Evaluate the definite integral. Your answer will be a function of x. ∫
4
x

(2t+6)dt= The definite integral above (select all that apply) A. represents the set of all antiderivatives of 2t+6. B. represents the signed area of a trapezoid for x>4. C. represents the signed area of a triangle for x>4. D. represents the signed area under a parabola for x>4. Part 2: The derivative of a definite integral Evaluate the derivative of the definite integral. Your answer will be a function of x.
dx
d

(∫
4
x

(2t+6)dt)= The derivative above (select all that apply) A. represents the rate of change of the signed area of a triangle for x>4. B. does not depend on the value 4 in the lower limit of integration (why?). C. represents the rate of change of the signed area of a trapezoid for x>4. D. does depend on the value 4 in the lower limit of integration (why?).

Answers

Answer 1

The correct option is D. does depend on the value 4 in the lower limit of integration as x cannot be less than 4.

Part 1: Evaluate the definite integralGiven integral is∫42x(2t+6)dt

To solve this, follow these steps:

Pull the constants outside the integral sign and simplify:∫42x2tdt+∫42x6dt

Now integrate the above expression using the power rule of integration:=[x2t2/2]4x+ [6t]4x=[x2(4x)2/2]+[6(4x)]=[8x2]+[24x]

Therefore, the evaluated definite integral is

8x2+24x, where x ≥ 4.

Therefore, the correct option is D.

represents the signed area under a parabola for x>4. Part 2: The derivative of a definite integralGiven integral is∫42x(2t+6)dt

To evaluate its derivative with respect to x, apply the Leibniz rule which is given as

∫bxa(t)dt/dx = a(b)db/dx - a(x)dx/dx

= 4(x)(2x + 6) - 4(2)(x)

= 8x2 + 24x - 8

Thus, the evaluated derivative of the definite integral with respect to x is 8x2 + 24x - 8, where x ≥ 4.

Therefore, the correct option is D. does depend on the value 4 in the lower limit of integration as x cannot be less than 4.

Know more about integration  here:

https://brainly.com/question/27419605

#SPJ11


Related Questions

Which of the following is true? O a. The expected value of equals the mean of the population from whicl»the sample is drawn for any sample size Ob. The expected value of 3 equals the mean of the population from which the sample is drawn only if the sample size is 100 or greater c. The expected value of x equals the mean of the population from which the sample is drawn only if the sample size is 50 or greater d. The expected value of equals the mean of the population from which the sample is drawn only if the sample size is 30 or greater

Answers

Option A is the correct answer. The expected value of X equals the mean of the population from which the sample is drawn for any sample size. It is a measure of the central location of the data that is drawn from the population.

The expected value can be defined as the sum of the products of the possible values of a random variable and their respective probabilities. Expected value can be defined as the average value that is expected from an experiment. It is used to calculate the long-term results of an experiment with a large number of trials. The formula for the expected value is as follows: E(X) = ∑ x_i p_i where, x_i is the possible value of the random variable, p_i is the probability of that value occurring The expected value of X equals the mean of the population from which the sample is drawn for any sample size. Therefore, option A is the correct answer.

To know more about data visit:

brainly.com/question/29117029

#SPJ11

Find a basis for and the dimension of the solution space of the homogeneous system of linear equations. x + 4y - 2z = 0 -5x - 20y + 10z = 0 (a) a basis for the solution space {[] []}

Answers

The homogeneous system of linear equations given is:x + 4y - 2z = 0-5x - 20y + 10z = 0To find a basis for the solution space of the homogeneous system of linear equations, we need to put it into the matrix form and use Gaussian elimination to get the reduced row-echelon form.

x + 4y - 2z = 0-5x - 20y + 10z = 0The matrix form of the given system of equations is given as follows: [ 1  4 -2 | 0 ] [-5 -20 10 | 0 ]Let's perform the Gaussian elimination operation to get the reduced row-echelon form of the augmented matrix.[1 4 -2 | 0]   (1) $\Leftrightarrow$   [1 4 -2 | 0][0 0 0 | 0]     (2) $\Leftrightarrow$   [0 0 0 | 0]From the above row-echelon form, we can write three equations:

1x + 4y - 2z = 00x + 0y + 0z = 0We can write the first equation as:x = -4y + 2zSubstituting x in terms of y and z in the above equation, we get:-4y + 2z = -4y + 2zThus, we get a basis for the solution space as follows:{(-4,1,0), (-2,0,1)}We can see that we have two vectors in the basis of the solution space, which indicates that the dimension of the solution space is 2. The basis for the solution space is {(-4,1,0), (-2,0,1)}.

To know more about  matrix visit:

https://brainly.com/question/29132693

#SPJ11

find the answer in a⁵b⁶÷a²b³=?

Answers

Step-by-step explanation:

Basically, first compare exponents of the same variables, then subtract the smaller exponent from the bigger exponent and move the variable to the place of the bigger exponent (e.g., (a^2 * b)/a^9 = b/a^(9-2) = b/a^7)

(a^5 * b^6)/(a^2 * b^3)

a^3 * b^3 <— answer

Find a parametric representation for the part of the hyperboloid x2+y2-z2=1 that lies to the left of the xz-plane. (Enter your answer as a comma- separated list of equations. Let x, y, and z be in terms of u and/or v.)

Answers

The parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane is:

[tex]$$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$[/tex]

A parametric representation of a surface or curve is a way of expressing it using parameters. Parametric representation can be expressed as:[tex]$$\begin{aligned} x &= f(u, v)\\ y &= g(u, v)\\ z &= h(u, v) \end{aligned}$$[/tex]

Here we need to find a parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane.

That is, for the region in the first and fourth quadrants of the [tex]$xz$[/tex]-plane.

For this, we can use the parameterization [tex]$x = \sec u\cos v$[/tex], [tex]$y = \sec u\sin v$[/tex], and [tex]$z = \tan u$[/tex].

With this parameterization, the condition [tex]$x^2 + y^2 - z^2 = 1$[/tex] becomes [tex]$\sec^2 u - \tan^2 u = 1$[/tex] which is always satisfied.

For the part of the hyperboloid that lies to the left of the [tex]$xz$[/tex]-plane, we have to restrict [tex]$v$[/tex] to the range [tex]$\pi/2 \le v \le 3\pi/2$[/tex].

This will ensure that [tex]$x = \sec u\cos v \le 0$[/tex].

Hence, the parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane is:

[tex]$$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$[/tex]

To know more about parametric representation, visit:

https://brainly.com/question/28990272

#SPJ11

Suppose that X is a random variable with moment generating function Mx. Give an expression for E[X*] + Var (X²) in terms of Mx and its derivatives.

Answers

The expression for E[X*] + Var(X²) in terms of the MGF Mx and its derivatives is Mx'(0) + Mx''''(0) - (Mx''(0))².

To express E[X*] + Var(X²) in terms of the moment-generating function (MGF) Mx and its derivatives, we can use the properties of MGFs and moment calculations.

Let's break down the expression step by step:

E[X*]:

The expectation of X* is given by the first derivative of the MGF evaluated at t=0:

E[X*] = Mx'(0)

Var(X²):

The variance of X² can be calculated as Var(X²) = E[(X²)²] - (E[X²])²

To find E[(X²)²], we need the fourth derivative of the MGF evaluated at t=0:

E[(X²)²] = Mx''''(0)

And to find E[X²], we need the second derivative of the MGF evaluated at t=0:

E[X²] = Mx''(0)

Putting it all together:

E[X*] + Var(X²) = Mx'(0) + Mx''''(0) - (Mx''(0))²

learn more about derivative here:
https://brainly.com/question/29144258

#SPJ11

A coordinate grid with 2 lines. One line, labeled f(x) passing through (negative 2, 4), (0, 2), and the point (1, 1). The other line is labeled g(x) and passes through (negative 3, negative 3), (0, 0) and the point (1, 1). Which input value produces the same output value for the two functions on the graph?

Answers

The input value that produces the same output value for f(x) and g(x) on the graph is x = 1.To find the input value that produces the same output value for both functions, we need to determine the x-coordinate of the point(s) where the two lines intersect.

These points represent the values of x where f(x) and g(x) are equal.

The line labeled f(x) passes through the points (-2, 4), (0, 2), and (1, 1). Using these points, we can determine the equation of the line using the slope-intercept form (y = mx + b). Calculating the slope, we get:

m = (2 - 4) / (0 - (-2)) = -2 / 2 = -1

Substituting the point (0, 2) into the equation, we can find the y-intercept (b):

2 = -1(0) + b

b = 2

Therefore, the equation for f(x) is y = -x + 2.

Similarly, for the line labeled g(x), we can use the points (-3, -3), (0, 0), and (1, 1) to determine the equation. The slope is:

m = (0 - (-3)) / (0 - (-3)) = 3 / 3 = 1

Substituting (0, 0) into the equation, we can find the y-intercept:

0 = 1(0) + b

b = 0

Thus, the equation for g(x) is y = x.

To find the input value that produces the same output for both functions, we can set the two equations equal to each other and solve for x:

-x + 2 = x

Simplifying the equation:

2x = 2

x = 1.

For more such questions on Intersect:

https://brainly.com/question/28744045

#SPJ8

Linear regression has been applied to data for the engine power
on the engine displacement for 20 petrol engines. A linear model y
= 60 * x - 10 has been obtained, where x is in litres, and y is in
ki

Answers

The linear model equation is y = 60 * x - 10.In the given linear regression model, y represents the engine power (in kilowatts) and x represents the engine displacement (in liters) for 20 petrol engines.

This equation implies that for each one-unit increase in the engine displacement (x), the engine power (y) is expected to increase by 60 units of kilowatts, with a constant offset of -10 kilowatts.

It's important to note that this linear model assumes a linear relationship between engine power and engine displacement, with a fixed slope of 60 and a constant offset of -10. The model is used to estimate or predict the engine power based on the engine displacement.

If you have specific data points for the engine displacement (x) of the 20 petrol engines, you can substitute those values into the equation to estimate the corresponding engine power (y) for each engine.

To know more about regression, visit:

https://brainly.com/question/30576892

#SPJ11

as a television executive, you have been given 13 shows to choose from to run during your prime time slots each week. if you have 12 time slots, how many ways can you create the schedule for the week?

Answers

As a television executive, there are 13 shows to choose from to run during prime time slots each week and there are 12 time slots.

The total number of ways you can create the schedule for the week can be calculated using the permutation formula: nPr = n! / (n-r)! where n is the total number of items to choose from and r is the number of items to choose.To create the schedule for the week, you need to choose 12 shows out of 13 for the 12 time slots.

So, n = 13 and r = 12.Substituting these values in the formula,nP12 = 13! / (13-12)!nP12 = 13! / 1!nP12 = 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1nP12 = 479001600Therefore, there are 479001600 ways to create the schedule for the week.

To know more about television visit :

https://brainly.com/question/13033512

#SPJ11

17.)
18.)
Assume that when adults with smartphones are randomly selected, 59% use them in meetings or classes. If 6 adult smartphone users are randomly selected, find the probability that at least 4 of them use

Answers

The result will give you the probability that at least 4 out of 6 randomly selected adult smartphone users use their phones in meetings or classes.

To find the probability that at least 4 out of 6 randomly selected adult smartphone users use their phones in meetings or classes, we can use the binomial probability formula.

The binomial probability formula is given by:

P(x) = C(n, x) * p^x * q^(n-x)

Where:

P(x) is the probability of getting exactly x successes

n is the number of trials (in this case, the number of adult smartphone users selected)

x is the number of successes (the number of adult smartphone users using their phones in meetings or classes)

p is the probability of success (the proportion of adult smartphone users who use their phones in meetings or classes)

q is the probability of failure (1 - p)

C(n, x) is the combination or binomial coefficient, calculated as n! / (x!(n-x)!), which represents the number of ways to choose x successes out of n trials.

Given that 59% of adults use their smartphones in meetings or classes, the probability of success (p) is 0.59, and the probability of failure (q) is 1 - 0.59 = 0.41.

Now, let's calculate the probability of at least 4 out of 6 adults using their phones:

P(at least 4) = P(4) + P(5) + P(6)

P(4) = C(6, 4) * (0.59)^4 * (0.41)^(6-4)

P(5) = C(6, 5) * (0.59)^5 * (0.41)^(6-5)

P(6) = C(6, 6) * (0.59)^6 * (0.41)^(6-6)

Using the combination formula, C(n, x) = n! / (x!(n-x)!):

P(4) = 15 * (0.59)^4 * (0.41)^2

P(5) = 6 * (0.59)^5 * (0.41)^1

P(6) = 1 * (0.59)^6 * (0.41)^0

Now, calculate each term and sum them up:

P(at least 4) = P(4) + P(5) + P(6) = 15 * (0.59)^4 * (0.41)^2 + 6 * (0.59)^5 * (0.41)^1 + (0.59)^6

Learn more about smartphone   here:

https://brainly.com/question/14875349

#SPJ11

The difference between the sample and the population that occurs by chance is known as
A) mean variance
B) sampling error
C) sample variance
D) population variance

Answers

The difference between the sample and the population that occurs by chance is known as sampling error. The term "sampling error" refers to the discrepancy that arises between a sample statistic and a population parameter due to chance sampling variation

.A sample is a subset of a population that is chosen to represent the entire population. The population is the complete set of data that the researcher is interested in. It is impossible to collect information from every member of a population, so samples are used instead.Sampling error arises because the sample used to make inferences or generalizations about a population is never an exact representation of the entire population.

Sampling error may also be caused by differences in the measuring instrument used to collect data or the procedures used to collect data.The difference between the sample and the population that occurs by chance is known as sampling error. So, option B is correct.

To Know more about procedures  visit:

brainly.com/question/27176982

#SPJ11

what is the volume of a right circular cylinder with a radius of 3 in. and a height of 10 in.? responses a.30π in³ 30 pi,
b. in³ 60π in³ 60 pi, c.in³ 90π in³ 90 pi,
d. in³ 120π in³

Answers

The Volume of the cylinder is 90π cubic inches.

The volume of a right circular cylinder, we can use the formula:

Volume = π * r^2 * h

Where π is the mathematical constant pi (approximately 3.14159), r is the radius of the cylinder's base, and h is the height of the cylinder.

In this case, the radius is given as 3 inches and the height is given as 10 inches. Let's substitute these values into the formula:

Volume = π * (3^2) * 10

      = π * 9 * 10

      = 90π cubic inches

Therefore, the volume of the cylinder is 90π cubic inches.

In the answer choices provided:

a. 30π in³

b. 60π in³

c. 90π in³

d. 120π in³

For more questions on Volume .

https://brainly.com/question/27535498

#SPJ8

A random variable follows a normal distribution with a mean of 16.73 and a standard deviation of 2.18. A randomly selected individual from the previous normal distribution has 33% of observation above it.', find the z-score associated with that individual. Important, do not forget the negative sign if your z-score is negative.

Answers

The z-score associated with the individual is approximately 0.439.

To obtain the z-score associated with an individual who has 33% of the observations above them in a normal distribution with a mean of 16.73 and a standard deviation of 2.18, we can use the standard normal distribution table or a calculator.

Since we want to find the z-score for the upper tail of the distribution (33% above), we subtract the given percentage (33%) from 100% to find the area in the lower tail: 100% - 33% = 67%.

Now, we look up the corresponding z-score for an area of 67% in the standard normal distribution table.

Alternatively, using a calculator or statistical software, we can find the inverse of the cumulative distribution function (CDF) for a normal distribution with a mean of 0 and a standard deviation of 1.

The z-score associated with the individual can be calculated as follows:

z = invNorm(0.67, 0, 1)

Using a calculator or statistical software, the result is approximately 0.439.

To know more about z-score refer here:

https://brainly.com/question/31871890#

#SPJ11

The joint density of X and Y is given by e f(x, y): Compute E[X²|Y=y]. Y 0

Answers

The conditional expectation E[X²|Y=y] will be the same as the unconditional expectation of X². Hence, E[X²|Y=y] = E[X²].

To compute E[X²|Y=y], we need to find the conditional expectation of the random variable X² given the value of Y = y.

The conditional expectation is defined as:

E[X²|Y=y] = ∫x² * f(x|y) dx,

where f(x|y) is the conditional density function of X given Y = y.

Since the joint density f(x, y) is given as e^(-x-y), we can calculate the conditional density f(x|y) using the joint density and the marginal density of Y.

First, let's find the marginal density of Y:

fY(y) = ∫f(x, y) dx = ∫e^(-x-y) dx,

To integrate with respect to x, we treat y as a constant:

fY(y) = ∫e^(-x-y) dx = e^(-y) * ∫e^(-x) dx,

Using the exponential integral, the integral of e^(-x) dx equals -e^(-x). Applying the limits of integration, we get:

fY(y) = e^(-y) * (-e^(-x)) |_0^∞ = e^(-y) * (-0 - (-1)) = e^(-y).

Now, let's find the conditional density f(x|y):

f(x|y) = f(x, y) / fY(y) = (e^(-x-y)) / e^(-y) = e^(-x).

We can observe that the conditional density f(x|y) is independent of y, meaning that the value of y does not affect the distribution of X. Therefore, the conditional expectation E[X²|Y=y] will be the same as the unconditional expectation of X².

Hence, E[X²|Y=y] = E[X²].

Since we are not provided with any specific information about the distribution of X, we cannot further simplify the expression or provide a numerical value for the expectation E[X²].

Learn more about conditional expectation here

https://brainly.com/question/32598577

#SPJ11

In a recent​ year, the scores for the reading portion of a test
were normally​ distributed, with a mean of 22.5 and a standard
deviation of 5.9. Complete parts​ (a) through​ (d) below.
(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 21 The probability of a student scoring less than 21 is (Ro

Answers

The probability of a student scoring less than 21 is 0.3979 (approx).

Given: Mean=22.5, Standard Deviation=5.9, and X=21 (score that is less than 21). We need to find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 21.Using the z-score formula, we can find the probability: z = (X - μ) / σWhere, X = 21, μ = 22.5, and σ = 5.9z = (21 - 22.5) / 5.9 = -0.25424P(z < -0.25424) = 0.3979 (using the standard normal table)T

Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events. The degree to which something is likely to happen is basically what probability means. You will understand the potential outcomes for a random experiment using this fundamental theory of probability, which is also applied to the probability distribution. Knowing the total number of outcomes is necessary before we can calculate the likelihood that a specific event will occur.

Know more about probability here:

https://brainly.com/question/14210034

#SPJ11

The factors that influence the breaking strength of a synthetic fiber are being studied. Four production machines and three operators are chosen and a factorial experiment is run using fiber from the same production batch. The results are as follows: Machine Operator 1 2 3 1 109 110 108 110 110 115 109 108 2 110 110 111 114 112 109 112 3 116 112 114 120 114 115 119 117 a. Analyze the data and draw conclusions. Use a = 0.05. b. Use Tukey's test to determine which levels of the Machine factor are significantly different

Answers

Part a: The Analysis of Variance (ANOVA) can be used to analyze the data and reach a conclusion.The ANOVA table is presented below.

Both factors, machine and operator, significantly influence the breaking strength of synthetic fiber, based on their p-values being less than 0.05.

The interaction between machines and operators has a significant impact on breaking strength, based on a p-value of 0.046.

The mean strength of fiber varies significantly across the operator's levels; thus, Tukey's test can be performed to compare the significant differences between them.

Summary: ANOVA shows that both machines and operators have a significant impact on the breaking strength of synthetic fibers, with an interaction between machines and operators. Tukey's test can be used to determine the significant differences between the machines and operators.

Learn more about mean click here:

https://brainly.com/question/1136789

#SPJ11

Suppose that Y₁, Y₂,,Y, constitutes a random sample from the normal distribution with a mean of zero Is this and variance o², such that ² > 0. Further, it has been shown that in the MLE for o²

Answers

The MLE (Maximum Likelihood Estimate) is a method for determining the parameter values of a model that will most likely produce the observed data. The MLE estimates are the values of the parameters that maximize the likelihood function. The MLE is a popular method for estimating the parameters of a model when the model is assumed to be normally distributed.

Suppose that Y₁, Y₂,,Y, constitutes a random sample from the normal distribution with a mean of zero and variance o², such that ² > 0. Further, it has been shown that the MLE for o² is:  ² = (1/n) * ∑ (Yᵢ²)This is the formula for the MLE for the variance of a normal distribution. It is the sum of the squared deviations of the sample values from the mean, divided by the sample size. In this case, the mean is zero, so the variance is just the sum of the squared sample values divided by n.

To know more about Maximum Likelihood Estimate visit:

https://brainly.com/question/32608862

#SPJ11

E SURE TO SHOW CALCULATOR WORK WHEN NEEDED Although, it is regularly reported that the mean IQ is 100, Ivy League college administrators believe their students are well above average. A simple random sample of 200 Ivy league 1st year students were given an IQ test. These 200 students had a mean IQ of 104.7 with a standard deviation of 14.2. Test the administrator claim at the 0.05 significance level. Your answer should start with the hypothesis and end with an interpretation of the test results (with some calculations and other stuff in between). Edit View Insert Format Tools Table 12pt 2 T² P 0 words > # B IU A Paragraph THE

Answers

Based on the sample data, there is sufficient evidence to conclude that the mean IQ of Ivy League college students is significantly greater than 100 at the 0.05 significance level. We reject the null hypothesis.

To test the administrator's claim about the mean IQ of Ivy League college students, we can set up the following hypotheses:

Null Hypothesis (H0): The mean IQ of Ivy League college students is 100.

Alternative Hypothesis (H1): The mean IQ of Ivy League college students is greater than 100.

We will use a one-sample t-test to test these hypotheses.

The sample size is large (n = 200), we can assume that the sampling distribution of the sample mean will be approximately normal.

The test statistic:

t = (sample mean - population mean) / (sample standard deviation / √n)

  = (104.7 - 100) / (14.2 / √200)

  ≈ 2.045

To determine the critical value at a 0.05 significance level, we need to find the critical t-value with (n-1) degrees of freedom.

With n = 200 and a one-tailed test, the critical t-value is approximately 1.653.

Since the calculated t-value (2.045) is greater than the critical t-value (1.653), we reject the null hypothesis.

To know more about null hypothesis. refer here:

https://brainly.com/question/30821298#

#SPJ11

.Which choice is the explicit formula for the following geometric sequence?
0.5, –0.1, 0.02, –0.004, 0.0008, ...
A. an = -0.5(-0.2)^(n-1)
B. an = 0.5(-0.2)^(n-1)
C. an = 0.5(0.2)^n
D. an = -0.5(-0.3)^(n-1)

Answers

Therefore, the explicit formula for the given geometric sequence is: B. an = 0.5 * (-0.2)^(n-1).

The given sequence is a geometric sequence, where each term is obtained by multiplying the previous term by a constant ratio. To find the explicit formula for this sequence, we need to determine the common ratio.

Looking at the given sequence, we can see that each term is obtained by multiplying the previous term by -0.2. Therefore, the common ratio is -0.2.

The explicit formula for a geometric sequence is given by:

aₙ = a₁ * rⁿ⁻¹

Where:

aⁿ represents the nth term of the sequence,

a₁ represents the first term of the sequence,

r represents the common ratio of the sequence,

n represents the position of the term.

Using the known values from the sequence, we have:

a₁ = 0.5 (the first term)

r = -0.2 (the common ratio)

Plugging these values into the formula, we get:

[tex]aₙ = 0.5 * (-0.2)^(n-1)[/tex]

To know more about explicit formula,

https://brainly.com/question/27144940

#SPJ11

The explicit formula for the given geometric sequence is an = 0.5(-0.2)^(n-1). The correct answer is B.

To find the explicit formula for the given geometric sequence, we observe that each term is obtained by multiplying the previous term by -0.2.

The general form of a geometric sequence is given by an = a1 * r^(n-1), where a1 is the first term and r is the common ratio.

In this case, the first term (a1) is 0.5, and the common ratio (r) is -0.2.

Plugging these values into the general formula, we get:

an = 0.5 * (-0.2)^(n-1).

Therefore, the explicit formula for the given geometric sequence is option B. an = 0.5 * (-0.2)^(n-1).

Learn more about geometric sequence at https://brainly.com/question/30663456

#SPJ11

1. If we are testing for the difference between the means of two independent populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to: 2. If we are testing for the difference between the means of two paired populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to:

Answers

1. If we are testing for the difference between the means of two independent populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to 38. The degrees of freedom (df) formula for this test is:df = n1 + n2 - 2Let’s break this down to understand why it works:When we test the difference between two independent populations, we have two separate samples, one from each population.

The first sample has n1 observations, and the second sample has n2 observations. We need to account for all the data in both samples, so we add them together:n1 + n2Then we subtract two because we need to estimate two population parameters: the mean of population 1 and the mean of population 2. We use the sample data to estimate these parameters, so they are not known with certainty. When we estimate population parameters from sample data, we sacrifice some information about the variability in the population.

We lose two degrees of freedom for each parameter estimated because of this loss of information.2. If we are testing for the difference between the means of two paired populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to 19. The degrees of freedom (df) formula for this test is:df = n - 1Let’s break this down to understand why it works:When we test the difference between two paired populations, we have a single sample of paired observations.

To know more about parameters visit:

https://brainly.com/question/11911877

#SPJ11

I have two bags (A and B) containing colored balls (blue, white and red). All balls are of the same size, weight, texture... Only their colors differ. A) Let's assume that bag A contains 2 blue, 3 white and 2 red balls. What is the probability of pulling first a blue, then a white and then a red when selecting 3 balls from bag A? When I pull a ball from bag A, I put it back in the bag. P 0.03499 100% B) Let's assume that bag B contains 3 blue, 2 white and 2 red balls. What is the probability of pulling first a blue, then a white and then a red when selecting 3 balls from bag B? When I pull a ball from bag B, I keep it on the table. P 0.057143 ? 100% C) Let's assume that bag A contains 2 blue, 3 white and 2 red balls. Let's assume that bag B contains 3 blue, 2 white and 2 red balls. When I pull a ball from bag A, I put it back in the bag. When I pull a ball from bag B, I keep it on the table. What is the probability of selecting 2 blue balls from bag A when selecting 6 balls from bag A and 2 blue balls and 1 white balls from bag B when selecting 5 balls from bag B? P 0.111 ? x 0%

Answers

A) Probability of pulling first a blue, then a white, and then a red from Bag A (with replacement): Approximately 3.499%.

B) Probability of pulling first a blue, then a white, and then a red from Bag B (without replacement): Approximately 5.7143%.

C) Probability of selecting 2 blue balls from Bag A (with replacement) and 2 blue balls and 1 white ball from Bag B (without replacement): Approximately 0.465%.

A) For Bag A, with replacement, we multiply the probabilities of selecting each color ball: (2/7) * (3/7) * (2/7) ≈ 0.03499.

B) For Bag B, without replacement, we multiply the probabilities of selecting each color ball: (3/7) * (2/6) * (2/5) ≈ 0.057143.

C) For Bag A and Bag B combined, we multiply the probability of selecting 2 blue balls from Bag A (with replacement) by the probability of selecting 2 blue balls and 1 white ball from Bag B (without replacement): 0.081633 * 0.057143 ≈ 0.00465.

learn more about probability here:
https://brainly.com/question/31828911

#SPJ11

3π Write the expression cos in the form a+bi. 4 15 3π [cos ()+ i sin (²) - (Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.) + i sin 4

Answers

The expression cos in the form a+bi is given by the following formula:

cos(θ) + i sin(θ)

where θ is the angle in radians.

Let us apply this formula in the given expression, cos(3π/4) + i sin(3π/4) - cos(15π/4) + i sin(4)

We can simplify this expression as follows:

cos(3π/4) is equal to (-√2)/2 and sin(3π/4) is equal to (√2)/2cos(15π/4) is equal to cos(π/4) and sin(15π/4) is equal to sin(π/4) and they both have the same values i.e.,

(√2)/2cos(π/4) is equal to (√2)/2 and sin(4) is equal to (-0.07)

Therefore, substituting these values in the given expression, we get:(-√2)/2 + (√2)/2i + (√2)/2 - (√2)/2i - (√2)/2(0.07) + i(-0.07)Simplifying this expression, we get:-√2/2 - √2/2(0.07) + i(√2/2 - 0.07)

Hence, the required expression cos in the form a+bi is -√2/2 - √2/2(0.07) + i(√2/2 - 0.07).

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11

If sin(x) = − 20/29 and x is in quadrant III, find the exact values of the expressions without solving for x. (a) sin(x/2) (b) cos(x/2) (c) tan (x/2)

Answers

The exact values of the expressions is (a) sin(x/2) = ±√(4/29)(b) cos(x/2)

= ±√(25/29)(c) tan(x/2)

= −2/5.

Given that sin(x) = − 20/29 and x is in quadrant III.

We are to find the exact values of the expressions without solving for x. (a) sin(x/2) (b) cos(x/2) (c) tan (x/2).

As we know that x is in quadrant III, sin(x) is negative because in this quadrant, the sine is negative. We are given sin(x) = − 20/29.

Using the formula of half-angle identity

sin(x/2) = ±√[(1 - cos(x))/2]cos(x/2)

= ±√[(1 + cos(x))/2]tan(x/2)

= sin(x)/[1 + cos(x)]

Substituting the value of sin(x) = − 20/29 in the above formulas, we have;

sin(x/2) = ±√[(1 - cos(x))/2]sin(x/2)

= ±√[(1 - cos(x))/2]sin(x/2)

= ±√[(1 - √[1 - sin²x])/2]sin(x/2)

= ±√[(1 - √[1 - (−20/29)²])/2]sin(x/2)

= ±√[(1 - √[1 - 400/841])/2]sin(x/2)

= ±√[(1 - √(441/841))/2]sin(x/2)

= ±√[(1 - 21/29)/2]sin(x/2)

= ±√[(29 - 21)/58]sin(x/2)

= ±√(8/58)sin(x/2)

= ±√(4/29)cos(x/2)

= ±√[(1 + cos(x))/2]cos(x/2)

= ±√[(1 + cos(x))/2]cos(x/2)

= ±√[(1 + √[1 - sin²x])/2]cos(x/2)

= ±√[(1 + √[1 - (−20/29)²])/2]cos(x/2)

= ±√[(1 + √(441/841))/2]cos(x/2)

= ±√[(1 + 21/29)/2]cos(x/2)

= ±√[(50/29)/2]cos(x/2)

= ±√(25/29)tan(x/2)

= sin(x)/[1 + cos(x)]tan(x/2)

= (−20/29)/[1 + cos(x)]tan(x/2)

= (−20/29)/[1 + √(1 - sin²x)]tan(x/2)

= (−20/29)/[1 + √(1 - (−20/29)²)]tan(x/2)

= (−20/29)/[1 + √(441/841)]tan(x/2)

= (−20/29)/[1 + 21/29]tan(x/2)

= (−20/29)/(50/29)tan(x/2)

= −20/50tan(x/2)

= −2/5

To know more about  expressions visit:

https://brainly.com/question/28170201

#SPJ11

The Frisco Roughriders need help with determining which of the following queuing systems is better for their new food vending area. They have the option of installing a two server system that has less automation or a new one server system in which drinks are automatically filled. They have 1 person per minute show up. The service rate for the automated system is 100 customers per hour and each server for the 2 server is 40 customers per hour. They have a few key metrics that they are trying to determine and need your help in deciding which system to install:
a. probability that no one is in line
b. total number of people in the system
c. total wait time in the system

Answers

a. For the two-server system, the probability of no one being in line is 0.975 while for the one-server system, it is 0.99.

b. For the two-server system, the average number of customers in the system is 2/3 while for the one-server system, it is 3/5.

c.  For the two-server system, the total wait time in the system is 80/3 minutes while for the one-server system, it is 60 minutes.

Based on the given metrics, the one-server system with automated drink filling appears to be better in terms of the probability of no one being in line, total wait time in the system, and potentially providing a better customer experience.

What is the probability that no one is in line?

a. Probability that no one is in line:

For the two-server system:

λ = 1 person per minute

μ = 40 customers per hour (per server)

ρ = λ/μ = 1/40 = 0.025

Using the M/M/2 queuing model, the probability of no one being in line is given by:

P(0) = 1 - ρ = 1 - 0.025 = 0.975

For the one-server system:

μ = 100 customers per hour

ρ = λ/μ = 1/100 = 0.01

The probability of no one being in line is:

P(0) = 1 - ρ = 1 - 0.01 = 0.99

Comparing the probabilities, the one-server system has a higher probability of no one being in line, indicating better performance in terms of avoiding queues.

b. Total number of people in the system:

For the two-server system,  the M/M/2 queuing model is used to calculate the average number of customers in the system.

L = λ / (2μ - λ)

L = (1/40) / (2 * (40/60) - 1/40) = 2/3

For the one-server system, the M/M/1 queuing model is used to calculate the average number of customers in the system.

L = λ / (μ - λ)

L = (1/100) / (100/60 - 1/100) = 3/5

Comparing the average number of customers in the system, the two-server system has a higher value, indicating a higher number of customers on average.

c. Total wait time in the system:

The total wait time in the system can be calculated using Little's Law.

For the two-server system:

W = L / λ

W = (2/3) / (1/40) = 80/3 minutes

For the one-server system:

W = L / λ

W = (3/5) / (1/100) = 60 minutes

Comparing the total wait times, the one-server system has a lower wait time on average, indicating faster service.

Learn more about probability at: https://brainly.com/question/24756209

#SPJ4

With Ha H 190 you obtain a test statistic of z= 1.592. Find the p-value accurate to 4 decimal places. p-value= Submit Question 4

Answers

With Ha H 190 you obtain a test statistic of z= 1.592.The p-value, accurate to 4 decimal places, is 0.1111.

To find the p-value, we need to determine the probability of observing a test statistic as extreme or more extreme than the one obtained under the alternative hypothesis (Ha). In this case, the test statistic is z = 1.592.

We can use a standard normal distribution table or a calculator to find the corresponding area under the curve. The p-value is the probability of obtaining a z-value as extreme as 1.592 or greater (in the positive tail of the distribution), multiplied by 2 to account for the possibility of extreme values in both tails.

Using a standard normal distribution table or a calculator, we find that the area to the right of z = 1.592 is approximately 0.0589. Multiplying this by 2 gives us 0.1178, which is the p-value rounded to 4 decimal places.

Therefore, the p-value, accurate to 4 decimal places, is 0.1111. This indicates that there is approximately an 11.11% chance of observing a test statistic as extreme or more extreme than the one obtained, assuming the alternative hypothesis (Ha) is true.

To know more about  p-value refer here:

https://brainly.com/question/30461126#

#SPJ11

Consider the discrete random variable X given in the table below. Round the mean to 1 decimal places and the standard deviation to 2 decimal places. 3 4 7 14 20 X P(X) 2 0.08 0.1 0.08 0.1 0.55 0.09 JL

Answers

The mean of the discrete random variable X is 9.3 and the standard deviation is 5.43.

To calculate the mean (expected value) of a discrete random variable, we multiply each value by its corresponding probability and sum them up. The formula is as follows:

Mean (μ) = Σ(X * P(X))

Using the provided table, we can calculate the mean:

Mean (μ) = (2 * 0.08) + (3 * 0.1) + (4 * 0.08) + (7 * 0.1) + (14 * 0.55) + (20 * 0.09)

= 0.16 + 0.3 + 0.32 + 0.7 + 7.7 + 1.8

= 9.3

Therefore, the mean of the discrete random variable X is 9.3, rounded to 1 decimal place.

To calculate the standard deviation (σ) of a discrete random variable, we first calculate the variance. The formula for variance is:

Variance (σ²) = Σ((X - μ)² * P(X))

Once we have the variance, the standard deviation is the square root of the variance:

Standard Deviation (σ) = √(Variance)

Using the provided table, we can calculate the standard deviation:

Variance (σ²) = ((2 - 9.3)² * 0.08) + ((3 - 9.3)² * 0.1) + ((4 - 9.3)² * 0.08) + ((7 - 9.3)² * 0.1) + ((14 - 9.3)² * 0.55) + ((20 - 9.3)² * 0.09)

= (7.3² * 0.08) + (6.3² * 0.1) + (5.3² * 0.08) + (2.3² * 0.1) + (4.7² * 0.55) + (10.7² * 0.09)

= 42.76 + 39.69 + 28.15 + 5.03 + 116.17 + 110.52

= 342.32

Standard Deviation (σ) = √(Variance)

= √(342.32)

= 5.43

Therefore, the standard deviation of the discrete random variable X is 5.43, rounded to 2 decimal places.

The mean of the discrete random variable X is 9.3, rounded to 1 decimal place, and the standard deviation is 5.43, rounded to 2 decimal places. These values provide information about the central tendency and spread of the distribution of the random variable X.

To know more about  discrete random variable, visit

https://brainly.com/question/30789758

#SPJ11

Describe whether a transformation of
Total_load_present_g and/or Prescribed_total_g will help to improve
the regression fit or not.
20 20 8 1.5 2.0 1.0 0.5 TOGIEO Go D 0 0 O O O 200 8 00 136100 0981 900 0 ABCOD 100000D O 9 0.00 0 00 0 100 O Residuals vs Fitted O O T 200 300 400 63 Fitted values Im(Prescribed_total_g~Total_load_pre

Answers

A transformation of Total_load_present_g and/or Prescribed_total_g can help to improve the regression fit. One way to determine this is by analyzing the Residuals vs Fitted plot.

If the plot shows a funnel shape, this suggests that there is heteroscedasticity, which means that the variability of the residuals changes across the range of the predictor variable.

A log transformation of Total load present g or Prescribed total g can help to stabilize the variance of the residuals and improve the regression fit.

Similarly, if the plot shows a curved pattern, this suggests that there may be nonlinearity in the relationship between the predictor and response variables.

A polynomial or power transformation of Total_load_present_g or Prescribed_total_g can help to capture this nonlinearity and improve the regression fit.

In conclusion, a transformation of Total_load_present_g and/or Prescribed_total_g can help to improve the regression fit, depending on the shape of the Residuals vs Fitted plot. If there is heteroscedasticity or nonlinearity in the relationship between the variables, a suitable transformation can help to address these issues and improve the fit of the regression model.

To know more about Log transformation visit:

brainly.com/question/30192638

#SPJ11

Exit Cynthia has a bag of jellybeans. There are four red jellybeans, ten yellow jellybeans, and fourteen black jellybeans in her bag. Cynthia grabs two jellybeans and gives them to her friend, Pedro, and he eats them. Which answer choice best describes this event? A. This is an independent event because Cynthia is putting the jellybeans back into the bag. B. This is a dependent event because Cynthia is putting the jellybeans back into the bag. C. This is an independent event because Pedro ate the jellybeans, and they cannot be replaced. D. This is a dependent event because Pedro ate the jellybeans, and they cannot be replaced.

Answers

Answer:

B

Step-by-step explanation:

117 63two adjacent angles form a resulting angle of 135°. ∠1=(2x)° and ∠2=(2x 7)°. what are the two unknown angles?(1 point)

Answers

The two unknown angles are ∠1 = 64° and ∠2 = 71°.

From the given information, we have:

∠1 = (2x)°∠2 = (2x + 7)°∠1 + ∠2 = 135°

Now, substituting the given values of ∠1 and ∠2 in the third equation we get:

(2x)° + (2x + 7)° = 135°

Simplifying this equation, we get:

4x + 7 = 135

Subtracting 7 from both sides, we get:

4x = 128

Dividing both sides by 4, we get:x = 32

Now, substituting the value of x in ∠1 and ∠2, we get:

∠1 = (2 × 32)°= 64°∠2 = (2 × 32 + 7)°= 71°

Therefore, the two unknown angles are ∠1 = 64° and ∠2 = 71°.

To know more about angles visit:

https://brainly.com/question/31818999

#SPJ11

Price of one bus: RM 250,000: Distance one-way 800km/day (from Changlun to Johor Bharu. One day to and from (800km), Type: express bus; No of seat: 26 seaters: Diesel price: RM2.05: Target Km/ltr: 2.5 km/l. Total driver: 2, Wages, insurance, incentives: standard, Instalment, and depreciation for five (5) years. The Insurance (250,000 x 0.03) = RM 7500 annually, administrative staff costing and repair maintenance. Ensuring the breakeven point, the bus operators should be able to calculate and justify for the purpose of business in the whole operations. SST/GST 10% = Question I a. Calculate the base calculation of the ticket price b. Suggest to the government on the actual accumulated chargers to be imposed in future.

Answers

a. The base calculation of the ticket price can be determined by considering various costs and factors associated with operating the bus. The calculation should include costs such as the initial price of the bus, fuel expenses, driver wages, insurance, maintenance, and other operational costs. By dividing the total costs by the number of passengers expected to be carried during the bus's lifespan, the base ticket price can be determined.

b. When suggesting the actual accumulated charges to be imposed in the future, it is important to consider factors such as inflation, changes in operating costs, market demand, and competitive pricing. The government should conduct market research and analysis to understand the dynamics of the transportation industry, evaluate the impact of potential charges on consumers and businesses, and strike a balance between affordability for passengers and profitability for bus operators. The suggested charges should aim to ensure sustainability and a fair return on investment for the operators, while also considering the economic well-being of the population.

Learn more about investment here: brainly.com/question/30105963

#SPJ11

what are the degrees of freedom for a paired t-test when n1= 28 and n2 = 28?

Answers

The degree of freedom for a paired t-test can be calculated using the formula given below: df = n - 1 where n is the sample size.The degree of freedom for a paired t-test when n1 = 28 and n2 = 28 is given by; df = 28 - 1 = 27.

In statistics, degrees of freedom refers to the number of values in a study that can vary without violating any restrictions. The degree of freedom for a paired t-test is calculated using the formula df = n - 1 where n is the sample size. The degree of freedom is used to determine the critical value for the t-distribution table to evaluate the test statistics. For the given question, the sample size is given as n1 = 28 and n2 = 28, therefore the degree of freedom can be calculated using the formula; df = n - 1= 28 - 1= 27

Therefore, the degree of freedom for the paired t-test when n1 = 28 and n2 = 28 is 27. When we are calculating the degree of freedom, we want to be able to have a good approximation of the sample's variability. For the paired t-test, the formula used is df = n - 1. This means that we are considering the number of samples and subtracting 1 from it to get the degree of freedom. This formula is important for getting the critical value for the t-distribution table to evaluate the test statistics. For the given question, the sample size is given as n1 = 28 and n2 = 28, therefore the degree of freedom can be calculated using the formula; df = n - 1 = 28 - 1 = 27. In conclusion, the degree of freedom for the paired t-test when n1 = 28 and n2 = 28 is 27.

To know more about paired t-tests visit:

https://brainly.com/question/31829815

#SPJ11

Other Questions
Which of the following statements is true? A) Economic growth can reduce poverty only if it is not associated with a significant rise in inequality. B) Economic growth always reduces inequality. C) Economic growth always reduces poverty. D) Economic growth is ineffective in reducing both poverty and inequality. r(t) = (8 sin t) i (6 cos t) j (12t) k is the position of a particle in space at time t. find the particle's velocity and acceleration vectors. r(t) = (8 sin t) i (6 cos t) j (12t) k is the position of a particle in space at time t. find the particle's velocity and acceleration vectors. p^q is logically equivalent to (a) A bank is offering 5-year certificates of deposit (CDs) with a 3% interest rate. The expected inflation rate is 1%. Calculate the expected real interest rate on the CD. (Show your work.)(b) Banks across the country are decreasing nominal interest rates. What will happen to the price of government bonds?(c) Explain the relationship between the aggregate measures of the money supply and liquidity. Find an equation of the plane.the plane through the point(3, 0, 5)and perpendicular to the linex = 8t,y = 6 t,z = 1 + 2t At the end of the day, all servers at a restaurant pool their tips together and share them equally amongst themselves. Danae is one of six servers at this restaurant. Below are the tip amounts earned by four other servers on a certain day. $120, $104, $115, $98 That day, Danae earned $190 in tips. After pooling the tips together and sharing them, Danae received 60% of the amount she earned individually. How much did the sixth server earn in tips that day? Using the four sister chromatids shown on the far left of Figure 7.9, draw the chromatid that would be in each haploid cell produced by meiosis if crossing over does not occur. NOTE: Each daughter cell should have one chromatid in it. The first one is done for you. 4 Daughter Cells DOO 2. Using the the four sister chromatids shown on the far right of Figure 7.9, draw the the four sister chromatids that would be in each haploid cell produced by meiosis if crossing over does occur. 4 Daughter Cells 3. Which resulted in more variation in the haploid daughter cells produced: when no crossing occurred or when crossing over occurred? Explain. Find all solutions of each equation on the interval 0 x 2.a) Explain the quantity theory of money.b) What are the basic assumptions behind the quantity theory of money?c) If money supply (M) rises by10% and real output or RGDP (Y) rises by 5%, what would be the % change in prices (P) assuming the velocity of circulation of money (V) remains constant.3. a) If the Fed wants to lower countrys money supply (M), will it buy bonds or sell bonds? b) Suppose the Fed wants to reduce countrys money supply by $500 billion by doing open market operations. How much bonds the Fed would have to buy or sell if the required reserve ratio is 10%? Suppose that a rental company generates from its equipments. The company acquires a new equipment in order to to its customers. New equipment costs 120.000 TL. The company revalues the equipment at the end of the year, and finds that its revalued amount is 110.000 TL. The useful life of the equipment is 5 years and depreciation method is straight-line. The company does not apply the cost model in the measurement of its equipments. What would be the change in profit/loss in the year-end income statement other things being equal?a. 24.000 loss b. 10.000 loss c. 14.000 profit d. 40.000 loss inability to contract the gastrocnemius muscle could indicate damage to the give an introduction about the purpose of good customerservice The volume of a prism is 100 and it's height it 20. What is the are of the base? What is sustainability? Summarize ways to measure sustainabilityachievements. Lenovo: Building a Global BrandStudents Name:Case Summary:Key Issues:Strategic Recommendations: Listed below are eight terms followed by a list of phrases that describe or characterize the terms. Match each phrase with the best term placing the letter designating the term in the space provided.Terms:a. Vertical analysisb. Horizontal analysisc. Liquidityd. Solvencye. Discontinued operationf. Extraordinary itemg. Aggressive accounting practicesh. Conservative accounting practicesPhrases:_____ A companys ability to pay its current liabilities._____ Accounting choices that result in reporting lower income, lower assets, and higher liabilities._____ A profit or loss unusual in nature and infrequent in occurrence._____ Accounting choices that result in reporting higher income, higher assets, and lower liabilities._____ A tool to analyze trends in financial statement data for a single company over time._____ The sale or disposal of a significant component of a companys operations._____ A means to express each item in a financial statement as a percentage of a base amount._____ A companys ability to pay its long-term liabilities. In a closed economy, autonomous spending equals which of the following? CO +I+G-01T +c11 C+I+G CO+I+G Z CO + I + G + C1T Which of the following is true about the effects of insulin in the liver? Insulin stimulates gluconeogenesis. Insulin stimulates glycogen synthesis. Insulin stimulates lipolysis. Insulin stimulates proteolysis. As sales manager, Andrew Short was given the following static budget report for selling expenses in the Winter Sports Department of AC Outdoor Company for the month of November. AC Outdoor Company Winter Sports Department Budget Report For the Month Ended November 30, 2020 Difference Favorable F Budget Actual Unfavorable U Sales in units 4,000 500 F Variable expenses Sales commissions $132,000 $8,900 U Advertising expense 40,000 3,600 U Travel expense 176,000 15,600 U Demonstration models given out 92,000 10,000 F Total variable 440,000 18,100 U Fixed expenses Rent 8,000 Sales salaries 59,600 Office salaries 39,600 Depreciation-vans (sales staff) 2,700 600 U Total fored 109,900 110,500 600 U $549,900 Total expenses $568,600 $18,700 U "The increase in depreciation was due to a new vehicle that had to be purchased as a result of an accident driving on snowy roads on the way to visit a customar As a result of this budget report, Andrew was called into the president's office and congratulated on his fine sales performance. He was reprimanded, however, for allowing his costs to get out of control. Andrew knew something was wrong with the performance report that he had been given. However, he was not sure what to do, and comes to you for advice 4,500 $140,900 43,600 191,600 82,000 450,100 8,000 59,600 39,600 3,300 - 8 After Andrew because familiar with the flexible budget report, he began to analyze the numbers. Andrew feels that sales can be increased if AC Outdoor Company would increase sales commissions to $34.00 per unit. This would allow them to reduce advertising expense to $8.50 per unit. Andrew thinks that these changes will motivate the sales staff to sell at least 5,400 units. He is allowed to try his plan in December and had the following results. AC Outdoor Company Winter Sports Department Results For the Month Ended December 31, 2020 Sales in units 5,400 Variable expenses Sales commissions $176,900 Advertising expense 44,000 Travel expense 230,000 Demonstration models given out 102,600 Total variable 553,500 Fixed expenses Rent 8,000 Sales salaries 59,600 Office salaries 39.600 Depreciation-vans (sales staff) 3,300 Total foxed 110,500 Total expenses $664,000 Prepare a budget report based on flexible budget data. The new depreciation amount has been included in the budgeted fixed costs. (Round per unit answers to 2 decimal places, eg 15.25) AC Outdoor Company Winter Sports Department Flexible Budget Report Per Unit Budget JUDQ0.000 Prepare a budget report based on flexible budget data. The new depreciation amount has been included in the budgeted fixed costs. (Round per unit answers to 2 decimal places, es 15.25) AC Outdoor Company Winter Sports Department Flexible Budget Report Difference Favorable Unfavorable Neither Favorable et nor Unfavorable Actual 100 > > > 11 < Prove the following statement: The difference of any two odd integers even