The probability that the smallest bell rings the first three days in a row is 1/27. when Each day three church bells are rung in a random order
In the given data there are 3 bells in the church in which there is a small bell and the three bells are rung in a random order. we need to find the probability that the smallest bell rings the first three days in a row.
The probability that the smallest bell rings on any given first day can be given as = 1/3
Because there are three bells and each bell has an equal chance of being rung first. The probability that this happens three days in a row is given as
= (1/3) × (1/3) × (1/3)
= 1/27
Therefore, the probability that the smallest bell rings the first three days in a row is 1/27
To learn more about probability:
https://brainly.com/question/30390037
#SPJ4
Maryam scored 86. 7% on a test with 30 questions on
it. How many questions did Maryam get wrong?
Help!
Maryam answered 26 questions correctly and got 4 questions wrong on the test with 30 questions.
How many questions did Maryam answer incorrectly?To find how many questions Maryam got wrong, we need to first determine how many questions she got right. Since she scored 86.7%, we can multiply the total number of questions by the percentage to get the number of questions she answered correctly.
86.7% of 30 questions is (86.7/100) * 30 = 26.01 questions.
Since Maryam cannot have answered a fractional number of questions correctly, we round down to the nearest whole number. Thus, she answered 26 questions correctly.
To find out how many questions she got wrong, we can simply subtract the number of questions she got right from the total number of questions. Therefore, Maryam got 30 - 26 = 4 questions wrong.
Learn more about questions
brainly.com/question/31278601
#SPJ11
Draw a triangle with side lengths that are 3 inches, 5 inches, and 6 inches long. Is this the only triangle that you can draw using these side lengths? Explain
The combination of these side lengths uniquely determines the shape of the triangle.
Hi! To draw a triangle with side lengths 3 inches, 5 inches, and 6 inches, make sure that the sum of any two sides is greater than the third side. In this case, 3 + 5 > 6, 3 + 6 > 5, and 5 + 6 > 3, so a triangle can be formed.
Yes, this is the only triangle you can draw using these side lengths.
The reason is that the side lengths are fixed, and according to the triangle inequality theorem, the combination of these side lengths uniquely determines the shape of the triangle.
The combination of these side lengths uniquely determines the shape of the triangle.
To know more about triangle refer here
https://brainly.com/question/2773823#
#SPJ11
Given: AB=CD, AD|| BC, BF=HD, CGE=AHF and AE=FC.
Prove: BAE=DCF
The ∠BAE ≅ ∠DCF by SAS congruence of triangles. The solution has been obtained by using the congruence of triangles.
What is congruence of triangles?
If all three corresponding sides and all three corresponding angles of two triangles have the same size, the triangles are said to be congruent. These triangles can be moved, flipped, twisted, and turned to achieve the same result. They are parallel to one another when moved.
We are given the following:
AB ≅ CD
AD || BC
BG ≅ HD
∠CGE ≅ ∠AHF
AE ≅ FC
Now,
EF ≅ EF as it is the common side
Since, AD || BC so,
∠BCA ≅ ∠CAD as they are alternate interior angles
From this we get that triangle BAC ≅ triangle ACD.
So, the ∠BAE ≅ ∠DCF.
Hence, the ∠BAE ≅ ∠DCF by SAS congruence of triangles.
Learn more about congruence of triangles from the given link
https://brainly.com/question/3999145
#SPJ1
3.
A local town has a population of 3,500 people and has grown by 2.5% each year. Write an exponential function that models the total population p after t years.
The exponential function that models the total population p after t years is p = 3,500 x 1.025^t.
What is the exponential?To write an exponential function that models the total population of the town after t years, we need to use the formula:
p = p0 x (1 + r)^t
where p0 is the initial population, r is the annual growth rate as a decimal (so in this case, 2.5% = 0.025), and t is the number of years.
In this case, we know that the initial population is 3,500, and the annual growth rate is 2.5%, or 0.025. So we can substitute these values into the formula to get:
p = 3,500 x (1 + 0.025)^t
Simplifying this expression gives:
p = 3,500 x 1.025^t
So the exponential function that models the total population p after t years is:
p(t) = 3,500 x 1.025^t
Note that the function is exponential because the population grows at a constant percentage rate each year, which means that the growth itself is increasing over time.
Learn more about exponential from
https://brainly.com/question/2456547
#SPJ1
A triangle has vertices at (–4, 0), (2, 8), and (8, 0). What are the coordinates of the centroid, circumcenter, and orthocenter? If needed, write mixed numbers with a single space between the whole number and the fractional parts.
The centroid of the given triangle (2, 8/3), the circumcenter of the triangle is (0,2), the orthocenter of the triangle is (2,8).
What is centroid?
In geometry, the centroid of a triangle is the point where the three medians of the triangle intersect.
To find the centroid of a triangle with vertices at (x1,y1), (x2,y2), and (x3,y3), we can use the formula:
(x1 + x2 + x3)/3 , (y1 + y2 + y3)/3
Using this formula, we get the centroid of the given triangle as:
((-4 + 2 + 8)/3 , (0 + 8 + 0)/3) = (2, 8/3)
To find the circumcenter, we first need to find the equations of the perpendicular bisectors of any two sides of the triangle. Let's choose the sides formed by the points (-4,0) and (2,8), and (2,8) and (8,0).
The midpoint of the first side is ((-4+2)/2, (0+8)/2) = (-1,4), and the slope of the line passing through (-4,0) and (2,8) is (8-0)/(2-(-4)) = 8/6 = 4/3. So the equation of the perpendicular bisector of this side is y-4 = -(3/4)(x+1), or 3x + 4y = 8.
Similarly, the midpoint of the second side is ((2+8)/2, (8+0)/2) = (5,4), and the slope of the line passing through (2,8) and (8,0) is (0-8)/(8-2) = -8/6 = -4/3. So the equation of the perpendicular bisector of this side is y-4 = (3/4)(x-5), or 3x - 4y = -8.
The intersection of these two lines gives us the circumcenter of the triangle. Solving the system of equations:
3x + 4y = 8
3x - 4y = -8
We get x = 0, y = 2. So the circumcenter of the triangle is (0,2).
To find the orthocenter, we first need to find the equations of the altitudes from any two vertices of the triangle. Let's choose the vertices (2,8) and (8,0).
The altitude from (2,8) is perpendicular to the side formed by the points (-4,0) and (8,0), so its slope is 0. Therefore, its equation is y = 8.
The altitude from (8,0) is perpendicular to the side formed by the points (-4,0) and (2,8), so its slope is the negative reciprocal of the slope of that side, which is -4/3. Using the point-slope form, we get the equation:
y - 0 = (-4/3)(x - 8)
y = -4x/3 + 32/3
To find the intersection of these two lines, we can substitute y = 8 into the second equation:
8 = -4x/3 + 32/3
-8/3 = -4x/3
x = 2
Substituting x = 2 into either equation gives us y = 8, so the orthocenter of the triangle is (2,8).
To learn more about centroid visit:
https://brainly.com/question/2263555
#SPJ4
12
Find the lowest common multiple (LCM) of 28, 42 and 63
Show your working clearly.
Answer:
Least Common Multiple (LCM) of 28,42,63 is 252 ∴ So the LCM of the given numbers is 2 x 3 x 7 x 2 x 1 x 3 = 252
Step-by-step explanation:
Answer:
252 is the answer
Step-by-step explanation:
find the multiples of all of them ( and make sure it is the least. )
28:
28, 56, 84, 112, 140, 168, 196, 224, 252, 280, 308
42:
42, 84, 126, 168, 210, 252, 294, 336
63:
63, 126, 189, 252, 315, 378
bolded + undurlined is the answer
you see that 252 is the answer
252 is the answer
KLM has vertices K 4,-5 L 2,2 and M 7,3 which translation move the triangle so that point K lies on the Y axis
To move triangle KLM so that point K lies on the Y-axis, you need to apply a translation that shifts the entire triangle horizontally. By translating triangle KLM using the vector (-4, 0), point K now lies on the Y-axis.
To move the triangle so that point K lies on the Y axis, we need to perform a translation. First, we need to determine how far point K is from the Y axis. We can do this by finding the x-coordinate of point K, which is 4. This means that point K is 4 units away from the Y axis.
Next, we need to determine the direction of the translation. Since we want to move point K onto the Y axis, we need to move the triangle in the negative x direction. Therefore, the translation that will move the triangle so that point K lies on the Y axis is a horizontal translation of -4 units. We can express this translation as follows:
T(-4, 0)
This means that we need to move each point of the triangle 4 units to the left (negative x direction) to achieve the desired position of point K on the Y axis.
More on translation: https://brainly.com/question/17052587
#SPJ11
Please show me the working out
Given the function f (x) 02 +4,2 € (-2,0) + (a) Enter f' (2) 2*x (b) Enter the inverse function, f-1(x) sqrt(x-4) (c) Enter the compound function f' (s 1(x)) (d) Enter the derivative mets-() de 1-12
The inverse functions:
f'(2) = 4.
[tex]f^{-1}(x)[/tex] = sqrt(x - 4).
f'(s1(x)) = sqrt(x - 4).
(a) To find f'(2), we need to take the derivative of f(x) with respect to x and then substitute x = 2.
[tex]f(x) = x^2 + 4[/tex]
f'(x) = 2x
f'(2) = 2(2) = 4
Therefore, f'(2) = 4.
(b) To find the inverse function [tex]f^{-1}(x)[/tex], we need to first solve for x in terms of f(x) and then switch the roles of x and f(x).
[tex]f(x) = x^2 + 4[/tex]
[tex]x^2[/tex] = f(x) - 4
x = sqrt(f(x) - 4)
Switching x and f(x), we get:
[tex]f^{-1}(x)[/tex] = sqrt(x - 4)
Therefore, the inverse function is [tex]f^{-1}(x)[/tex] = sqrt(x - 4).
(c) To find the compound function f'(s1(x)),
we need to first find s1(x) and then take the derivative of f(x) with respect to s1(x) and then multiply by the derivative of s1(x) with respect to x.
s1(x) = sqrt(x - 4)
f(s1(x)) = (sqrt(x - 4)[tex])^2[/tex] + 4 = x
Taking the derivative of f(x) with respect to s1(x), we get:
f'(s1(x)) = 2s1(x)
Taking the derivative of s1(x) with respect to x, we get:
s1'(x) = 1/(2sqrt(x - 4))
Multiplying these two derivatives, we get:
f'(s1(x))s1'(x) = 2s1(x) * 1/(2sqrt(x - 4))
f'(s1(x))s1'(x) = sqrt(x - 4)
Therefore, the compound function is f'(s1(x)) = sqrt(x - 4).
(d) The given expression "derivative mets-() de 1-12" does not make sense and seems incomplete. Please provide more information or context so that I can help you with this part of the question.
To know more about Inverse functions:
https://brainly.com/question/30350743
#SPJ11
A toy company recently added some made-to-scale models of racecars to their product line. The length of a certain racecar is 19 ft. Its width is 7 ft. The width of the
die-cast replica is 1. 4 in. Find the length of the model.
Let x be the length of the model. Translate the problem to a proportion. Do not include units of measure.
Length - x = Length
Width -
Width
(Do not simplify. )
H-1
Answer:
Step-by-step explanation:
Since the length of the actual racecar is 19 feet, and the length of the model is represented by x, we can set up the following proportion:
Length (model) / Length (actual) = Width (model) / Width (actual)
This can be written as:
x / 19 ft = 1.4 in / 7 ft
To solve for x, we can cross-multiply and simplify:
x * 7 ft = 19 ft * 1.4 in
x = (19 ft * 1.4 in) / 7 ft
x = 3.8 in
Therefore, the length of the model is 3.8 inches.
To explain this solution in more detail, we can use proportionality concepts and unit conversions. The proportion relates the length and width of the actual racecar to the length and width of the model.
We set up the proportion with the length of the model as the unknown (x) and solve for it by cross-multiplying and simplifying. Since the width of the model and actual racecar are given in different units, we convert the width of the model from inches to feet before using the proportion.
The final answer is expressed in inches, which is the same unit as the width of the model.
To know more about racecar refer here:
https://brainly.com/question/29001698#
#SPJ11
Triangle ABC has vertices
A(-3, 3), B(2, 4), and C(-2,
2) and is translated
according to the rule:
(x, y) –> (x+2, y-4).
What are the coordinates
of the vertices of the
translated figure?
The coordinates of the translated triangle A'B'C' are: A'(-1, -1), B'(4, 0), and C'(0, -2).
To find the coordinates of the vertices of the translated figure, we simply apply the given translation rule to each vertex of the original triangle.
For vertex A(-3, 3):
(x, y) --> (x+2, y-4)
(-3, 3) --> (-3+2, 3-4)
(-1, -1)
So, the translated coordinates of vertex A are (-1, -1).
For vertex B(2, 4):
(x, y) --> (x+2, y-4)
(2, 4) --> (2+2, 4-4)
(4, 0)
So, the translated coordinates of vertex B are (4, 0).
For vertex C(-2, 2):
(x, y) --> (x+2, y-4)
(-2, 2) --> (-2+2, 2-4)
(0, -2)
So, the translated coordinates of vertex C are (0, -2).
Therefore, the vertices of the translated triangle are A'(-1, -1), B'(4, 0), and C'(0, -2).
More on translated triangle: https://brainly.com/question/13797451
#SPJ11
13) a 95 percent confidence interval estimate will have a margin of error that is approximately + or - 47.5 percent of the size of the population mean. true or false
False because the statement "a 95 percent confidence interval estimate will have a margin of error.
How to Calculate 95% confidence interval with margin?A 95% confidence interval (CI) estimate is a range of values that is likely to contain the true population mean with 95% confidence. The margin of error for a confidence interval depends on the sample size, the variability of the data, and the desired level of confidence.
The general formula for the margin of error of a 95% confidence interval for the population mean is:
Margin of error = (z-value) x (standard deviation /√n)
where z-value is the number of standard deviations corresponding to the desired level of confidence (for a 95% CI, this value is 1.96), standard deviation is the standard deviation of the sample data, and n is the sample size.
The margin of error is usually expressed as a percentage of the sample mean, not the population mean. Moreover, the percentage of the margin of error is not fixed, but it varies depending on the data and the sample size.
Therefore, the statement "a 95 percent confidence interval estimate will have a margin of error that is approximately + or - 47.5 percent of the size of the population mean" is not correct.
Learn more confidence interval
brainly.com/question/25549885
#SPJ11
Given y = 4x² + 3x, find dy/dt when x= -1 and dx/dt = 3(Simplify your answer.)
Given the function y = 4x² + 3x, we will find dy/dt by differentiating y with respect to t. Therefore, the value of dy/dt is -15.
Using the chain rule, we have:
dy/dt = (dy/dx)(dx/dt)
Differentiating y with respect to x, we get:
dy/dx = 8x + 3
Now, we are given that x = -1 and dx/dt = 3. We can substitute these values into our equation:
dy/dt = (8(-1) + 3)(3)
dy/dt = (-5)(3)
dy/dt = -15
So, when x = -1 and dx/dt = 3, the value of dy/dt is -15.
Visit here to learn more about the Differentiable function:
brainly.com/question/15185509
#SPJ11
[tex]x=log125/log25[/tex]
Answer:
[tex]x = \frac{ log(125) }{ log(25) } = \frac{ log( {5}^{3} ) }{ log( {5}^{2} ) } = \frac{3 log(5) }{2 log(5) } = \frac{3}{2} = 1 \frac{1}{2} [/tex]
if a1=5 and an=an-1 -1 then find the value of a4
a4 = 2
It is given that,
[tex]a_{1} = 5[/tex], and
[tex]a_{n} = (a_{n-1}) - 1[/tex]
Therefore, it can be said,
[tex]a_{2} = a_{1} - 1\\a_{3} = a_{2} - 1\\a_{4} = a_{3} - 1\\[/tex]
That is,
[tex]a_{2} = 5-1=4\\a_{3} = 4-1=3\\a_{4} = 3-1=2[/tex]
So, a4 = 2
Read more about Arithmetic progression at:
https://brainly.com/question/16954227
1) Using the definition of the derivative, find f'(x). Then find f'(-3), f'(0), and f'(6) when the derivative exists.
f(x)=36/x
2) Suppose that the total profit in hundreds of dollars from selling x items is given by P(x)=2x^2-5x+7. Find the average rate of change of profit as x changes from 4-6.
f'(x) = -36/x², f'(-3) = -4, f'(0) = Undefined , f'(6) = -1/6
The average rate of change of profit as x changes from 4-6 is 17.
Using the definition of the derivative, find f'(x). Then find f'(-3), f'(0), and f'(6) when the derivative exists. Given f(x) = 36/x. We need to find the derivative of f(x) to solve the problem.
To find the derivative of f(x), we use the quotient rule of differentiation.
(d/dx) (u/v) = [(v × du/dx) - (u × dv/dx)] / v²
The derivative of f(x) using the quotient rule is:
(d/dx)(36/x) = [(x × d/dx (36)) - (36 × d/dx(x))]/(x²)= [-36/x²]
So, f'(x) = -36/x²
Then we can find f'(-3), f'(0), and f'(6) when the derivative exists.
We know f'(x) exists if x ≠ 0.So, f'(-3) = -36/(-3)²= -4 f'(0) = Undefined (since x = 0) f'(6) = -36/6²= -1/6
Suppose that the total profit in hundreds of dollars from selling x items is given by P(x) = 2x² - 5x + 7. We need to find the average rate of change of profit as x changes from 4-6. We know that the average rate of change of a function f(x) over the interval [a, b] is: (f(b) - f(a)) / (b - a)Here, P(x) = 2x² - 5x + 7, a = 4, and b = 6.
So, the average rate of change of profit as x changes from 4-6 is:(P(6) - P(4)) / (6 - 4)=(2(6)² - 5(6) + 7 - 2(4)² + 5(4) - 7) / (6 - 4)= (72 - 30 - 8) / 2= 17
The average rate of change of profit as x changes from 4-6 is 17.
Learn more about Derivatives: https://brainly.com/question/24898810
#SPJ11
Here is a triangular prism. 4 cm 5 cm 5 cm 10 cm 6 cm answer numerically. units have been provided a. what is the volume of the prism, in cubic centimeters? cm3 b. what is the surface area of the prism, in square centimeters? cm²
A triangular prism is a three-dimensional shape with two parallel triangular bases and three rectangular faces. In this case, the triangular bases have sides of 4 cm, 5 cm, and 5 cm, while the rectangular faces have a length of 10 cm and a height of 6 cm.
To find the volume of the prism, we can use the formula V = Bh, where B is the area of the base and h is the height. The area of a triangle can be found using the formula A = 1/2bh, where b is the base and h is the height.
So, for the triangular base of this prism, we have:
A = 1/2(4 cm)(3 cm) = 6 cm²
The height of the prism is 5 cm, so:
V = Bh = (6 cm²)(5 cm) = 30 cm³
Therefore, the volume of the prism is 30 cubic centimeters.
To find the surface area of the prism, we need to calculate the area of each face and add them up.
The two triangular faces each have an area of:
A = 1/2(4 cm)(5 cm) = 10 cm²
And the three rectangular faces each have an area of:
A = (10 cm)(6 cm) = 60 cm²
So, the total surface area is:
SA = 2(10 cm²) + 3(60 cm²) = 200 cm²
Therefore, the surface area of the prism is 200 square centimeters.
To know more about triangular prism refer here
https://brainly.com/question/24046619#
#SPJ11
The table shows nutrients information for three beverages.
a: which has the most calories per fluid ounce?
b: which has the least sodium per fluid ounce?
bevarage/ serving size/ calorie/ sodium
whole milk/ 1 c/ 146/ 98mg
orange juice/ 1 pt/ 210/ 10mg
apple juice/ 24 fl oz./ 351/ 21mg
Answer:
a) apple juice
b) whole milk
easy pagel
A segment with endpoints A (2, 6) and C (5, 9) is partitioned by a point B such that AB and BC form a 3:1 ratio. Find B.
A. (2. 33, 6. 33)
B. (3. 5, 10. 5)
C. (3. 66, 7. 66)
D. (4. 25, 8. 25)
To find the coordinates of point B, we can use the section formula which states that the coordinates of the point that divides a segment with endpoints (x1, y1) and (x2, y2) in the ratio of m:n are given by:
((mx2 + nx1)/(m+n), (my2 + ny1)/(m+n))
The coordinates of point B are (4.25, 8.25), and the answer is (D).
Here, A (2, 6) and C (5, 9) are the endpoints of the segment, and we want to partition the segment in the ratio of 3:1. So, we have:
m:n = 3:1
m+n = 4
Solving for m and n, we get:
m = 3, n = 1
Now, substituting values in the section formula, we get:
((35 + 12)/(3+1), (39 + 16)/(3+1)) = (4.25, 8.25)
Therefore, the coordinates of point B are (4.25, 8.25), and the answer is (D).
To know more about segments refer here:
https://brainly.com/question/17107345
#SPJ11
Answer:
(4.25, 8.25)
Step-by-step explanation:
i took the quiz
Consider the following. u = 71 + 9j, v = 8i+2j (a) Find the projection of u onto v. (b) Find the vector component of u orthogonal to v.
A. proj_v(u) = (586 / 68) * (8i + 2j) = (293 / 34) * (8i + 2j) ≈ 8.62i + 2.15j
B. u_orthogonal = (71 + 9j) - (8.62i + 2.15j) ≈ 62.38i + 6.85j
(a) To find the projection of vector u onto vector v, we use the formula:
proj_v(u) = (u·v / ||v||^2) * v
where u = 71 + 9j, v = 8i + 2j, "·" represents the dot product, and ||v|| represents the magnitude of v.
First, let's find the dot product u·v:
u·v = (71)(8) + (9)(2) = 568 + 18 = 586
Next, we find the magnitude of v:
||v|| = √((8)^2 + (2)^2) = √(64 + 4) = √68
Now, we find ||v||^2:
||v||^2 = 68
Finally, we can find the projection of u onto v:
proj_v(u) = (586 / 68) * (8i + 2j) = (293 / 34) * (8i + 2j) ≈ 8.62i + 2.15j
(b) To find the vector component of u orthogonal to v, we subtract the projection of u onto v from u:
u_orthogonal = u - proj_v(u)
u_orthogonal = (71 + 9j) - (8.62i + 2.15j) ≈ 62.38i + 6.85j
To learn more about projection, refer below:
https://brainly.com/question/17262812
#SPJ11
The line 15 + y = 3x is dilated with a scale factor of 3 about the point (3, -6). Write the equation of the dilated line in slope-intercept form
The equation of the dilated line in slope-intercept form is:
y' = 3x' - 3
To find the equation of the dilated line in slope-intercept form, we'll follow these steps:
1. Convert the original equation into slope-intercept form (y = mx + b).
2. Find the coordinates of the point after dilation.
3. Use the slope from the original equation and the new point to find the new equation.
Step 1: Convert the original equation into slope-intercept form:
15 + y = 3x
y = 3x - 15
Step 2: Find the coordinates of the point after dilation:
Dilation formula: (x', y') = (a(x - h) + h, a(y - k) + k)
Given point (h, k) = (3, -6) and scale factor a = 3
x' = 3(x - 3) + 3
y' = 3(y + 6) - 6
Step 3: Use the slope from the original equation (m = 3) and the new point (x', y') to find the new equation:
y' = 3x' + b
Substitute the expressions for x' and y' from step 2:
3(y + 6) - 6 = 3(3(x - 3) + 3) + b
Simplify the equation and solve for b:
3y + 18 - 6 = 9x - 27 + 9 + b
3y + 12 = 9x - 18 + b
Now, substitute the original point (3, -6) into the equation to find b:
-6 + 12 = 9(3) - 18 + b
6 = 27 - 18 + b
6 = 9 + b
b = -3
The equation of the dilated line in slope-intercept form is:
y' = 3x' - 3
Learn more about slope-intercept,
https://brainly.com/question/1884491
#SPJ11
What is one more solution to the following. i already have the first solution which is x=9 but there is one more.
let f (x) = log3(x) + 3 and g(x) = log3(x3) – 1.
part a: if h(x) = f (x) + g(x), solve for h(x) in simplest form. (4 points)
part b: determine the solution to the system of nonlinear equations.
( i already have the answer to part a as well it should be log3(x^4)+2) i just need the last solution to part b) also im using all my points for this so ya:) have a nice day!
The solutions to the system of nonlinear equations are
x = 9 and x =[tex]3^2[/tex]= 9.
What is the solution to the system of nonlinear equations:f(x) = g(x), where f(x) = log3(x) + 3 and g(x) = log3(x^3) – 1?
To determine the solution to the system of nonlinear equations:
f(x) = g(x)
We can substitute the given expressions for f(x) and g(x) and simplify:
log3(x) + 3 =[tex]log3(x^3) - 1[/tex]
Using the properties of logarithms, we can simplify this equation as follows:
log3(x) + 3 = 3*log3(x) - 1
4 = 2*log3(x)
2 = log3(x)
x =[tex]3^2[/tex]
Therefore, the solutions to the system of nonlinear equations are x = 9 and [tex]x = 3^2 = 9.[/tex]
Learn more about logarithms,
brainly.com/question/20785664
#SPJ11
Determine if each root is a rational or irrational number. explain your reasoning. √ 20 3 √ 96
Both √203 and √96 are irrational numbers since the numbers inside the roots are not perfect squares.
To determine whether a root is rational or irrational, we need to know if the number inside the square root is a perfect square or not. If it is not, then the root is irrational.
For √203, we can determine that 203 is not a perfect square, since the last digit is 3, which is not a perfect square. Therefore, √203 is an irrational number.
For √96, we can simplify the expression as follows:
√96 = √(16*6) = √16 * √6 = 4√6
Since 6 is not a perfect square, 4√6 is an irrational number.
To learn more about rational or irrational number click on,
https://brainly.com/question/16155109
#SPJ4
PLEASE HELP Solve for f(x)!!
Answer:
8.81
Step-by-step explanation:
Substitute x for 7 and then solve normally
{2(7)^2+7-8}/(7)+4
{(2x49)+7-8}/11
98+7-8/11
97/11
8.81
A path 3 feet wide surrounds a rectangular garden that has a length of 20 feet and a width of 12 feet. Find
the area of the path.
The area of the path surrounding a rectangular garden is 105 square feet
The area of path will be given by the relation -
Area of path = Outer area - inner area
Inner area = 20 × 12
Multiply the values
Inner area = 240 square feet
Outer area = (20 + 3) × (12 + 3)
Add the values inside parenthesis
Outer area = 23 × 15
Perform multiplication on Right Hand Side of the equation
Outer area = 345 square feet
Area of path = 345 - 240
Subtract the values
Area of path = 105 square feet
Hence, the area of rectangular path is 105 square feet.
Learn more about rectangle -
https://brainly.com/question/25292087
#SPJ4
Do not answer 7 and 9
Answer:
[tex]32 \div 4 = 8[/tex]
Answer: 32 divided by 4 =8
Step-by-step explanation:
Liam is standing on a cliff that is 2km tall, he looks out towards the sea from the top of a cliff and notices two cruise liners on is 5km away at a diagonal and the other is 6.8km away at a diagonal. what is the distance between the two cruise liners?
The distance between the two cruise liners is approximately 3.6 km.
How to find distance between the two cruise liners?We can use the Pythagorean theorem to find the distances between Liam and the two cruise liners, and then use the distance formula to find the distance between the two cruise liners. Let's call the distance between Liam and the first cruise liner "d1" and the distance between Liam and the second cruise liner "d2". Then:
d1 = sqrt(5² - 2²) = sqrt(21) km
d2 = sqrt(6.8² - 2²) = sqrt(44.44) km
To find the distance between the two cruise liners, we can use the distance formula:
distance = sqrt((d2 - d1)² + (6.8 - 5)²) km
Plugging in the values, we get:
distance = sqrt((sqrt(44.44) - sqrt(21))² + 1.8²) km
Simplifying this expression gives:
distance = sqrt(44.44) - sqrt(21) km
So the distance between the two cruise liners is approximately 3.9 km.
Learn more about distances
brainly.com/question/31713805
#SPJ11
Veronica has a goal of saving $12,000 for a car. She is given $3000 by her grandfather to start a savings account, and she saves an additional $500 each month. Which equation can be used to find the number of months n it will take Veronica to save for the car?
Answer:
m= month 12k - 3500= 950 she needs to save for 2 in a half months to get her car
Step-by-step explanation:
The mathematical phrase 5 + 2 × 18 is an example of a(n)
The mathematical phrase 5 + 2 × 18 is an example of an arithmetic expression.
To solve this expression, follow the order of operations (PEMDAS/BODMAS):
1. Parentheses/Brackets (P/B)
2. Exponents/Orders (E/O)
3. Multiplication and Division (M/D)
4. Addition and Subtraction (A/S)
Your expression: 5 + 2 × 18
Step 1: No parentheses/brackets to solve.
Step 2: No exponents/orders to solve.
Step 3: Solve multiplication: 2 × 18 = 36
Step 4: Solve addition: 5 + 36 = 41
So, the value of the expression 5 + 2 × 18 is 41.
It is important to follow the order of operations when evaluating arithmetic expressions to ensure the correct value is obtained.
An arithmetic expression is a combination of numbers, operators (such as addition, subtraction, multiplication, and division), and parentheses that represents a mathematical calculation. In the given expression, the multiplication operation takes precedence over addition.
According to the order of operations (PEMDAS/BODMAS), multiplication is performed before addition. So, 2 × 18 is evaluated first, resulting in 36, and then 5 + 36 is computed, resulting in 41.
Therefore, the value of the expression is 41. Understanding the order of operations is crucial in correctly evaluating mathematical expressions to obtain accurate results.
To know more about arithmetic expressions refer here:
https://brainly.com/question/17722547
#SPJ11
Taylor has 7 pounds of navel oranges and
6 1/2 pounds of temple oranges. if she uses 2 3/4
pounds of navel oranges in a juice, how many pounds of oranges does she have left?
The total of oranges left by the taylor is about 10 3/4 pounds
To solve this problem, we will start by using adding the weights of the navel oranges and temple oranges to discover the total weight of oranges Taylor has, that's:
total weight = 7 pounds + 6 1/2 poundstotal weight = 13 1/2 poundsNext, we are able to subtract the weight of the navel oranges she uses from the total weight of navel oranges to discover how a lot she has left, which is:
Navel oranges left = 7 pounds - 2 3/4 poundsNavel oranges left = 4 1/4 poundsIn the end, we can add the weight of the navel oranges left to the weight of the temple oranges to find the overall weight of oranges Taylor has left, which is:
total oranges left = Navel oranges left + Temple orangestotal oranges left = 4 1/4 pounds + 6 1/2 poundstotal oranges left = 10 3/4 poundsTherefore, the total of oranges left by the taylor is about 10 3/4 pounds
Learn more about subtraction:-
https://brainly.com/question/28467694
#SPJ4
Meena is going to see a movie and is taking her 2 kids. each movie ticket costs $14 and there are an assortment of snacks available to purchase for $5 each. how much total money would meena have to pay for her family if she were to buy 3 snacks for everybody to share? how much would meena have to pay if she bought xx snacks for everybody to share?
Meena would have to pay a total of $57 for her family if she were to buy 3 snacks for everybody to share.
Meena would have to pay a total of $42 + 5xx for her family if she bought xx snacks for everybody to share.
To calculate the total money Meena would have to pay for her family, including movie tickets and snacks, we'll first look at the scenario with 3 snacks to share.
1. Calculate the cost of movie tickets: Meena + 2 kids = 3 tickets at $14 each.
3 tickets * $14 = $42
2. Calculate the cost of 3 snacks at $5 each.
3 snacks * $5 = $15
3. Add the cost of movie tickets and snacks.
$42 + $15 = $57
Meena would have to pay a total of $57 for her family if she were to buy 3 snacks for everybody to share.
For the scenario where she buys xx snacks:
1. Calculate the cost of movie tickets (same as before):
3 tickets * $14 = $42
2. Calculate the cost of xx snacks at $5 each.
xx snacks * $5 = 5xx
3. Add the cost of movie tickets and snacks.
$42 + 5xx = $42 + 5xx
Meena would have to pay a total of $42 + 5xx for her family if she bought xx snacks for everybody to share.
Learn more about "cost": https://brainly.com/question/19104371
#SPJ11