Answer:
arc LKF = 208°
Step-by-step explanation:
the angle FLX between the tangent and the secant is half the measure of the intercepted arc LKF , then intercepted arc is twice angle FLX , so
arc LKF = 2 × 104° = 208°
5 In a Survery of 130 people 80 claimed to be CDO partisans and 60 claimed to be Anc partisan. If 30 of them are both ANC and CDO how many people are none of these two parties
Answer: there are 20 people who claimed to be neither CDO partisans nor ANC partisans.
Step-by-step explanation:
To determine the number of people who are none of these two parties, we need to subtract the total number of people who claimed to be CDO partisans, ANC partisans, and those who claimed to be both from the total number of people surveyed.
Total surveyed people = 130
Number claiming to be CDO partisans = 80
Number claiming to be ANC partisans = 60
Number claiming to be both ANC and CDO = 30
To find the number of people who are none of these two parties, we can calculate it as follows:
None of these two parties = Total surveyed people - (CDO partisans + ANC partisans - Both ANC and CDO)
None of these two parties = 130 - (80 + 60 - 30)
None of these two parties = 130 - 110
None of these two parties = 20
In circle O, secants ADB and AEC are drawn from external point A
such that points D, B, E, and C are on circle O. If AD = 8, AE = 6,
and EC is 12 more than BD, the length of BD is
(1) 6
(2) 22
(3) 36
(4) 48
The length of BD is 22.
In the given scenario, let's consider the following information.
AD = 8
AE = 6
EC is 12 more than BD.
To find the length of BD, we can utilize the Intercepted Arcs Theorem, which states that when two secants intersect outside a circle, the measure of an intercepted arc formed by those secants is equal to half the difference of the measures of the intercepted angles.
From the given information, we know that AD = 8 and AE = 6.
Since these are the lengths of the secants, we can use them to calculate the intercepted arcs.
First, let's find the intercepted arc corresponding to AD:
Intercepted Arc ADB = 2 [tex]\times[/tex] AD = 2 [tex]\times[/tex] 8 = 16
Similarly, we can find the intercepted arc corresponding to AE:
Intercepted Arc AEC = 2 [tex]\times[/tex] AE = 2 [tex]\times[/tex] 6 = 12
Now, we know that EC is 12 more than BD.
Let's assume the length of BD as x.
BD + 12 = EC
Now, let's consider the intercepted arcs theorem:
Intercepted Arc ADB - Intercepted Arc AEC = Intercepted Angle B - Intercepted Angle C
16 - 12 = Angle B - Angle C
4 = Angle B - Angle C.
Since Angle B and Angle C are vertical angles, they are congruent:
Angle B = Angle C.
Therefore, we can say:
4 = Angle B - Angle B
4 = 0
However, we have reached an inconsistency here.
The equation does not hold true, indicating that the given information is not consistent or there may be an error in the problem statement.
As a result, we cannot determine the length of BD based on the given information.
For similar question on length.
https://brainly.com/question/30582409
#SPJ8
Which of the figure has reflectional symmetry
A. Figure C
B. Figure B
C.Figure D
D.Figure A
The figure that shows a reflectional symmetry would be figure C. That is option A.
What is reflectional symmetry of shapes?The reflectional symmetry of shapes is defined as the type of symmetry where one-half of the object reflects the other half of the object.
This is also called a mirror symmetry. This is because the image seen in one side of the mirror is exactly the same as the one seen on the other side of the mirror.
Learn more about reflection here:
https://brainly.com/question/31487715
#SPJ1
Which of the following indicates that ABC and ADEF are similar?
A
O A. LABC ~ DEF
B. _ABC= __DEF
C. LABC = __ DEF
O D. LABC.LDEF
с
D
E
Answer: Choice A
The single squiggly symbol means "similar".
A squiggly line over top an equals sign is the congruence symbol.
GEOMETRY 40POINTS
TY
Answer:
It's 7.81
Step-by-step explanation:
0.005627 to 3 decimal places
(i) Correcting the figures to 3 decimal places:
-0.005627 ≈ -0.006
0.0056 ≈ 0.006
-0.0049327 ≈ -0.005
0.0049 ≈ 0.005
-0.001342 ≈ -0.001
(ii) Correcting the figures to 3 significant figures:
-0.005627 ≈ -0.00563
0.0056 ≈ 0.00560
-0.0049327 ≈ -0.00493
0.0049 ≈ 0.00490
-0.001342 ≈ -0.00134
(i) When rounding to 3 decimal places, we look at the fourth decimal place and round the figure accordingly. If the fourth decimal place is 5 or above, we round up the preceding third decimal place. If the fourth decimal place is less than 5, we simply drop it.
(ii) When rounding to 3 significant figures, we consider the digit in the third significant figure. If the digit in the fourth significant figure is 5 or above, we round up the preceding third significant figure. If the digit in the fourth significant figure is less than 5, we simply drop it.
Rounding to the correct number of decimal places or significant figures is important to maintain precision and accuracy in calculations and measurements. It helps to ensure that the reported values are appropriate for the level of precision required in a given context.
For more such questions on significant figures
https://brainly.com/question/30169
#SPJ8
If the coordinates of point E are (-4,y), what is the value of y ?
What can you say about the y-values of the two functions f (x) = 3 - 3
and g(x) = 7x² - 3?
☐A. The minimum y-value of f(x) is
B. The minimum y-value of g(x) is -3.
C. g(x) has the smallest possible y-value.
D. f(x) has the smallest possible y-value.
SUBMIT
Answer: B. The minimum y-value of g(x) is -3.
Step-by-step explanation:
Based on the given functions:
f(x) = 3 - 3
g(x) = 7x² - 3
The y-value of f(x) is constant at -3, regardless of the value of x. Therefore, f(x) does not have a minimum y-value, and option A is incorrect.
The y-value of g(x) is determined by the quadratic term 7x². Since the coefficient of x² is positive (7), the parabola opens upwards, indicating that g(x) has a minimum y-value. To find the minimum value of g(x), we can look at the vertex of the parabola, which occurs when x = -b/2a in the quadratic equation ax² + bx + c. In this case, a = 7 and b = 0, so the vertex is at x = -0/2(7) = 0. Substituting x = 0 into g(x), we find: g(0) = 7(0)² - 3 = -3 Therefore, the minimum y-value of g(x) is -3, and option B is correct.
Option C, stating that g(x) has the smallest possible y-value, is incorrect because the y-value of g(x) can be larger than -3 depending on the value of x.
Option D, stating that f(x) has the smallest possible y-value, is incorrect because f(x) does not have a minimum y-value as it is constant at -3.
Therefore, the correct answer is B. The minimum y-value of g(x) is -3.
125
(a) What is the measure of ange L?
(b) What is x?
(22-10)
I
(c) What is the measure of angle M?
65 N
The values of L and M in the triangle displayed are 55 and 60 respectively.
The value of angle L can be obtained thus :
125 + L = 180 (sum of angles in a triangle)
L = 180 - 125 = 55°
B.
The value of L can be calculated thus:
55 + (2x - 10) + 65 = 180 (sum of internal angles of a triangle)
120 + 2x - 10 = 180
110+2x = 180
2x = 180-110
x = 35
M = 2(35) -10 = 60°
Therefore, L = 55 and M = 60.
Learn more on Angles:https://brainly.com/question/25770607
#SPJ1
Solve the inequality.
x
_ -3 >2
4
The solution to the inequality[tex](x/4) - 3 > 2 is x > 20.[/tex]
To solve the inequality [tex](x/4) - 3 > 2,[/tex]we'll follow these steps:
Step 1: Eliminate the fraction by multiplying both sides of the inequality by the denominator, which is 4 in this case. This step allows us to get rid of the fraction and simplify the inequality.
[tex](x/4) - 3 > 2[/tex]
Multiply both sides by 4:
[tex]4 * [(x/4) - 3] > 4 * 2[/tex]
This simplifies to:
x - 12 > 8
Step 2: Isolate the variable on one side of the inequality by adding 12 to both sides:
x - 12 + 12 > 8 + 12
This simplifies to:
x > 20
So, the solution to the inequality is x > 20. This means that any value of x greater than 20 will satisfy the inequality.
To represent this solution graphically, we can plot the number line and shade the region to the right of 20, indicating that any value greater than 20 is a valid solution.
---------------------------------
-∞ 20 +∞
--------------------------
●=================
---------------------------------
In the number line above, the shaded region represents the solution x > 20. Any value to the right of 20, including 20 itself, will satisfy the original inequality.
In summary, the solution to the inequality [tex](x/4) - 3 > 2 is x > 20.[/tex]
for more such question on inequality visit
https://brainly.com/question/30238989
#SPJ8
I need help understanding how to format this:
f(x)-4
f(x)=2x+1
an example of another question for it (if you're not sure what im asking), another question was to answer this:
f(4)
f(x)=2x+1
f(4)=2(4)+1
this one is easy to get, but i'm not too sure how to put it on the first one...
Answer:
Step-by-step explanation:
To format and solve the equation "f(x) - 4" with the given function "f(x) = 2x + 1," we substitute the function into the equation and solve for x. Here's how it can be done:
f(x) - 4 = 2x + 1 - 4
Simplifying further:
f(x) - 4 = 2x - 3
To answer the question "f(4)" using the function f(x) = 2x + 1, we substitute x = 4 into the function:
f(4) = 2(4) + 1
Simplifying further:
f(4) = 8 + 1
f(4) = 9
Therefore, the value of f(4) is 9 when using the function f(x) = 2x + 1.
f(x)= [tex]\frac{5x-5}{x^{2} -7x+6}[/tex]
Answer:
f(x)=5/(x-6)
Step-by-step explanation:
f(x)=(5x-5)/(x^2-7x+6)
f(x)=[5(x-1)]/[(x-1)(x-6)]
f(x)=5/(x-6)
A hyperbola is defined by the equation ... 100 pts
Answer:
See attachment for the graph of the hyperbola.
Step-by-step explanation:
Given equation:
[tex](x-7)^2-\dfrac{(y-4)^2}{9}=1[/tex]
As the x²-term of the given equation is positive, the transverse axis is horizontal, and so the hyperbola is horizontal (opening left and right). Note, if the y²-term was positive, the hyperbola would have been vertical.
The general formula for a horizontal hyperbola (opening left and right) is:
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Standard equation of a horizontal hyperbola}\\\\$\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1$\\\\where:\\\phantom{ww}$\bullet$ $(h,k)$ is the center.\\ \phantom{ww}$\bullet$ $(h\pm a, k)$ are the vertices.\\\phantom{ww}$\bullet$ $(h\pm c, k)$ are the foci where $c^2=a^2+b^2.$\\\phantom{ww}$\bullet$ $y=\pm \dfrac{b}{a}(x-h)+k$ are the asymptotes.\\\end{minipage}}[/tex]
Comparing the given equation with the standard equation:
h = 7k = 4a² = 1 ⇒ a = 1b² = 9 ⇒ b = 3To find the value of c, use c² = a² + b²:
[tex]\begin{aligned}c^2&=a^2+b^2\\c^2&=1+9\\c^2&=10\\c&=\sqrt{10}\end{aligned}[/tex]
The center is (h, k). Therefore, the center is (7, 4).
The formula for the loci is (h±c, k). Therefore:
[tex]\begin{aligned}\textsf{Loci}&=(h \pm c, k)\\&=(7 \pm \sqrt{10}, 4)\\&=(7- \sqrt{10}, 4)\;\;\textsf{and}\;\;(7 +\sqrt{10}, 4)\end{aligned}[/tex]
The formula for the vertices is (h±a, k). Therefore:
[tex]\begin{aligned}\textsf{Vertices}&=(h \pm a, k)\\&=(7 \pm 1, 4)\\&=(6, 4)\;\;\textsf{and}\;\;(8, 4)\end{aligned}[/tex]
The asymptotes are:
[tex]\begin{aligned}y&=\pm \dfrac{b}{a}(x-h)+k\\\\y&=\pm \dfrac{3}{1}(x-7)+4\\\\y&=\pm 3(x-7)+4\\\\\implies y&=3x-17\\\implies y&=-3x+25\end{aligned}[/tex]
Therefore:
[tex]\textsf{Center} = (7, 4)[/tex][tex]\textsf{Vertices} = (6, 4) \;\textsf{and}\;(8, 4)[/tex][tex]\textsf{Foci} = (7\pm \sqrt{10}, 4)[/tex][tex]\textsf{Asymptotes:}\;\;y =3x-17\;\;\textsf{and}\;\;y= -3x +25[/tex][tex]\textsf{Transverse axis:} \;\; y = 4[/tex][tex]\textsf{Conjugate axis:}\;\; x = 7[/tex]The graph of the hyperbola (x - 7)² - (y - 4)²/9 = 1 is attached below
What is the graph of the hyperbola?The graph of a hyperbola is a curve that consists of two separate branches, each resembling a symmetrical curve. The general equation for a hyperbola in standard form is:
[(x - h)² / a²] - [(y - k)² / b²] = 1
The center of the hyperbola is represented by the coordinates (h, k). The parameters a and b determine the size and shape of the hyperbola.
Based on the standard form equation, there are two types of hyperbolas:
1. Horizontal Hyperbola:
When the major axis is parallel to the x-axis, the hyperbola is horizontal. The equation in this case is:
[(x - h)² / a²] - [(y - k)² / b²] = 1
The graph of a horizontal hyperbola opens left and right. The branches are symmetric about the x-axis and the center (h, k) is the midpoint between the branches.
2. Vertical Hyperbola:
When the major axis is parallel to the y-axis, the hyperbola is vertical. The equation in this case is:
[(y - k)² / b²] - [(x - h)² / a²] = 1
The graph of a vertical hyperbola opens up and down. The branches are symmetric about the y-axis and the center (h, k) is the midpoint between the branches.
The graph of the given hyperbola is attached below.
Learn more on graph of hyperbola here;
https://brainly.com/question/30281625
#SPJ1
need to get this right
The diameter of the engine cylinder is written in the form
|d - 5| ≤ 0.005
How to select the better expressionTo represent the diameter of an engine cylinder with a tolerance of ±0.005 cm and a desired width of 5 cm, we can use an absolute value inequality.
The absolute value inequality representing the permissible limit of variation can be written as:
|d - 5| ≤ 0.005
where:
d represents the diameter of the engine cylinder.
In this inequality, the absolute value of the difference between the diameter (d) and the desired width (5 cm) must be less than or equal to the given tolerance of ±0.005 cm.
This means that the diameter of the engine cylinder can vary within ±0.005 cm of the desired width of 5 cm.
Learn more about absolute value inequality at
https://brainly.com/question/13282457
#SPJ1
Triangle RST with (2,0), s(-2,-3), and t(-2,3) reflected over the y axis. Find the coordinates and vertices
I
Step-by-step explanation:
The coordinates and vertices
which reflected over the y- axis are
r(-2,0) , s(2,-3) , and t(2,3).
3^x+3^(4-2x)=1+3^(4-x)
The solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
To solve the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x),[/tex] we can simplify the equation and then apply some algebraic techniques to isolate the variable x.
First, let's simplify the equation step by step:
1. Notice that [tex]3^(4-2x)[/tex] can be rewritten as[tex](3^4) / (3^2x)[/tex], using the property of exponentiation.
2. Now the equation becomes 3[tex]^x + (81 / 9^x) = 1 + 3^(4-x).[/tex]
3. We can simplify further by multiplying both sides of the equation by 9^x to eliminate the denominators.
This gives us [tex]3^x * 9^x + 81 = 9^x + 3^(4-x) * 9^x.[/tex]
4. Simplifying the terms, we have [tex](3*9)^x + 81 = 9^x + (3*9)^(4-x).[/tex]
Now we have [tex](27)^x + 81 = 9^x + (27)^(4-x).[/tex]
5. Notice that [tex](27)^x and (27)^(4-x)[/tex] have the same base, so we can set the exponents equal to each other.
This gives us x = 4 - x.
6. Simplifying the equation, we get 2x = 4.
7. Dividing both sides of the equation by 2, we have x = 2.
Therefore, the solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
Using simple language, we simplified the equation step by step and isolated the variable x by setting the exponents equal to each other. The final solution is x = 2.
for more such question on equation visit
https://brainly.com/question/17145398
#SPJ8
Linear sequence of 35/100,5/10,65/100
The linear rule for the sequence is f(n) = 7/20 + 3/20(n - 1)
Finding the linear rule for the sequenceFrom the question, we have the following parameters that can be used in our computation:
35/100,5/10,65/100
In the above sequence, we can see that 15/100 is added to the previous term to get the new term
This means that
First term, a = 35/100
Common difference, d = 15/100
The nth term is then represented as
f(n) = a + (n - 1) * d
Substitute the known values in the above equation, so, we have the following representation
f(n) = 35/100 + 15/100(n - 1)
So, we have
f(n) = 7/20 + 3/20(n - 1)
Hence, the explicit rule is f(n) = 7/20 + 3/20(n - 1)
Read more about sequence at
brainly.com/question/30499691
#SPJ1
The vertices of $\triangle ABC$ represent the buoy markers that form the legs of the course for a swim race. What is the distance from marker $A$ to marker $B$ ? Round your answer to the nearest tenth of a meter.
Rounding to the nearest tenth of a meter, the distance from marker A to marker B (side AB) is approximately 5.7 meters.
To find the distance from marker A to marker B in triangle ABC, we need to calculate the length of side AB.
The distance between two points (x1, y1) and (x2, y2) can be found using the distance formula:
d = √[tex]((x2 - x1)^2 + (y2 - y1)^2)[/tex]
In this case, let's assume that the coordinates of marker A are (x1, y1) and the coordinates of marker B are (x2, y2).
Given that the coordinates of marker A are not provided in the question, we would need the coordinates of both marker A and marker B to calculate the distance between them accurately.
Once we have the coordinates of marker A and marker B, we can substitute them into the distance formula to calculate the distance AB.
For example, if the coordinates of marker A are (x1, y1) = (3, 4) and the coordinates of marker B are (x2, y2) = (7, 8), we can calculate the distance as follows:
d = [tex]\sqrt{((7 - 3)^2 + (8 - 4)^2)}[/tex]
= √[tex](4^2 + 4^2)[/tex]
= √(16 + 16)
= √32
≈ 5.66
Rounding to the nearest tenth of a meter, the distance from marker A to marker B (side AB) is approximately 5.7 meters.
For more such questions on distance visit:
https://brainly.com/question/30395212
#SPJ8
A store employee notices that rowboats that cost his store 79$ are being sold for 175$. What percentage is the mark up?
Answer:
Step-by-step explanation:
Step 1. Determine the dollar amount of the markup
175 - 79 = 96
Step 2: Divide the markup Amount by the Cost
96/79 = 1.215
Step 3: Multiply by 100 and add the % sign
1.215 x 100 = 121.5%
The conditional statement below is true. If possible, write the biconditional statement.
If 2x = 18, then x = 9.
The biconditional statement for the given conditional statement would be:
2x = 18 if and only if x = 9.
The given conditional statement "If 2x = 18, then x = 9" can be represented symbolically as p → q, where p represents the statement "2x = 18" and q represents the statement "x = 9".
To form the biconditional statement, we need to determine if the converse of the conditional statement is also true. The converse of the original statement is "If x = 9, then 2x = 18". Let's evaluate the converse statement.
If x = 9, then substituting this value into the equation 2x = 18 gives us 2(9) = 18, which is indeed true. Therefore, the converse of the original statement is true.
Based on this, we can write the biconditional statement:
2x = 18 if and only if x = 9.
The biconditional statement implies that if 2x is equal to 18, then x must be equal to 9, and conversely, if x is equal to 9, then 2x is equal to 18. The biconditional statement asserts the equivalence between the two statements, indicating that they always hold true together.
In summary, the biconditional statement is a concise way of expressing that 2x = 18 if and only if x = 9, capturing the mutual implication between the two statements.
for such more question on conditional statement
https://brainly.com/question/27839142
#SPJ8
What is the inverse of the following conditional statement? "If the sum of interior angles of a polygon is more than 180°, then the polygon is not a triangle." If the sum of the interior angles of a polygon is not more than 180°, then the polygon is a triangle. If the polygon is a triangle, then the sum of the interior angles of the polygon is not more than 180°. If the sum of the interior angles of a polygon is equal to 180°, then the polygon is a triangle. If the polygon is not a triangle, then the sum of the interior angles of the polygon is more than 180°.
The inverse of the original statement is: "If the sum of the interior angles of a polygon is not more than 180°, then the polygon is a triangle."
The inverse of the conditional statement "If the sum of interior angles of a polygon is more than 180°, then the polygon is not a triangle" is: "If the sum of the interior angles of a polygon is not more than 180°, then the polygon is a triangle."
To find the inverse, we need to negate both the hypothesis and the conclusion of the original statement.
The hypothesis of the original statement is "the sum of the interior angles of a polygon is more than 180°". To negate this, we say "the sum of the interior angles of a polygon is not more than 180°".
The conclusion of the original statement is "the polygon is not a triangle". To negate this, we say "the polygon is a triangle".
In summary, the inverse of the original statement is "If the sum of the interior angles of a polygon is not more than 180°, then the polygon is a triangle."
For more such questions on polygon
https://brainly.com/question/29425329
#SPJ8
PLEASE HELP ME ANSWER THIS QUESTION ASAP!!
Answer:
Since P(male)xP(fail) = 0.0549 and and P(male and fail) = 0.0773, the two results are different, so the events are not independent.
Step-by-step explanation:Independent events:
Two events, A and B are independent, if:
Probability of male:
58 + 14 = 72 males out of 58 + 14 + 98 + 11 = 181
So
P(male) = 72/181 = 0.3978
Probability of failling:
14 + 11 = 25 students fail out of 181. So
P(fail) = 28/181 = 0.1381
Multiplitication of male and failling:
0.3978*0.1381 = 0.0549
Probability of being male and failing:
14 out of 181. So
14/181 = 0.0773
Different probabilities, so not independent.
Since P(male)xP(fail) = 0.0549 and and P(male and fail) = 0.0773, the two results are different, so the events are not independent.
what is the quotient of the rational expressions shown below? make sure your answer is in reduced form x^2-16/x+5 divided by x^2-8x+16/2x+10
The quotient of the given rational expressions, (x^2 - 16)/(x + 5) divided by (x^2 - 8x + 16)/(2x + 10), is (x - 4)/(x - 4), which simplifies to 2.
To divide rational expressions, we invert the second expression and multiply it with the first expression. So, we have:
[(x^2 - 16)/(x + 5)] / [(x^2 - 8x + 16)/(2x + 10)]
To simplify this expression, we can multiply by the reciprocal of the second rational expression:
[(x^2 - 16)/(x + 5)] * [(2x + 10)/(x^2 - 8x + 16)]
Next, let's factorize the numerators and denominators of both expressions:
[(x + 4)(x - 4)/(x + 5)] * [2(x + 5)/((x - 4)(x - 4))]
Now, we can cancel out the common factors:
[(x + 4) * 2(x + 5)] / [(x + 5) * (x - 4)(x - 4)]
The (x + 5) factors cancel out:
[(x + 4) * 2(x + 5)] / [(x - 4)(x - 4)]
Further simplification:
[2(x + 4)(x + 5)] / [(x - 4)(x - 4)]
Now, we observe that the factors (x - 4)(x - 4) are the same in the numerator and denominator. Therefore, they cancel out:
2(x + 4)(x + 5) / (x - 4)(x - 4) = 2(x + 4)(x + 5) / (x - 4)(x - 4) = 2
Therefore, the quotient of the given rational expressions is 2.
For more such questions on rational expressions, click on:
https://brainly.com/question/29061047
#SPJ8
A marketing firm conducts a survey to determine the ages of their survey subjects who like a new health drink.
This is the resulting data from their survey:
49, 63, 78, 22, 41, 39, 75, 61, 63, 65,
58. 37. 45, 52, 81, 75, 78, 72, 68, 59,
72, 85, 63, 61, 75, 39, 41, 48, 59,55
61, 25, 61, 52, 58, 71, 75, 82, 49, 51
The mean age of the subjects who like the new health drink is (type your answer...)
and the median age of the subjects is (type your answer..)
Answer:
Mean = 59.1, Median = 61
(there might have been a mistake in calculation (a lot of numbers!))
Step-by-step explanation:
The sample size is 40,
Now, the formula for the mean is,
Mean = (sum of the sample values)/(sample size)
so we get,
[tex]Mean = (49+63+78+22+41+39+75+61+63+65+58+37+45+52+81+75+78+72+68+59+72+85+63+61+75+39+41+48+59+55+61+25+61+52+58+71+75+82+49+51)/40\\Mean = 2364/40\\Mean = 59.1[/tex]
To find the median, we have to sort the list in ascending (or descending)order,
we get the list,
22,25,37,39,39,41,41,45,48,49,
49,51,52, 52,55,58, 58, 59, 59, 61,
61, 61, 61, 63, 63, 63, 65, 68, 71, 72,
72, 75, 75, 75, 75, 78, 78, 81, 82, 85
Now, we have to find the median,
since there are 40 values, we divide by 2 to get, 40/2 = 20
now, to find the median, we takethe average of the values above and below this value,
[tex]Median = ((n/2+1)th \ value + (n/2)th \ value )/2\\where, \ the\ (n/2)th \ value \ is,\\n/2 = (total \ number \ of \ samples) /2\\n/2=40/2\\(n/2)th = 20\\Hence\ the (n/2)th \ value \ is \ the \ 20th \ value[/tex]
And the (n+1)th value is the 21st value
Now,
The ((n/2)+1)th value is 61 and the nth value is 61, so the median is,
Median = (61+61)/2
Median = 61
A restaurant offers 10 appetizers and 7 main courses. In how many ways can a person order a two-course meal?
There are
ways a person can order a two-course meal.
There are 70 ways a person can order a two-course meal from the given restaurant.
To determine the number of ways a person can order a two-course meal from a restaurant that offers 10 appetizers and 7 main courses, we can use the concept of combinations.
First, we need to select one appetizer from the 10 available options.
This can be done in 10 different ways.
Next, we need to select one main course from the 7 available options. This can be done in 7 different ways.
Since the two courses are independent choices, we can multiply the number of options for each course to find the total number of combinations.
Therefore, the number of ways a person can order a two-course meal is 10 [tex]\times[/tex] 7 = 70.
So, there are 70 ways a person can order a two-course meal from the given restaurant.
It's important to note that this calculation assumes that a person can choose any combination of appetizer and main course.
If there are any restrictions or limitations on the choices, the number of combinations may vary.
For similar question on ways.
https://brainly.com/question/4658834
#SPJ8
A newly hired lawyer receives a $15,000 signing bonus from a law firm and invests the money in a savings account at 4.75% interest. After 42 months, the lawyer checks the account balance.
Part A: Calculate the interest earned if the interest is compounded quarterly. Show all work. (2 points)
Part B: Calculate the interest earned if the interest is compounded continuously. Show all work. (2 points)
Part C: Using the values from Part A and Part B, compare the interest earned for each account by finding the difference in the amount of interest earned. (1 point)
Part A: The interest earned if the interest is compounded quarterly is $2,768.40.
Part B: The interest earned if the interest is compounded continuously is $2,695.92.
Part C: The difference in the amount of interest earned is approximately $72.48.
Part A: To calculate the interest earned when the interest is compounded quarterly, we can use the formula for compound interest:
[tex]A = P(1 + r/n)^(^n^t^)[/tex]
Where:
A = the final account balance
P = the principal amount (initial investment)
r = the annual interest rate (4.75% or 0.0475 as a decimal)
n = the number of times the interest is compounded per year (4 times for quarterly)
t = the number of years (42 months divided by 12 to convert to years)
Plugging in the values:
A = $15,000(1 + 0.0475/4)^(4 * (42/12))
A = $15,000(1.011875)^(14)
A ≈ $15,000(1.18456005)
A ≈ $17,768.40
The interest earned is the difference between the final account balance and the principal amount:
Interest earned = $17,768.40 - $15,000
Interest earned ≈ $2,768.40
Part B: When the interest is compounded continuously, we can use the formula:
[tex]A = Pe^(^r^t^)[/tex]
Where:
A = the final account balance
P = the principal amount (initial investment)
e = the mathematical constant approximately equal to 2.71828
r = the annual interest rate (4.75% or 0.0475 as a decimal)
t = the number of years (42 months divided by 12 to convert to years)
Plugging in the values:
A = $15,000 * e^(0.0475 * 42/12)
A ≈ $15,000 * e^(0.165625)
A ≈ $15,000 * 1.179727849
A ≈ $17,695.92
The interest earned is the difference between the final account balance and the principal amount:
Interest earned = $17,695.92 - $15,000
Interest earned ≈ $2,695.92
Part C: Comparing the interest earned for each account, we find that the interest earned when the interest is compounded quarterly is approximately $2,768.40, while the interest earned when the interest is compounded continuously is approximately $2,695.92.
For more such questions on interest
https://brainly.com/question/25793394
#SPJ8
Simplify the f(x) and g(x) to get it
Answer:
(fg)(x)= (x²+6)(x²-x+9)
multiply the terms:
(fg)(x)= x²(x²-x+9) +6(x²-x+9)
add the like terms:
(fg)(x)= (x⁴-x³+9x²)+(6x²-6x+54)
and you get your final answer:
(fg)(x)= x⁴-x³+15x²-6x+54
Tom's base salary is K720 for 80 hours. Overtime is paid for at time-and-a-half. If he is paid K828 in a certain pay period, how many overtime hours did he work
Answer:
Tom worked approximately 8 overtime hours in the given pay period.
Step-by-step explanation:
What is the area of
the segment? Express
the answer in terms
of pi.
The area of the segment is 9( π-2) units²
What is area of segment?The area of a figure is the number of unit squares that cover the surface of a closed figure.
A segment is the area occupied by a chord and an arc. A segment can be a major segment or minor segment.
Area of segment = area of sector - area of triangle
area of sector = 90/360 × πr²
= 1/4 × π × 36
= 9π
area of triangle = 1/2bh
= 1/2 × 6²
= 18
area of segment = 9π -18
= 9( π -2) units²
therefore the area of the segment is 9(π-2) units²
learn more about area of segment from
https://brainly.com/question/22599425
#SPJ1
A store has a sale with 20% off every item. When you enter the store, you receive a coupon that states that you receive an additional 30% off. Is this equal to a 50% discount? Explain your answer
Answer: Nope
Step-by-step explanation:
No, receiving a 20% discount followed by an additional 30% discount does not result in a total discount of 50%.
To understand why, let's consider an example with an item priced at $100.
If there is a 20% discount applied initially, the price of the item would be reduced by 20%, which is $100 * 0.20 = $20. So the new price after the first discount would be $100 - $20 = $80.
Now, if there is an additional 30% discount applied to the $80 price, the discount would be calculated based on the new price. The 30% discount would be $80 * 0.30 = $24. So the final price after both discounts would be $80 - $24 = $56.
Comparing the final price of $56 to the original price of $100, we can see that the total discount is $100 - $56 = $44.
Therefore, the total discount received is $44 out of the original price of $100, which is a discount of 44%, not 50%.
Hence, receiving a 20% discount followed by an additional 30% discount does not result in a total discount of 50%.