Equivalent circuit of balanced 3-phase synchronous machine with star connected stator, Generator Draw a phase equivalent circuits belonging to the studies, ohmic, inductive and capacitive voltage phasor diagrams in generator and motor operation.

Answers

Answer 1

The equivalent circuit of a balanced three-phase synchronous machine with a star-connected stator includes ohmic, inductive, and capacitive elements, and the voltage phasor diagrams show the relationship between induced voltage and terminal voltage in generator and motor operation.

What are the components of the equivalent circuit for a balanced three-phase synchronous machine with a star-connected stator, and how do the voltage phasor diagrams differ in generator and motor operation?

The equivalent circuit of a balanced three-phase synchronous machine with a star-connected stator can be represented by a per-phase model.

In generator operation, the phase equivalent circuit includes an ohmic resistance, an inductive reactance to represent the stator winding, and a capacitive reactance to represent the magnetizing effect.

The voltage phasor diagram in generator operation shows that the induced voltage leads the terminal voltage due to the inductive reactance.

In motor operation, the phase equivalent circuit remains the same, but the direction of power flow is reversed.

The voltage phasor diagram in motor operation shows that the terminal voltage leads the induced voltage due to the inductive reactance.

The capacitive reactance represents the magnetizing effect in both generator and motor operation, ensuring the establishment of the magnetic field in the machine.

Learn more about equivalent circuit

brainly.com/question/30300909

#SPJ11


Related Questions

In flow measurements experiment using Venturi meter (D₁=20 mm,D₂=10 mm ) a reading of 2 liters were flow in 6 seconds. The head loss (cm) is a 86 b 93 c 54 d 75

Answers

The head loss in the flow measurements experiment using a Venturi meter with D₁=20 mm and D₂=10 mm, where 2 liters were flowing in 6 seconds, is 86 cm.

The head loss in a Venturi meter can be calculated using Bernoulli's equation. The formula for head loss (h) in a Venturi meter is given by h = (V₁² - V₂²) / (2g), where V₁ and V₂ are the velocities at sections 1 and 2 respectively, and g is the acceleration due to gravity.

To calculate the head loss, we need to determine the velocities at sections 1 and 2. Since the flow rate is given as 2 liters in 6 seconds, we can convert it to m³/s by dividing by 1000. Thus, the flow rate (Q) is 0.002 m³/s.

Using the equation of continuity, A₁V₁ = A₂V₂, where A₁ and A₂ are the cross-sectional areas at sections 1 and 2 respectively, we can find V₂ in terms of V₁.

Given that D₁=20 mm and D₂=10 mm, we can calculate the areas A₁ and A₂.

A₁ = π(D₁/2)² = π(0.02/2)² = 0.000314 m²

A₂ = π(D₂/2)² = π(0.01/2)² = 0.0000785 m²

By rearranging the equation of continuity, we find V₂ = (A₁/A₂)V₁.

Now, we can substitute the values into the head loss formula:

h = (V₁² - V₂²) / (2g).

Plugging in the values, we can solve for V₁.

By measuring the time of 6 seconds, we can calculate the average velocity (V₁) as V₁ = Q / A₁ = 0.002 / 0.000314 = 6.369 m/s.

Substituting the values of V₁ and V₂ into the head loss formula:

h = (6.369² - ((0.000314/0.0000785)*6.369)²) / (2 * 9.81)

    ≈ 86 cm.

The head loss in the given flow measurements experiment using a Venturi meter with D₁=20 mm and D₂=10 mm, where 2 liters have flowed in 6 seconds, is approximately 86 cm. This head loss is an important parameter to consider when analyzing fluid flow and pressure variations in the Venturi meter.

To know more about Venturi meter, visit:

https://brainly.com/question/13620732

#SPJ11

A ship displaces 9450 tons has a block coefficient of 0.7. The area of immersed midship is 106 square meters. If beam is 0.13 × Length = 2.1 × draft. Calculate the length of the ship and prismatic coefficient.
A ship 135m long, 18m beam and 7.6m draft has a displacement of 14,000 tons. Area of load water plane is 1925 square meters and area immersed midship is 130 square meters. Calculate Coefficient of midship, Waterplane coefficient, Block coefficient, Prismatic coefficient.

Answers

The Coefficient of midship is 0.956, the Waterplane coefficient is 0.796, the Block coefficient is 0.975, and the Prismatic coefficient is 0.424.

First problem: Given:

- Ship displacement: 9450 tons

- Block coefficient: 0.7

- Immersed midship area: 106 square meters

- Beam: 0.13 x Length

- Let's assume a rectangular midship section.

- The displacement volume of the ship can be calculated by dividing the displacement by the density of water. Since 1 tonne = 1 m^3 for seawater, the displacement volume is 9450 m^3.

- The block coefficient is the ratio of the volume of displacement to the volume of a rectangular block having the same length, beam, and draft. Hence, the volume of the block can be found by dividing the displacement volume by the block coefficient, which gives us 13500 m^3.

- The beam of the ship is 0.13 x in Length, which means the width of the rectangular midship section is 0.13L.

- We can then find the length of the midship section by dividing the volume of the block by the area of the midship section, which is V/A = L x B x T. Substituting the given values,

V/A = (0.13L) x L x T = 13500 m^3

T = 9450/(0.7 x 106) = 123.94 m

L = (13500/106)/123.94 = 0.989 km

- The prismatic coefficient is the ratio of the volume of the underwater portion of the hull to the volume of a similarly shaped prism having the same length as the waterline length. We can assume the midship section has a rectangular shape. Hence, the prismatic coefficient is the ratio of the immersed midship area to the product of the waterline length (LWL) and the beam, i.e., Cp = Am / (L x B).

- The length of the ship is 0.989 km and the prismatic coefficient is Am / (L x B) = 106 / (0.989 x 0.13) = 657.

Second problem:

Given:

- Length: 135 m

- Beam: 18 m

- Draft: 7.6 m

- Displacement: 14000 tons

- Load water plane area: 1925 square meters

- Immersed midship area: 130 square meters

- The block coefficient is the ratio of the volume of displacement to the volume of a rectangular block having the same length, beam, and draft. Hence, the volume of the block can be found by dividing the displacement volume by the block coefficient, which is V_block = D/ρ = 14000 x 1000 / 1025 = 13658.54 cubic meters.

- The midship coefficient is the ratio of the immersed midship area to the product of the beam and draft, which is given by C_mid = Am / (B x T) = 130 / (18 x 7.6) = 0.956.

- The waterplane coefficient is the ratio of the load waterplane area to the product of the waterline length (LWL) and the beam, which is given by C_wp = Awp / (L x B) = 1925 / (135 x 18) = 0.796.

- The prismatic coefficient is the ratio of the volume of the underwater portion of the hull to the volume of a similarly shaped prism having the same length as the waterline length. We can assume the midship section has a rectangular shape. Hence, the prismatic coefficient is the ratio of the immersed midship area to the product of the waterline length (LWL) and the beam, i.e.,

Cp = Am / (L x B) = 130 / (135 x 18) = 0.424.

To know more about Coefficient, visit:

https://brainly.com/question/1038771

#SPJ11

a) Explain, in detail, the stagnation process for gaseous flows and the influence it has on temperature, pressure, internal energy, and enthalpy.
b) Describe and interpret the variations of the total enthalpy and the total pressure between the inlet and the outlet of a subsonic adiabatic nozzle. c) What is the importance of the Mach number in studying potentially compressible flows?

Answers

a) The stagnation process in gaseous flows refers to a condition where the fluid is brought to rest, resulting in changes in temperature, pressure, internal energy, and enthalpy. During stagnation, the fluid's kinetic energy is converted into thermal energy.

Leading to an increase in stagnation temperature. Additionally, the conversion of kinetic energy into potential energy causes the stagnation pressure to be higher than the static pressure. As a result, both the stagnation internal energy and enthalpy increase due to the addition of kinetic energy.

The stagnation process is a hypothetical condition that represents what would occur if a fluid were brought to rest isentropically. In this process, the fluid's kinetic energy is completely converted into thermal energy, resulting in an increase in stagnation temperature. This temperature is higher than the actual temperature of the fluid due to the energy conversion.

Similarly, the stagnation pressure is higher than the static pressure. As the fluid is brought to rest, its kinetic energy is transformed into potential energy, leading to an increase in pressure. This difference between stagnation and static pressure is crucial in various applications, such as in the design and analysis of compressors and turbines.

The stagnation internal energy and enthalpy also experience an increase during the stagnation process. This increase occurs because the fluid's kinetic energy is added to the internal energy and enthalpy, resulting in higher values. These properties play a significant role in understanding and analyzing the energy transfer and flow characteristics of gaseous systems.

b) In a subsonic adiabatic nozzle, variations in total enthalpy and total pressure occur between the inlet and the outlet. As the fluid flows through the nozzle, it undergoes a decrease in total enthalpy and total pressure due to the conversion of kinetic energy into potential energy. The total enthalpy decreases as the fluid's kinetic energy decreases, leading to a decrease in the enthalpy of the fluid. Similarly, the total pressure also decreases as the fluid's kinetic energy is converted into potential energy, resulting in a lower pressure at the outlet compared to the inlet.

These variations in total enthalpy and total pressure are crucial in understanding the energy transfer and flow characteristics within the adiabatic nozzle. The decrease in total enthalpy and total pressure indicates that the fluid's energy is being utilized to accelerate the flow. This information is essential for optimizing the design and performance of nozzles, as it helps engineers assess the efficiency of the nozzle in converting the fluid's energy into useful work.

c) The Mach number holds significant importance in studying potentially compressible flows. The Mach number represents the ratio of the fluid's velocity to the local speed of sound. It provides crucial information about the flow regime and its compressibility effects. In subsonic flows, where the Mach number is less than 1, the fluid velocities are relatively low compared to the speed of sound. However, as the Mach number increases and approaches or exceeds 1, the flow becomes transonic or supersonic, respectively.

Understanding the Mach number is essential because it helps characterize the behavior of the flow, including shock waves, pressure changes, and changes in fluid properties. In compressible flows, where the Mach number is significant, the fluid's density, temperature, and pressure are influenced by compressibility effects. These effects can lead to phenomena such as flow separation, shock formation, and changes in wave propagation.

Engineers and researchers studying potentially compressible flows must consider the Mach number to accurately model and analyze the flow behavior. It allows for the prediction and understanding of the flow's compressibility effects, enabling the design and optimization

Learn more about Enthalpy

brainly.com/question/32882904

#SPJ11

a) Two 20º full-depth steel gears are heat treated to BHN=350. AGMA Quality No.8 Pinion turns 860 rpm. N1=30; N2=90; P=5, and b=2in. Find the horsepower the gears are transmitting b) Same gears as part a) but apply Quality No. 10. Explain your findings

Answers

a) The horsepower transmitted by the gears can be calculated using the formulas: Horsepower = (T1 * N1) / 63,025 and T1 = (P * 33,000) / N1.

b) Quality No. 10 gears would likely result in improved gear performance and more efficient transmission of horsepower compared to Quality No. 8 gears.

a) To calculate the horsepower transmitted by the gears, we can use the formula: Horsepower = (T1 * N1) / 63,025, where T1 is the torque on the pinion and N1 is the rotational speed of the pinion. The torque can be calculated using T1 = (P * 33,000) / N1, where P is the power in horsepower and 33,000 is a conversion factor.

b) Quality No. 10 gears indicate a higher quality rating, which suggests better gear performance. This can result in smoother operation, reduced wear and tear, and higher efficiency in transmitting horsepower compared to Quality No. 8 gears. The use of higher-quality gears can improve overall system performance and reliability.

Learn more about horsepower here:

https://brainly.com/question/13259300

#SPJ11

A packet between two hosts passes through 5 switches and 7 routers until it reaches its destination. Between the sending application and the receiving application, how often is it handled by the transport layer?

Answers

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

https://brainly.com/question/30426969

#SPJ11

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

brainly.com/question/30426969

#SPJ11

A household refrigerator with a COP of 1.2 removes heat from the refrigerated space at a rate of 60 kJ/min. Determine (a) the electric power consumed by the refrigerator and (b) the rate of heat transfer to the kitchen air.
2. What is the Clausius expression of the second law of thermodynamics?

Answers

Given:A household refrigerator with a COP of 1.2 removes heat from the refrigerated space at a rate of 60 kJ/min.

Solution:

a) The electrical power consumed by the refrigerator is given by the formula:

P = Q / COP

where Q = 60 kJ/min (rate of heat removal)

COP = 1.2 (coefficient of performance)

Putting the values:

P = 60 / 1.2

= 50 W

Therefore, the electrical power consumed by the refrigerator is 50 W.

b) The rate of heat transfer to the kitchen air is given by the formula:

Q2 = Q1 + W

where

Q1 = 60 kJ/min (rate of heat removal)

W = electrical power consumed

= 50 W

Putting the values:

Q2 = 60 + (50 × 60 / 1000)

= 63 kJ/min

Therefore, the rate of heat transfer to the kitchen air is 63 kJ/min.

2. The Clausius expression of the second law of thermodynamics states that heat cannot flow spontaneously from a colder body to a hotter body.

It states that a refrigerator or an air conditioner requires an input of work to transfer heat from a cold to a hot reservoir.

It also states that it is impossible to construct a device that operates on a cycle and produces no other effect than the transfer of heat from a lower-temperature body to a higher-temperature body.

To know more about thermodynamics visit:

https://brainly.com/question/1368306

#SPJ11

1. A half-adder is characterized by > A.two inputs and one output. B.two inputs and three outputs. C.three inputs and two outputs. D.two inputs and two outputs. 2. The inputs to a full-adder are A=1, B=1, Cin=0. The outputs are ) A.S=0, Cout=1 B.S=0, Cout=0 C.S=1, Cout=0 D.S=1, Cout=1 3. A 4-bit parallel adder can add A.two 2-bit binary numbers. B.four bits at a time. C.two 4-bit binary numbers. D.four bits in sequence. 4. To expand a 4-bit parallel adder to an 8-bit parallel adder, you must A.use two 4-bit adders and with the carry output of one connected to the carry input of the other. B.use four 4-bit adders with no interconnections. C.use eight 4-bit adders with no interconnections. D.use two 4-bit adders and connect the sum outputs of one to the bit input of the other.

Answers

The half-adder is characterized by two inputs and two outputs. The inputs A=1, B=1, Cin=0, to a full-adder produce the outputs S=0, Cout=1. A 4-bit parallel adder can add two 4-bit binary numbers. To expand a 4-bit parallel adder to an 8-bit parallel adder, you must use two 4-bit adders and connect the carry output of one to the carry input of the other.

A half-adder is a digital circuit that adds two binary numbers and produces the sum (S) and carry (Cout) outputs. It has two input lines for the binary numbers and two output lines for the sum and carry. The half-adder does not consider any previous carry input, so it can only perform the addition of two single bits.

A full-adder is a digital circuit that adds three binary numbers: A, B, and a carry input (Cin). In this case, the inputs A=1, B=1, and Cin=0 produce the sum output S=0 and the carry output Cout=1. The sum output represents the binary addition of the three inputs, while the carry output indicates if there is a carry-over to the next bit.

A 4-bit parallel adder is a combinational circuit that can perform the addition of two 4-bit binary numbers simultaneously. It has four sets of input lines for the binary digits (bits) of the two numbers, and four corresponding sets of output lines for the sum bits and the carry-out from each bit position. Therefore, it can add two 4-bit binary numbers at the same time, producing a 4-bit sum and a carry-out.

To expand a 4-bit parallel adder to an 8-bit parallel adder, you need to combine two 4-bit adders. The carry output (Cout) of the first 4-bit adder should be connected to the carry input (Cin) of the second 4-bit adder. This allows the carry from the first adder to propagate to the second adder, enabling the addition of two 8-bit binary numbers. The sum outputs of each adder will form the 8-bit sum.

Learn more about half-adder here

brainly.com/question/15865393

#SPJ11

The adjusted flame commonly used for braze welding is A. an oxidizing flame. B. an excess oxygen flame. C. a pure acetylene flame. D. a neutral flame.

Answers

The adjusted flame commonly used for braze welding is D. a neutral flame.

What is braze welding?

Braze welding refers to the process of joining two or more metals together using a filler metal. Unlike welding, braze welding is conducted at temperatures below the melting point of the base metals. The filler metal is melted and drawn into the joint through capillary action, joining the metals together.

The neutral flameThe neutral flame is a type of oxy-acetylene flame that is commonly used in braze welding. It has an equal amount of acetylene and oxygen. As a result, the neutral flame does not produce an excessive amount of heat, which can damage the base metals, nor does it produce an excessive amount of carbon, which can cause the filler metal to become brittle. The neutral flame has a slightly pointed cone, with a pale blue inner cone surrounded by a darker blue outer cone.

Adjusting the flameThe flame's size and temperature are adjusted using the torch's valves. When adjusting the flame, the torch should be held at a 90-degree angle to the workpiece. The flame's temperature is adjusted by controlling the amount of acetylene and oxygen that are fed into the torch. When the flame is too hot, the torch's oxygen valve should be turned down. When the flame is too cold, the acetylene valve should be turned up.

Therefore the correct option is D. a neutral flame.

Learn more about braze welding:https://brainly.com/question/13002112

#SPJ11

Other Questions
the patient has been diagnosed with hyperthyroidism. which diagnnosis would you possibly find on the medical record as a cause for the hyperthyroidism? problem 2 (35 points). give the state diagram of an npda that accepts l = {a i b j c k | i, j, k n, i = j or i = k} An increased intake of soluble fiber, a decrease in the dietary intake of saturated fats, and exercise result in You are performing a acid fast stain on gram-positive bacteria non acid fast bacteria. what is the appearance of the bacteria at the end of the stain? In the face of severe dehydration, the kidneys increase water reabsorption to conserve more body water, forming a small volume of concentrated urine. In this regard all of the following are correct except: water reabsorption requires high osmolarity of the medulia further water reabsorption requires the presence of ADH further water reabsorption requires the presence of ANP the permeability of collecting ducts to water gets increased Braxton Hicks contractions are contractions of the uterus in the last stage of labor contractions of uterus that cause expulsion of the fetus weak irregular contractions of false labor caused by falling levels of estrogen in late pregnancy approaches to promote reduction in sedentary behavior in patients with minor ischemic stroke: a randomized controlled trial how much work is done on an electron by the electric field as the electron moves from the -12 v painteed circle to the painted circle that is at grounds potential Fairyland Inc. has a $6 million (face value) 30 year bond issue selling for 105.9 percent of par that pays an annual coupon of 8.0%. What would be Fairylands before-tax component cost of debt?Solving using the Financial Calculator App, Or, using Excel: =RATE(N,PMT,-PV,FV) b) In a 10-bit ADC conversion. Assume the voltage range is [0,5V], what is the resolution of the ADC? What is the maximum quantization error? Convert 2.32 V to the digital representation in decimal format and digital value of 867 to analog voltage. which of the following consist of eukaryotic cells? select one: a. plants b. fungi c. protists d. all of the above a plane begins its takeoff at 2:00 p.m. on a 1980-mile flight. after 4.2 hours, the plane arrives at its destination. explain why there are at least two times during the flight when the speed of the plane is 200 miles per hour. Which extracellular matrix component is expressed in a cell-specific manner and binds to the tripeptide sequence Arg-Gly-Asp The entry to record reimbursement of the petty cash fund for postage expense should include:___. Which of the following statements is true for the following code? class MyParent { LEO } class MyChild protected MyParent { } Public and protected members of MyParent are accessible as protected members of My Child. Public, private, and protected members of MyParent are accessible as public members of MyChild. Public, private, and protected members of MyParent are accessible as protected members of MyChild. Public and protected members of MyParent are accessible as public members of My Child. Which of the following route of exposure is considered the most common clinical toxicity resulted from? Select one: a. Inhalation of gaseous xenobiotics. b. Inhalation of solid xenobiotics. c. Oral ingestion of liquid xenobiotics d. Oral ingestion of solid xenobiotics. with a kinematic viscosity of 0.007 ft^2/s, flows in a 3-in-diameter pipe at 0.37 ft^3/s. Determine the head loss per unit length of this flow. h = i ft per ft of pipe The table represents the heights and weights of the starting offensive players for a high school varsity football team. what conclusion drawn from the data best describes the correlation between height and weight for the team? A corporation issued $150,000 of 10-year bonds at the stated rate of 8%, with interest payable semiannually. How much cash will the bond investors receive at the end of the first interest period?a. $3,000b. $12,000c. $6,000d. $24,000 Whyare solar panels more advantageous than other solar energysystems? A student measures the length of a brass rod with a steel tape at 20.0C . The reading is 95.00 cm. What will the tape indicate for the length of the rod when the rod and the tape are at(a) -15.0C