represents the heat released or absorbed during a chemical reaction, and [tex]q_{water}[/tex] represents the heat exchanged with water or the surrounding environment.
The term [tex]q_{comb}[/tex] accounts for the heat released or absorbed when a substance undergoes combustion. It takes into consideration the enthalpy change associated with the combustion reaction.
Similarly, [tex]q_{rxn}[/tex] represents the heat released or absorbed during a chemical reaction, which is determined by the enthalpy change of the reaction. Finally, [tex]q_{water}[/tex] represents the heat exchanged with water or the surrounding environment, which can be calculated based on the specific heat capacity of water and the temperature change.
In summary, the mathematical expression relating the flow of heat using terms[tex]q_{comb}[/tex], [tex]q_{rxn}[/tex], and [tex]q_{water}[/tex] is given by the equation [tex]q_{comb}[/tex] + [tex]q_{rxn}[/tex] + [tex]q_{water}[/tex] = 0.
Learn more about thermodynamics here:
https://brainly.com/question/32103887
#SPJ11
5.00×10−3 mol of hbr are dissolved in water to make 12.0 l of solution. what is the concentration of hydroxide ions, [oh−] , in this solution?
The chemical formula of Hydrobromic acid is HBr, and the formula for Hydroxide ion is OH⁻. The concentration of Hydroxide ion, [OH⁻] in the given solution is 4.17 x 10⁻⁴ M.
What is the concentration of the hydrogen ion, [OH] in the given solution? Here's how to solve for the concentration of Hydroxide ion, [OH⁻] in the given solution.The balanced chemical equation for the reaction between Hydrobromic acid and Hydroxide ion is;HBr(aq) + OH⁻(aq) → H₂O(l) + Br⁻(aq)The reaction produces H₂O and Br⁻ ions.The number of moles of HBr present in the solution is;moles of HBr = 5.00 x 10⁻³ molVolume of the solution = 12.0 LUsing the balanced chemical equation,
we know that;1 mole of HBr reacts with 1 mole of OH⁻ Therefore, the number of moles of OH⁻ produced is equal to the number of moles of HBr reacted. moles of OH⁻ = 5.00 x 10⁻³ mol The concentration of OH⁻ in the given solution is given by;[OH⁻] = moles of OH⁻/ Volume of the solution[OH⁻] = 5.00 x 10⁻³ mol/ 12.0 L[OH⁻] = 4.17 x 10⁻⁴ M Answer: The concentration of Hydroxide ion, [OH⁻] in the given solution is 4.17 x 10⁻⁴ M.
To know more about chemical equation refer to:
https://brainly.com/question/29886207
#SPJ11
Find solutions for your homework
science
chemistry
chemistry questions and answers
a student dissolves 10.8 g of sodium chloride ( nacl)in 300.g of water in a well-insulated open cup. he then observes the temperature of the water fall from 23.0∘c to 22.6∘c over the course of 9 minutes. use this data, and any information you need from the aleks data resource, to answer the questions below about this reaction: nacl(s)→na+(aq)+cl−(aq) you can
Question: A Student Dissolves 10.8 G Of Sodium Chloride ( NaCl)In 300.G Of Water In A Well-Insulated Open Cup. He Then Observes The Temperature Of The Water Fall From 23.0∘C To 22.6∘C Over The Course Of 9 Minutes. Use This Data, And Any Information You Need From The ALEKS Data Resource, To Answer The Questions Below About This Reaction: NaCl(S)→Na+(Aq)+Cl−(Aq) You Can

Show transcribed image text
Expert Answer
1st step
All steps
Final answer
Step 1/3
1.
To determine whether this reaction is exothermic, endothermic, or neither, we need to consider the change in temperature that occurred when the NaCl dissolved in water. In this case, the temperature of the water fell from23.0°C to 22.6°C over the course of 9 minutes, indicating that heat was released by the reaction. Therefore, we can conclude that the reaction is exothermic.
a. exothermic
View the full answer
Step 2/3
Step 3/3
Final answer
Transcribed image text:
A student dissolves 10.8 g of sodium chloride ( NaCl)in 300.g of water in a well-insulated open cup. He then observes the temperature of the water fall from 23.0∘C to 22.6∘C over the course of 9 minutes. Use this data, and any information you need from the ALEKS Data resource, to answer the questions below about this reaction: NaCl(s)→Na+(aq)+Cl−(aq) You can make any reasonable assumptions about the physical properties of the solution. Be sure answers you caiculate using measured data are rounded to 1 significant digit. Note for advanced students' it's possible the student did not do the experiment carefully, and the values you calculate may not be the same as the known and published values for this reaction.
The temperature of the water decreases when the NaCl is dissolved in water. The energy released when the salt is dissolved in water is greater than the energy consumed in warming the salt and water to the initial temperature of 23.0 ∘C.
The heat lost by the solution is given by the following equation: Q = msΔTQ = Heat absorbed or released by the system m = mass of water = 300 gΔT = Change in temperature of the system = 0.4 Ks = Specific heat of water = 4.184 J/g K Now we will calculate the amount of heat released during the reaction. 1.
The amount of heat released by the NaCl in the reaction will be equal to the amount of heat absorbed by the water in cooling down from 23.0 ∘C to 22.6 ∘C. Hence, the value of Q will be negative. Q = -msΔTQ = -(300 g) (4.184 J/g K) (0.4 K)Q = -501.12 J2. The amount of heat released by the NaCl will be equal to the amount of heat absorbed by the water.
To know more about dissolved visit:
https://brainly.com/question/2364287
#SPJ11
Select all statements that are TRUE regarding strong electrolytes.
Strong electrolytes are substances composed of ions.
Strong electrolytes conduct an electrical current.
Strong electrolytes are substances that dissociate completely in water producing ions.
Some acids can be strong electrolytes.
C). Strong electrolytes are substances that dissociate completely in water producing ions. They are composed of ions and conduct an electrical current. Some acids can be strong electrolytes.
All of these statements are true regarding strong electrolytes. Here's a 150-word explanation to support this.Strong electrolytes are chemical compounds that completely dissociate in water, producing free ions. Electrolytes are charged particles that can conduct electricity when dissolved in water. The strong electrolyte dissociation process in water produces large numbers of ions that enable the solution to carry an electrical charge.Strong electrolytes are composed of ions that are responsible for conducting an electrical current. Salts such as potassium chloride and sodium chloride, which are strong electrolytes, completely dissociate into their respective ions.
Thus, they can be used to conduct electrical current through the solution. Some acids such as HCl are also strong electrolytes because they completely dissociate in water and form ions. The dissociation of the acid produces hydrogen ions (H+) and chloride ions (Cl-) in the solution. Hence, strong electrolytes are substances composed of ions, conduct an electrical current and dissociate completely in water producing ions.
To know more about electrolytes visit:-
https://brainly.com/question/32477009
#SPJ11
how much kh2po4 solid needed to 50 ml of 0.10 m kh2po4 solution
According o the solving the amount kh2po4 solid needed to 50 ml of 0.10 m kh2po4 solution of 0.680 g
The given conditions for the problem are:
Volume of solution (V) = 50 mL (0.050 L)
Molarity of solution (M) = 0.10 M
The equation to calculate the amount of solute needed to prepare a solution is:
n = M × V Where n is the amount of solute, M is the molarity of the solution, and V is the volume of the solution. Let's put the values into the above formula:
n = 0.10 M × 0.050 L = 0.005 mol.
The molecular mass of KH2PO4 = 136 g/mol The number of moles of KH2PO4 present in 136 g of KH2PO4 = 136/136 = 1 mol. The number of moles of KH2PO4 present in 32781198 g of KH2PO4 = 32781198/136 ≈ 241090.60 mol. The amount of KH2PO4 needed to prepare the solution is 0.005 mol.
So, the mass of KH2PO4 required is given by :Mass of KH2PO4 = Number of moles of KH2PO4 × Molecular mass of KH2PO4= 0.005 mol × 136 g/mol ≈ 0.680 g ≈ 680 mg.
So, 680 mg of KH2PO4 is required to prepare a 50 ml of 0.10 M KH2PO4 solution, using the above formula and data. Answer: 0.680 g
To know more about molarity visit
https://brainly.com/question/31545539
#SPJ11
If you wanted to change the polarity of hydrogen bromide (HBr) by substituting the bromine with different atom: Which atom would increase the polarity of the molecule? hydrogen (H) iodine (V) fluorine (F) sulfur (S)
The atom that would increase the polarity of the molecule hydrogen bromide (HBr) by substituting the bromine with different atom is fluorine (F).:Hydrogen bromide (HBr) is a polar molecule.
It is a covalent compound which contains a single covalent bond between hydrogen and bromine atoms.Bromine is more electronegative than hydrogen, therefore, it pulls the bonded electrons towards itself. Due to this, the electrons are not equally shared between the two atoms.
Thus, a partial negative charge is developed on the bromine atom and a partial positive charge on the hydrogen atom.The electronegativity of the atoms increases from left to right and from bottom to top in the periodic table. Fluorine is the most electronegative element in the periodic table, which means that it can strongly attract the shared electrons towards itself.Therefore, substituting bromine with fluorine increases the polarity of the HBr molecule as the bond between the H and F atoms will be more polar than the bond between the H and Br atoms, since F is more electronegative than Br.
To know more about Hydrogen bromide visit:
https://brainly.com/question/28313271
#SPJ11
The value of ΔfH⊖ for NH3 is -91.8kJ mol−1. Calculate enthalpy change for the following reaction 2NH3(g)→N2(g)+3H2(g).
Calculated by reaction using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Here,ΔfH⊖ for NH3 = -91.8 kJ/mol.
The balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.
Enthalpy change can be calculated by using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Where,ΔH = enthalpy change for the reactionΔfH⊖ = standard enthalpy of formationThe balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.
To know more about reaction visit:
https://brainly.com/question/30464598
#SPJ11
a sudden increase in end-tidal co2 may be the earliest indicator of:
A sudden increase in end-tidal CO2 (carbon dioxide) levels may be the earliest indicator of respiratory distress or failure.
End-tidal CO2 refers to the partial pressure or concentration of CO2 at the end of an exhaled breath. It is a reflection of the CO2 levels in the bloodstream. In a healthy individual, end-tidal CO2 levels are relatively stable and within a normal range. However, a sudden increase in end-tidal CO2 can indicate a problem with respiratory function. It may suggest that the body is not effectively eliminating CO2, which can occur in conditions such as hypoventilation, airway obstruction, respiratory muscle weakness, or respiratory failure.Monitoring end-tidal CO2 is commonly done in medical settings, especially during anesthesia or critical care, as it provides valuable information about a patient's ventilation and respiratory status. Detecting an abrupt increase in end-tidal CO2 can prompt early intervention and treatment to prevent further respiratory compromise and improve patient outcomes.
To know more about concentration, click here https://brainly.com/question/3045247
#SPJ11
Which of the following statements related to gas chromatography (G) is false? You can assume
that a flame ionization detector (FID) is used. a. If an internal standard is not used, compounds are identified on the GC chromatogram
by their absolute retention time. b. If an internal standard is used, compounds are identified on the GC chromatogram by
their relative retention times (i.e., relative to the internal standard). c. The use of an internal standard can minimize analytical error associated with fluctuating peak areas (e.g., due to varying split injection ratios, varying FID make up gas flows,
etc.).
d. A combustible gas like hydrogen or methane is usually used as the GC carrier gas. e. If a mass spectrometer (MS) were used instead of an FID, compound peaks on the GC chromatogram could be positively identified by their unique molecular fragmentation
pattern (instead of relying on retention time for peak identification).
The statement that is false regarding gas chromatography (G) is: If an internal standard is not used, compounds are identified on the GC chromatogram by their absolute retention time. This statement is false.
What is Gas chromatography? Gas Chromatography (GC) is a process of separating and analyzing samples that are usually gaseous or liquid. It relies on the use of a gas (carrier gas) to transport the sample through a column that separates it into its individual components. The components are then identified based on their specific retention times.The false statement regarding Gas Chromatography is a. If an internal standard is not used, compounds are identified on the GC chromatogram by their absolute retention time. Compounds are not identified on the GC chromatogram by their absolute retention time if an internal standard is not used.
Internal Standard An internal standard is a substance that is added in known amounts to the sample. It's used as a reference to determine the amount of the analyte (substance of interest) in the sample. The use of an internal standard can minimize analytical error associated with fluctuating peak areas (e.g., due to varying split injection ratios, varying FID make up gas flows, etc.).In conclusion, the statement that is false regarding gas chromatography (G) is: If an internal standard is not used, compounds are identified on the GC chromatogram by their absolute retention time.
To know more about Chromatography refer to:
https://brainly.com/question/1394204
#SPJ11
given the following reaction, if one begins with 5.0 moles of al2o3 then how many moles of o2 could be produced?
2Al2O3 ➤ 4Al + 3O2
7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.
The given balanced chemical equation is2Al2O3 ➤ 4Al + 3O2
Here, 2 moles of aluminum oxide produce 3 moles of oxygen gas.
Now, we have5.0 moles of aluminum oxide.
Using stoichiometry, we can find the number of moles of oxygen produced as follows;
2Al2O3 ➤ 3O2
Moles of oxygen = Moles of aluminum oxide * (3/2)Moles of oxygen = 5.0 * (3/2)Moles of oxygen = 7.5
Hence, 7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.
learn more about moles here
https://brainly.com/question/15356425
#SPJ11
The hydrides of group 5A are NH3, PH3, AsH3, and SbH3. Arrange them from highest to lowest intermolecular forces.
1 = highest ; 4 = lowest
NH3 [ Select ] ["1", "2", "3", "4"]
PH3 [ Select ] ["2", "2", "3", "4"]
AsH3 [ Select ] ["1", "2", "3", "4"]
SbH3 [ Select ] ["1", "2", "3", "4"]
The intermolecular forces refer to the attractive forces that exist between the neighboring molecules. The four hydrides of group 5A include NH3, PH3, AsH3, and SbH3. These hydrides of group 5A can be arranged from highest to lowest intermolecular forces in the following manner: NH3AsH3SbH3PH3.
The given hydrides of group 5A can be arranged in order of increasing atomic weight as NH3 < PH3 < AsH3 < SbH3. It can be observed that as we move down the group from NH3 to SbH3, the atomic size of the central atom of the hydride increases which results in an increase in the bond length.
Moreover, the electronegativity of the central atom decreases. Both these factors lead to a decrease in the dipole moment of the molecule.
As a result, the magnitude of the intermolecular forces also decreases from NH3 to SbH3.
Hence, NH3 exhibits the highest intermolecular forces while PH3 shows the lowest intermolecular forces among these four hydrides of group 5A.
Therefore, the correct arrangement of the hydrides of group 5A from highest to lowest intermolecular forces is: NH3 > AsH3 > SbH3 > PH3.
To know more about attractive forces visit:
https://brainly.com/question/31081323
#SPJ11
the complex [zn(nh3)2cl2]2 does not exhibit cis-trans isomerism. the geometry of this complex must be ________.
The complex [Zn(NH3)2Cl2]2 does not exhibit cis-trans isomerism. The geometry of this complex must be trans. :The complex [Zn(NH3)2Cl2]2 consists of 2 monomeric units, Zn(NH3)2Cl2. Here is the diagrammatic representation of the complex.
The complex is tetrahedral and thus does not exhibit cis-trans isomerism. This is because the complex does not have the required geometrical configuration for cis-trans isomerism.The compound is trans in shape. Therefore, the geometry of this complex must be trans. The term trans signifies a structure in which two ligands are present opposite to each other across the central metal ion.
In the trans isomer, the two identical ligands are present at the opposite ends of the molecule, and there is no plane of symmetry in this isomer. As a result, this isomer is chiral, with mirror-image isomers possible. The opposite of the trans isomer is the cis isomer. The cis isomer has two identical ligands on the same side of the molecule, with no ligands on the opposite side. Therefore, the geometry of this complex must be trans.
To know more about monomeric units visit:
https://brainly.com/question/30459757
#SPJ11
the real rate is 2.8 percent and the nominal rate is 10.3 percent. what is the expected inflation premium? please use the exact (multiplicative) formulation.
The expected inflation premium is 7.2 percent, using the exact (multiplicative) formulation given the real rate is 2.8 percent and the nominal rate is 10.3 percent.
Here is how to calculate the expected inflation premium using the exact (multiplicative) formulation;The exact (multiplicative) formulation is given by; $$(1 + r_n) = (1 + r_r)(1 + i)$$ where $r_n$ is the nominal rate, $r_r$ is the real rate, and $i$ is the inflation rate.
Substituting the values of $r_n$ and $r_r$ in the above equation we have; $$(1 + 0.103) = (1 + 0.028)(1 + i)$$Solving for $i$, we have; $$(1.103) = (1.028)(1 + i)$$$$\frac{1.103}{1.028} = 1 + i$$$$i = \frac{1.103}{1.028} - 1$$$$i \approx 0.072$$Therefore, the expected inflation premium is 7.2 percent, using the exact (multiplicative) formulation.
To know more about inflation visit :
https://brainly.com/question/28136474
#SPJ11
how much heat is produced if 7.0 moles of ethane undergo complete combustion?
The balanced equation for the combustion of ethane, C2H6, is: C2H6 + 3O2 → 2CO2 + 3H2OTo determine how much heat is produced if 7.0 moles of ethane undergo complete combustion, we need to use the balanced equation and the standard enthalpies of formation of the reactants and products.
The standard enthalpy of formation of a compound is the enthalpy change when one mole of the compound is formed from its constituent elements, with all reactants and products in their standard states (usually at 1 atm and 25°C).The standard enthalpies of formation of the reactants and products in the combustion of ethane are:
ΔHf°(C2H6) = -84.68 kJ/mol
ΔHf°(O2) = 0 kJ/mol
ΔHf°(CO2) = -393.51 kJ/mol
ΔHf°(H2O) = -285.83 kJ/mol
Now we can calculate the heat produced by using the difference between the enthalpies of the products and reactants:
2CO2 + 3H2O - (C2H6 + 3O2)
ΔH = 2(-393.51 kJ/mol) + 3(-285.83 kJ/mol) - (-84.68 kJ/mol + 3(0 kJ/mol))
ΔH = -1560.78 kJ/mol
Therefore, if 7.0 moles of ethane undergo complete combustion, the amount of heat produced will be:
-1560.78 kJ/mol x 7.0 mol
= -10,925.46 kJ or -10,925,460 J.
Note that the negative sign indicates that heat is released by the reaction, which is exothermic.
To know more about exothermic visit
https://brainly.com/question/4345448
#SPJ11
o3 decide whether the lewis structure proposed for each molecule is reasonable or not.
The resonance structures for the O3 molecule is shown in the image attached.
What is resonance structure?
The delocalization of electrons in certain molecules or ions is represented by resonance structures, sometimes referred to as resonance forms or canonical structures. They are used to describe molecular bonding in cases where a single Lewis structure is unable to do so.
Because of the presence of delocalized electrons or several bonding options, the arrangement of atoms and electrons in some compounds cannot be completely explained by a single Lewis structure.
Learn more about resonance structure:https://brainly.com/question/25022370
#SPJ4