The total change in entropy of the water and the heat source is 50 J/K.
To solve this problem, we need to calculate the change in entropy for the water and the heat source separately, and then determine the total change in entropy.
Part A: The change in entropy of the water (ΔS_water) can be calculated using the equation:
ΔS_water = Q / T
where Q is the heat added to the water and T is the temperature at which the heat is added. Since we are melting the ice, the temperature remains constant at 0.0 °C.
The heat added to the water can be calculated using the equation:
Q = m * L
where m is the mass of the water (0.400 kg) and L is the latent heat of fusion for water (334,000 J/kg).
Q = (0.400 kg) * (334,000 J/kg) = 133,600 J
Now we can calculate ΔS_water:
ΔS_water = (133,600 J) / (273 K) = 490 J/K
Part B: The change in entropy of the heat source (ΔS_source) can be calculated using the equation:
ΔS_source = -Q / T
Since the temperature of the heat source is 30.0 °C, we convert it to Kelvin:
T = 30.0 °C + 273 = 303 K
Now we can calculate ΔS_source:
ΔS_source = -(133,600 J) / (303 K) = -440 J/K
Part C: The total change in entropy is the sum of the changes in entropy for the water and the heat source:
ΔS_total = ΔS_water + ΔS_source = 490 J/K + (-440 J/K) = 50 J/K
Therefore, the total change in entropy of the water and the heat source is 50 J/K.
For more questions on entropy, click on:
https://brainly.com/question/31989398
#SPJ8
2) A current carrying wire is running in the N/S direction and there exists a B field equal to .3 Teslas at an angle of 56 degrees North of East. The length of the wire is 1.34 meters and its mass is 157 grams. What should the
direction and magnitude of the current be so that the wire does not sag under its own weight?
The magnitude of the current should be approximately 3.829 Amperes and the direction of the current should be from West to East in the wire to prevent sagging under its own weight.
To determine the direction and magnitude of the current in the wire such that it does not sag under its own weight, we need to consider the force acting on the wire due to the magnetic field and the gravitational force pulling it down.
The gravitational force acting on the wire can be calculated using the equation:
[tex]F_{gravity }[/tex] = mg
where m is the mass of the wire and
g is the acceleration due to gravity (approximately 9.8 m/s²).
Given that the mass of the wire is 157 grams (or 0.157 kg), we have:
[tex]F_{gravity }[/tex] = 0.157 kg × 9.8 m/s²
= 1.5386 N
The magnetic force on a current-carrying wire in a magnetic field is given by the equation:
[tex]F__{magnetic}[/tex] = I × L × B sinθ
where I is the current in the wire,
L is the length of the wire,
B is the magnetic field strength, and
θ is the angle between the wire and the magnetic field.
Given:
Length of the wire (L) = 1.34 meters
Magnetic field strength (B) = 0.3 Tesla
Angle between the wire and the magnetic field (θ): 56°
Converting the angle to radians:
θrad = 56 degrees × (π/180)
≈ 0.9774 radians
Now we can calculate the magnetic force:
[tex]F__{magnetic}[/tex] = I × 1.34 m × 0.3 T × sin(0.9774)
= 0.402 × I N
For the wire to not sag under its own weight, the magnetic force and the gravitational force must balance each other. Therefore, we can set up the following equation:
[tex]F__{magnetic}[/tex] = [tex]F_{gravity }[/tex]
0.402 × I = 1.5386
Now we can solve for the current (I):
I = 1.5386 / 0.402
I ≈ 3.829 A
So, the magnitude of the current should be approximately 3.829 Amperes.
To determine the direction of the current, we need to apply the right-hand rule. Since the magnetic field is pointing at an angle of 56° North of East, we can use the right-hand rule to determine the direction of the current that produces a magnetic force opposing the gravitational force.
Therefore, the direction of the current should be from West to East in the wire to prevent sagging under its own weight.
Learn more about Magnetic Field from the given link:
https://brainly.com/question/30331791
#SPJ11
An air bubble at the bottom of a lake 41,5 m doep has a volume of 1.00 cm the temperature at the bottom is 25 and at the top 225°C what is the radius of the bubble ist before it reaches the surface? Express your answer to two significant figures and include the appropriate units.
The radius of the bubble before it reaches the surface is approximately 5.4 × 10^(-4) m
The ideal gas law and the hydrostatic pressure equation.
Temperature at the bottom (T₁) = 25°C = 25 + 273.15 = 298.15 K
Temperature at the top (T₂) = 225°C = 225 + 273.15 = 498.15 K
Using the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
(P₁ * V₁) / T₁ = (P₂ * V₂) / T₂
P₁ = pressure at the bottom of the lake
P₂ = pressure at the surface (atmospheric pressure)
V₁ = volume of the bubble at the bottom = 1.00 cm³ = 1.00 × 10^(-6) m³
V₂ = volume of the bubble at the surface (unknown)
T₁ = temperature at the bottom = 298.15 K
T₂ = temperature at the top = 498.15 K
V₂ = (P₂ * V₁ * T₂) / (P₁ * T₁)
P₁ = ρ * g * h
P₂ = atmospheric pressure
ρ = density of water = 1000 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height = 41.5 m
P₁ = 1000 kg/m³ * 9.8 m/s² * 41.5 m
P₂ = atmospheric pressure (varies, but we can assume it to be around 1 atmosphere = 101325 Pa)
V₂ = (P₂ * V₁ * T₂) / (P₁ * T₁)
V₂ = (101325 Pa * 1.00 × 10^(-6) m³ * 498.15 K) / (1000 kg/m³ * 9.8 m/s² * 41.5 m * 298.15 K)
V₂ ≈ 1.10 × 10^(-6) m³
The volume of a spherical bubble can be calculated using the formula:
V = (4/3) * π * r³
The radius of the bubble before it reaches the surface is approximately 5.4 × 10^(-4) m
Learn more about ideal gas law here : brainly.com/question/30458409
#SPJ11
A string is fixed at both ends. The mass of the string is 0.0010 kg and the length is 2.55 m. The string is under a tension of 220 N. The string is driven by a variable frequency source to produce standing waves on the string. Find the wavelengths and frequencies of the first four modes of standing waves.
In this standing wave, For the first mode, n = 1, λ = 5.10 m. For the second mode, n = 2, λ = 2.55 m. For the third mode, n = 3, λ = 1.70 m. For the fourth mode, n = 4, λ = 1.28 m.
Standing waves are produced by interference of waves traveling in opposite directions. The standing waves have nodes and antinodes that do not change their position with time. The standing waves produced by the string are due to the reflection of waves from the fixed ends of the string.
The frequency of the standing waves depends on the length of the string, the tension, and the mass per unit length of the string. It is given that the tension of the string is 220 N. The mass of the string is 0.0010 kg and the length is 2.55 m. Using the formula for the velocity of a wave on a string v = sqrt(T/μ) where T is the tension and μ is the mass per unit length. The velocity is given by v = sqrt(220/0.0010) = 1483.24 m/s.
The frequency of the standing wave can be obtained by the formula f = nv/2L where n is the number of nodes in the standing wave, v is the velocity of the wave, and L is the length of the string. For the first mode, n = 1, f = (1 × 1483.24)/(2 × 2.55) = 290.98 Hz.
For the second mode, n = 2, f = (2 × 1483.24)/(2 × 2.55) = 581.96 Hz. For the third mode, n = 3, f = (3 × 1483.24)/(2 × 2.55) = 872.94 Hz.
For the fourth mode, n = 4, f = (4 × 1483.24)/(2 × 2.55) = 1163.92 Hz. The wavelengths of the standing waves can be obtained by the formula λ = 2L/n where n is the number of nodes. For the first mode, n = 1, λ = 2 × 2.55/1 = 5.10 m. For the second mode, n = 2, λ = 2 × 2.55/2 = 2.55 m. For the third mode, n = 3, λ = 2 × 2.55/3 = 1.70 m. For the fourth mode, n = 4, λ = 2 × 2.55/4 = 1.28 m.
Know more about standing wave here:
https://brainly.com/question/14176146
#SPJ11
(2pts) A firecracker with mass, m (initially at rest) explodes into three pieces. One piece with a third of the original mass. (1/3 m) goes directly north with a speed of 5.0 m/s, the second piece with another third of the original mass (1/3 m) goes directly west at 6.0 m/s. What is the velocity of the
last piece? Draw the pieces of the firecracker and their respective velocity vectors.
The velocity of the last piece of firecracker is (0 m/s, 6 m/s).
One piece of firecracker has a mass of 1/3 m, and a velocity vector directly north with a speed of 5.0 m/s. Another piece has a mass of 1/3 m, and a velocity vector directly west with a speed of 6.0 m/s.
We need to find the velocity vector of the third piece.
Let's use the conservation of momentum principle to solve for the third piece's velocity.
Let's consider the x-direction of the third piece's velocity to be v_x and the y-direction of the third piece's velocity to be v_y. Since the total momentum of the firecracker before the explosion is zero, the total momentum of the firecracker after the explosion must be zero as well. This gives us the following equation:
(1/3 m) (0 m/s) + (1/3 m) (-6 m/s) + (1/3 m) (v_y) = 0
Simplifying this equation, we get:
v_y = 6 m/s
The velocity vector of the third piece is 6.0 m/s in the y-direction (directly up).We can draw the pieces of the firecracker and their respective velocity vectors like so:
Vector addition of velocities:
Now, we have the x- and y-components of the third piece's velocity vector:
v_x = 0 m/s
v_y = 6 m/s
Thus, the velocity of the last piece is (0 m/s, 6 m/s).
Learn more about velocity https://brainly.com/question/80295
#SPJ11
Find the center and radius of the sphere. xyz center , radius startfraction startroot 303 endroot over 6 endfraction (type exact answers, using radicals as needed.)
Therefore, the center of the sphere is (0, 0, 0), and the radius is √(303)/√(6). The center of the sphere is located at the origin (0, 0, 0), and the radius of the sphere is √(303)/√(6).
To find the center and radius of the sphere, we can use the equation of a sphere in standard form: (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2, where (h, k, l) represents the center coordinates and r represents the radius.
Given the equation for the sphere: (x^2 + y^2 + z^2) = (303/6), we can rewrite it in the standard form:
(x - 0)^2 + (y - 0)^2 + (z - 0)^2 = (303/6)
From this equation, we can determine that the center of the sphere is at the point (0, 0, 0), since the values of (h, k, l) in the standard form equation are all zeros.
To find the radius, we take the square root of the right-hand side of the equation:
r = √(303/6) = √(303)/√(6)
Therefore, the center of the sphere is (0, 0, 0), and the radius is √(303)/√(6).
The center of the sphere is located at the origin (0, 0, 0), and the radius of the sphere is √(303)/√(6).
To know more about radius visit:
https://brainly.com/question/30295580
#SPJ11
A tractor is speeding up at 1.9 m/s/s pulls a 704 kg sled with a rope at an angle of 28 degrees. The coefficient of kinetic friction between the sled and ground is 0.3. What is the tension in the rope
The tension in the rope is 7302.94 N (Newtons).
The mass of the sled is 704 kg. The angle the sled makes with the horizontal is 28°. The coefficient of kinetic friction between the sled and the ground is 0.3. The acceleration of the sled is given as 1.9 m/s². We have to determine the tension in the rope.
The force exerted by a string, cable, or chain on an object is known as tension. It is typically perpendicular to the surface of the object. The magnitude of the force may be calculated using Newton's Second Law of Motion, F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration experienced by the object.
Tension in the rope
Let us start by resolving the forces in the vertical and horizontal directions: `Fcosθ - f(k) = ma` and `Fsinθ - mg = 0`. Where F is the force in the rope, θ is the angle made with the horizontal, f(k) is the force of kinetic friction, m is the mass of the sled, and g is the acceleration due to gravity. We must now calculate the force of kinetic friction using the following formula: `f(k) = μkN`. Since the sled is moving, we know that it is in motion and that the force of friction is kinetic. As a result, we can use the formula `f(k) = μkN`, where μk is the coefficient of kinetic friction and N is the normal force acting on the sled. `N = mg - Fsinθ`. Now we can substitute `f(k) = μk (mg - Fsinθ)`.So the equation becomes: `Fcosθ - μk(mg - Fsinθ) = ma`
Now, let's substitute the given values `m = 704 kg`, `θ = 28°`, `μk = 0.3`, `a = 1.9 m/s²`, `g = 9.8 m/s²` into the above equation and solve it for `F`.`Fcos28 - 0.3(704*9.8 - Fsin28) = 704*1.9`
Simplifying the equation we get, `F = 7302.94 N`.
Learn more about tension
https://brainly.com/question/13676406
#SPJ11
Calculate the force of gravity between Venus (mass 4.9x1024 kg) and
the Sun (mass 2.0x1030 kg). The average Venus-Sun distance is
1.2x1033 m.
Calculate the force of gravity between Venus (mass 4.9x1024 kg) and the Sun (mass 2.0x1030 kg). The average Venus-Sun distance is 1.2x1033 m. Express your answer with the appropriate units. 0 μA P ?
The force of gravity between Venus and Sun can be calculated using the formula;
F = G * ((m1*m2) / r^2) where G is the gravitational constant, m1 and m2 are the masses of Venus and Sun, r is the distance between the center of Venus and Sun.
To find the force of gravity between Venus and Sun, we need to substitute the given values. Thus,
F = (6.67 × 10^-11) * ((4.9 × 10^24) × (2.0 × 10^30)) / (1.2 × 10^11)^2F = 2.57 × 10^23 N
Therefore, the force of gravity between Venus and Sun is 2.57 × 10^23 N.
Learn more about the force of gravity here: https://brainly.com/question/557206
#SPJ11
A transformer changes the voltage from 110 VAC to 426 VAC. If the original current is 5 A, what is the output current?
Given a transformer that converts the voltage from 110 VAC to 426 VAC and an input current of 5 A, we need to determine the output current. The output current can be calculated using the transformer's voltage and current ratio, which is defined by the turn ratio of the transformer.
To determine the output current, we can use the voltage and current ratio of the transformer, which is defined as the ratio of the output voltage to the input voltage is equal to the ratio of the output current to the input current. Mathematically, this can be expressed as V_out / V_in = I_out / I_in. Rearranging the equation, we can find the output current (I_out) by multiplying the input current (I_in) with the ratio of the output voltage (V_out) to the input voltage (V_in). In this case, the output current would be (426 V / 110 V) * 5 A, which results in an output current of approximately 19.5 A.
Learn more about current here: brainly.com/question/1100341
#SPJ11
It takes a force of 12 n to stretch a spring 0.16 m. A 3.2-kg mass is attached to the spring.
Part A: What is the period of oscillation?
Part B: What is the frequency of oscillation?
The period of oscillation is 0.4π s.
The frequency of oscillation is 0.8/π Hz.
The force applied to stretch the spring, F = 12 N The displacement of the spring, x = 0.16 m The mass attached to the spring, m = 3.2 kg
Part A:The period of oscillation can be calculated using the formula ,T = 2π * √m/k where, k is the spring constant. To calculate the spring constant, we can use the formula, F = kx⇒ k = F/x = 12/0.16 = 75 N/m
Substitute the value of k and m in the formula of period, T = 2π * √m/k⇒ T = 2π * √(3.2/75)⇒ T = 2π * 0.2⇒ T = 0.4π s Therefore, the period of oscillation is 0.4π s.
Part B:The frequency of oscillation can be calculated using the formula ,f = 1/T Substitute the value of T in the above equation, f = 1/0.4π⇒ f = 0.8/π Hz Therefore, the frequency of oscillation is 0.8/π Hz.
To know more about oscillation refer here:
https://brainly.com/question/15780863#
#SPJ11
How much is the focal length of the plano-concave lens with the curved surface having the magnitude of the radius of curvature 1.00 m, and made of crown glass (n=1.52) ? Is the lens positive or negative? How much is the optical power of the lens? If an object is placed at the distance 1.00 m in front of this lens, then how far from the lens is the image of the object? Is the image behind the lens or in front of it? Is the image real or virtual? Is the image upright or inverted? How tall is the image if the object is 50.0 cm tall?
The focal length of the plano-concave lens is approximately 1.92 m. The lens is positive. The optical power of the lens is approximately 0.521 D. If an object is placed 1.00 m in front of the lens, the image is formed approximately 1.92 m away from the lens. The image is behind the lens, virtual, upright, and inverted. If the object is 50.0 cm tall, the image height is approximately -96.0 cm.
The plano-concave lens has a curved surface with a radius of curvature of magnitude 1.00 m and is made of crown glass with a refractive index of 1.52. The focal length of the lens can be determined using the lensmaker's formula, which is given by:
1/f = (n - 1) * ((1 / R1) - (1 / R2))
where f is the focal length, n is the refractive index, R1 is the radius of curvature of the first surface (in this case, infinity for a plano surface), and R2 is the radius of curvature of the second surface (in this case, -1.00 m for a concave surface).
Substituting the values into the formula:
1/f = (1.52 - 1) * ((1 / ∞) - (1 / -1.00))
Simplifying the equation, we get:
1/f = 0.52 * (0 + 1/1.00)
1/f = 0.52 * 1.00
1/f = 0.52
Therefore, the focal length of the plano-concave lens is approximately f = 1.92 m.
Since the focal length is positive, the lens is a positive lens.
The optical power (P) of a lens is given by the equation:
P = 1/f
Substituting the value of f, we get:
P = 1/1.92
P ≈ 0.521 D (diopters)
If an object is placed at a distance of 1.00 m in front of the lens, we can use the lens formula to determine the distance of the image from the lens. The lens formula is given by:
1/f = (1/v) - (1/u)
where v is the distance of the image from the lens and u is the distance of the object from the lens.
Substituting the values into the formula:
1/1.92 = (1/v) - (1/1.00)
Simplifying the equation, we get:
1/1.92 = (1/v) - 1
1/v = 1/1.92 + 1
1/v = 0.5208
v ≈ 1.92 m
Therefore, the image of the object is located approximately 1.92 m away from the lens.
Since the image is formed on the same side as the object, it is behind the lens.
The image formed by a concave lens is virtual and upright.
The magnification (m) of the image can be determined using the formula:
m = -v/u
Substituting the values into the formula:
m = -1.92/1.00
m = -1.92
The negative sign indicates that the image is inverted.
If the object has a height of 50.0 cm, the height of the image can be determined using the magnification formula:
magnification (m) = height of image (h') / height of object (h)
Substituting the values into the formula:
-1.92 = h' / 50.0 cm
h' = -96.0 cm
Therefore, the height of the image is approximately -96.0 cm, indicating that the image is inverted and 96.0 cm tall.
To know more about lens formula, refer here:
https://brainly.com/question/30241853#
#SPJ11
Q|C A ball dropped from a height of 4.00m makes an elastic collision with the ground. Assuming no mechanical energy is lost due to air resistance, (a) show that the ensuing motion is periodic.
The ensuing motion of the ball dropped from a height of 4.00m and making an elastic collision with the ground is periodic, as it follows a repetitive pattern.
The ensuing motion of a ball dropped from a height of 4.00m and making an elastic collision with the ground is periodic.
This is due to the conservation of mechanical energy, which states that the total mechanical energy of a system remains constant when only conservative forces, such as gravity, are acting.
In this case, the gravitational potential energy of the ball is converted into kinetic energy as it falls towards the ground.
Upon collision, the ball rebounds with the same speed and in the opposite direction.
This means that the kinetic energy is converted back into gravitational potential energy as the ball ascends. This process repeats itself as the ball falls and rises again.
Since the ball follows the same path and repeats its motion over a regular interval, the ensuing motion is periodic.
Each complete cycle of the ball falling and rising is considered one period. The period depends on the initial conditions and the properties of the ball, such as its mass and elasticity.
Therefore, the ensuing motion of the ball dropped from a height of 4.00m and making an elastic collision with the ground is periodic, as it follows a repetitive pattern.
to learn more about elastic collision
https://brainly.com/question/33268757
#SPJ11
Light having a wavelength of 490 nm reaches a photoelectric surface where the maximum photoelectron energy is 2.12 eV. Determines the work of extracting the surface.
Given a light wavelength of 490 nm and a maximum photoelectron energy of 2.12 eV, the work function is found to be approximately 2.53 eV.
The energy of a photon can be calculated using the equation:
E = hc÷λ
where E is the energy, h is the Planck constant (approximately 4.136 x [tex]10^{-15}[/tex] eV*s), c is the speed of light (approximately 2.998 x [tex]10^{8}[/tex] m/s), and λ is the wavelength of light.
To determine the work function, we subtract the maximum photoelectron energy from the energy of the incident photon:
Work function = E - Maximum photoelectron energy
Using the given values of the wavelength (490 nm) and the maximum photoelectron energy (2.12 eV),
we can calculate the energy of the incident photon. Converting the wavelength to meters (λ = 490 nm = 4.90 x [tex]10^{-7}[/tex] m) and plugging in the values, we find the energy of the photon to be approximately 2.53 eV.
Therefore, the work function of the photoelectric surface is approximately 2.53 eV.
This represents the minimum energy required to extract electrons from the surface and is a characteristic property of the material.
Learn more about photon here:
https://brainly.com/question/33017722
#SPJ11
If 100 members of an orchestra are all sounding their
instruments at the same frequency and intensity, and a total sound
level of 80 dB is measured. What is the sound level of single
instrument?
The sound level of a single instrument is 50 - 10 log(I/I₀)
The frequency and intensity of all instruments are the same.
Sound level of 80 dB is measured.
Number of members in the orchestra is 100.
Sound level is defined as the measure of the magnitude of the sound relative to the reference value of 0 decibels (dB). The sound level is given by the formula:
L = 10 log(I/I₀)
Where, I is the intensity of sound, and
I₀ is the reference value of intensity which is 10⁻¹² W/m².
As given, the total sound level of the orchestra with 100 members is 80 dB. Let's denote the sound level of a single instrument as L₁.
Sound level of 100 instruments:
L = 10 log(I/I₀)L₁ + L₁ + L₁ + ...100 times
= 8010 log(I/I₀)
= 80L₁
= 80 - 10 log(100 I/I₀)L₁
= 80 - 10 (2 + log(I/I₀))L₁
= 80 - 20 - 10 log(I/I₀)L₁
= 50 - 10 log(I/I₀)
Therefore, the sound level of a single instrument is 50 - 10 log(I/I₀).
Learn more About frequency from the given link
https://brainly.com/question/254161
#SPJ11
A propagating wave on a taut string of linear mass density u = 0.05 kg/m is represented by the wave function y(x,t) = 0.5 sin(kx - 12nt), where x and y are in X meters and t is in seconds. If the power associated to this wave is equal to 34.11 W, then the wavelength of this wave is:
A propagating wave on a taut string of linear mass density u = 0.05 kg/m is represented by the wave function y(x,t) = 0.5 sin(kx - 12nt), where x and y are in X meters and t is in seconds. If the power associated to this wave is equal to 34.11 W, the wavelength of the wave is approximately 0.066 meters or 66 millimeters.
To find the wavelength (λ) of the wave, we need to relate it to the wave number (k) in the given wave function:
y(x,t) = 0.5 sin(kx - 12nt)
Comparing this with the general form of a wave function y(x,t) = A sin(kx - wt), we can equate the coefficients:
k = 1
w = 12n
We know that the velocity of a wave (v) is related to the angular frequency (w) and the wave number (k) by the formula:
v = w / k
In this case, the velocity (v) is also related to the linear mass density (u) of the string by the formula:
v = √(T / u)
Where T is the tension in the string.
The power (P) associated with the wave can be calculated using the formula:
P = (1/2) u v w^2 A^2
Given that the power P is equal to 34.11 W, we can substitute the known values into the power formula:
34.11 = (1/2) (0.05) (√(T / 0.05)) (12n)^2 (0.5)^2
Simplifying this equation, we get:
34.11 = 0.025 √(T / 0.05) (12n)^2
Dividing both sides of the equation by 0.025, we have:
1364.4 = √(T / 0.05) (12n)^2
Squaring both sides of the equation, we get:
(1364.4)^2 = (T / 0.05) (12n)^2
Rearranging the equation to solve for T, we have:
T = (1364.4)^2 × 0.05 / (12n)^2
Now, we can substitute the value of T into the formula for the velocity:
v = √(T / u)
v = √(((1364.4)^2 × 0.05) / (12n)^2) / 0.05
v = (1364.4) / (12n)
The velocity (v) is related to the wavelength (λ) and the angular frequency (w) by the formula:
v = w / k
(1364.4) / (12n) = 12n / λ
Simplifying this equation, we get:
λ = (12n)^2 / (1364.4)
Now we can substitute the value of n into the equation:
λ = (12 * ∛45480 / 12)^2 / (1364.4)
Evaluating this expression, we find:
λ ≈ 0.066 meters or 66 millimeters
Therefore, the wavelength of the wave is approximately 0.066 meters or 66 millimeters.
To learn more about angular frequency visit: https://brainly.com/question/3654452
#SPJ11
Nitrogen 13 has 7 protons and a half life of 600 seconds. What is the activity in Ci after 81.124 minutes? The initial mass of the nitrogen 13 is 91.998 micrograms. The mass of N13 is 13.005799 g/mole.
The activity of Nitrogen 13 after 81.124 minutes is calculated to be X Ci using the decay formula and given information on half-life and initial mass.
0.1352 half-lives. Remaining mass = [tex]91.998 μg * (1/2)^0^.^1^3^5^2[/tex] 1 [tex]Ci = 3.7 x 10^1^0[/tex] disintegrations per second.Calculate the number of half-lives:81.124 minutes is equivalent to 81.124/600 = 0.1352 half-lives.
Calculate the remaining mass:Since half-life represents the time it takes for half of the radioactive substance to decay, we can calculate the remaining mass of Nitrogen 13 using the formula:
Remaining mass = [tex]Initial mass * (1/2)^(n^u^m^b^e^r ^o^f ^h^a^l^f^-^l^i^v^e^s^)[/tex]
Remaining mass = [tex]91.998 μg * (1/2)^0^.^1^3^5^2[/tex]
Calculate the activity:The activity of a radioactive substance is the rate at which it decays, expressed in terms of disintegrations per unit of time. It is given by the formula:
Activity = ([tex]Remaining mass / Molar mass) * (6.022 x 10^2^3 / half-life)[/tex]
Here, the molar mass of Nitrogen 13 is 13.005799 g/mole.
Activity = [tex](Remaining mass / 13.005799 g/mole) * (6.022 x 10^2^3 / 600 seconds)[/tex]
Convert the activity to Ci (Curie) using the conversion factor: 1 [tex]Ci = 3.7 x 10^1^0[/tex] disintegrations per second.
Learn more about half-life
brainly.com/question/31666695
#SPJ11
An infinitely long straight wire is along the x axis. A current I = 2.00 A flows in the + x
direction.
Consider a position P whose coordinate is (2, y, 2) = (2.00cm, 5.00cm, 0) near the
wire. What is the small contribution to the magnetic feld dB at P due to just a small segment
of the current carrying wire of length da at the origin?
The small contribution to the magnetic feld dB at P due to just a small segment of the current carrying wire of length da at the origin is (2 × 10⁻⁷ T)(da).
The magnetic field dB at point P due to just a small segment of the current-carrying wire of length da at the origin can be given by:
dB = μI/4π[(da)r]/r³ Where,
dB is the small contribution to the magnetic field,
I is the current through the wire,
da is the small segment of the wire,
μ is the magnetic constant, and
r is the distance between the segment of the wire and point P.
Given that, I = 2.00 A, μ = 4π × 10⁻⁷ T m/A,
r = (2² + 5² + 2²)¹/² = 5.39 cm = 5.39 × 10⁻² m.
The distance between the segment of the wire and point P can be obtained as follows:
r² = (2 - x)² + y² + 4r² = (2 - 2.00)² + (5.00)² + 4r = 5.39 × 10⁻² m
Thus, r = 5.39 × 10⁻² m.
Substituting the above values in the formula for dB we have,
dB = μI/4π[(da)r]/r³
dB = (4π × 10⁻⁷ T m/A)(2.00 A)/4π[(da)(5.39 × 10⁻² m)]/(5.39 × 10⁻² m)³
dB = (2 × 10⁻⁷ T)(da)
The small contribution to the magnetic field at point P due to the small segment of the current carrying wire of length da at the origin is (2 × 10⁻⁷ T)(da).
To learn more about current carrying wire: https://brainly.com/question/26257705
#SPJ11
A simple harmonic oscillator consists of a block of mass 2.30 kg attached to a spring of spring constant 120 N/m. Whent - 1.80s, the position and velocity of the block arex = 0.126 m and v- 3.860 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block att-os? (a) Number 1 Units (b) Number Units (c) Number Units
A simple harmonic oscillator is defined as an object that moves back and forth under the influence of a restoring force that is proportional to its displacement.
In this case, the block has a mass of 2.30 kg and is attached to a spring of spring constant 120 N/m.
Therefore, the period of oscillation is:
T = 2π(2.30/120)^1/2
= 0.861 s
(a)The amplitude of oscillation of the block can be given by
A = x_max
= x0/2 = 0.126/2
= 0.063 m
(b)The position of the block at t = 0
can be calculated by using the following expression:
x = A cos(2πt/T) + x0
Therefore, we have:
x0 = x - A cos(2πt/T)
= 0.126 - 0.063 cos(2π(-1.80)/0.861)
= 0.067 m
(c)The velocity of the block at t = 0 can be calculated by using the following expression:
v = -A(2π/T) sin(2πt/T)
Therefore, we have:
v0 = -A(2π/T) sin(2π(-1.80)/0.861)
= -3.07 m/s
Hence, the values of position and velocity of the block at t = 0 are 0.067 m and -3.07 m/s respectively.
To know more about oscillator visit :
https://brainly.com/question/31835791
#SPJ11
A sinusoidal electromagnetic wave with frequency 3.7x1014Hz travels in vacuum in the +x direction. The amplitude of magnetic field is 5.0\times{10}^{-4}T. Find angular frequency \omega, wave number k,\ and amplitude of electric field. Write the wave function for the electric field in the form E = Emaxsin (\omega t-kx).
The angular frequency (ω) of the electromagnetic wave is [tex]2.32x10^15 rad/s[/tex], the wave number (k) is [tex]7.34x10^6 rad/m[/tex], and the amplitude of the electric field (Emax) is [tex]1.66x10^10 V/m[/tex]. The wave function for the electric field is E = Emaxsin([tex]ωt - kx[/tex]). where ω is the angular frequency, k is the wave number, t is time, and x is the position along the wave
The angular frequency (ω) of a sinusoidal wave is related to its frequency (f) by the equation ω = 2πf. Therefore, we have:
[tex]ω = 2π(3.7x10^14 Hz) = 2.32x10^15 rad/s[/tex]
The wave number (k) is related to the wavelength (λ) by the equation k = 2π/λ. Since the wave is traveling in vacuum, the speed of light (c) can be used to relate frequency and wavelength, c = fλ. Therefore, we have:
[tex]k = 2π/λ = 2π/(c/f) = 2πf/c = 2π(3.7x10^14 Hz)/(3x10^8 m/s) = 7.34x10^6 rad/m[/tex]
The amplitude of the electric field (Emax) can be obtained from the amplitude of the magnetic field (Bmax) using the equation Emax = cBmax, where c is the speed of light. Therefore:
[tex]Emax = (3x10^8 m/s)(5.0x10^-4 T) = 1.50x10^5 V/m[/tex]
Finally, the wave function for the electric field is given by E = Emaxsin(ωt - kx), where ω is the angular frequency, k is the wave number, t is time, and x is the position along the wave.
To learn more about, electromagnetic:-
brainly.com/question/31038220
#SPJ11
A hydrogen atom in an n=2, l= 1, m₂ = -1 state emits a photon when it decays to an n= 1, 1= 0, ml=0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the wavelength of the photon from the zero-field value?
The shift in the wavelength of the photon emitted by the hydrogen atom transitioning from an n=2, l=1, m₂=-1 state to an n=1, l=0, ml=0 ground state in a magnetic field with a magnitude of 2.50 T is approximately 0.00136 nm.
In the presence of a magnetic field, the energy levels of the hydrogen atom undergo a shift known as the Zeeman effect. The shift in wavelength can be calculated using the formula Δλ = (ΔE / hc), where ΔE is the energy difference between the initial and final states, h is the Planck constant, and c is the speed of light.
The energy difference can be obtained using the formula ΔE = μB * m, where μB is the Bohr magneton and m is the magnetic quantum number. By plugging in the known values and calculating Δλ, the shift in wavelength is determined to be approximately 0.00136 nm.
To learn more about magnetic field click here: brainly.com/question/30331791
#SPJ11
If you wanted to measure the voltage of a resistor with a
voltmeter, would you introduce the voltmeter to be in series or in
parallel to that resistor? Explain. What about for an ammeter?
PLEASE TYPE
For measuring voltage, the voltmeter is connected in parallel to the resistor, while for measuring current, the ammeter is connected in series with the resistor.
To measure the voltage of a resistor with a voltmeter, the voltmeter should be introduced in parallel to the resistor. This is because in a parallel configuration, the voltmeter connects across the two points where the voltage drop is to be measured. By connecting the voltmeter in parallel, it effectively creates a parallel circuit with the resistor, allowing it to measure the potential difference (voltage) across the resistor without affecting the current flow through the resistor.
On the other hand, when measuring the current flowing through a resistor using an ammeter, the ammeter should be introduced in series with the resistor. This is because in a series configuration, the ammeter is placed in the path of current flow, forming a series circuit. By connecting the ammeter in series, it becomes part of the current path and measures the actual current passing through the resistor.
In summary, for measuring voltage, the voltmeter is connected in parallel to the resistor, while for measuring current, the ammeter is connected in series with the resistor.
To learn more about voltmeter: https://brainly.com/question/14762345
#SPJ11
Two disks are rotating about the same axis. Disk A has a moment of inertia of 2.81 kg·m2 and an angular velocity of +7.74 rad/s. Disk B is rotating with an angular velocity of -7.21 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -1.94 rad/s. The axis of rotation for this unit is the same as that for the separate disks. What is the moment of inertia of disk B?
The moment of inertia of disk B is approximately 2.5216 kg·m². This is calculated using the principle of conservation of angular momentum, considering the moment of inertia and angular velocities.
To solve this problem, we can use the principle of conservation of angular momentum.
The angular momentum of a rotating object is given by the product of its moment of inertia and angular velocity:
L = I * ω
Before the disks are linked together, the total angular momentum is the sum of the individual angular momenta of disks A and B:
L_initial = I_A * ω_A + I_B * ω_B
After the disks are linked together, the total angular momentum remains constant:
L_final = (I_A + I_B) * ω_final
Given:
Moment of inertia of disk A, I_A = 2.81 kg·m²
Angular velocity of disk A, ω_A = +7.74 rad/s
Angular velocity of disk B, ω_B = -7.21 rad/s
Angular velocity of the linked disks, ω_final = -1.94 rad/s
Substituting these values into the conservation of angular momentum equation, we have:
I_A * ω_A + I_B * ω_B = (I_A + I_B) * ω_final
Simplifying the equation:
2.81 kg·m² * 7.74 rad/s + I_B * (-7.21 rad/s) = (2.81 kg·m² + I_B) * (-1.94 rad/s)
Solving for I_B:
19.74254 kg·m² - 7.21 I_B = -5.4394 kg·m² - 1.94 I_B
13.30314 kg·m² = 5.27 I_B
I_B ≈ 2.5216 kg·m²
Therefore, the moment of inertia of disk B is approximately 2.5216 kg·m².
Learn more about ” angular momentum” here:
brainly.com/question/29716949
#SPJ11
Heat is produced within a cylindrical cable with a radius of 0.60 m and a length of 3 m with a heat conductivity of 85 W/m K. The amount of heat produced per unit volume and per unit time is given as Q (W/m3.s) = 4x10-3 T0.5 where T is the temperature (K). The surface temperature of the sphere is 120 °C. a) Construct an energy balance within the cylindrical cable. b) Solve the energy balance with MATLAB to obtain the temperature profile within the cylindrical cable by appropriate assumptions
The energy balance equation for the cylindrical cable can be constructed by considering the heat generation, heat conduction, and heat transfer at the boundaries.
a) Energy balance within the cylindrical cable: The energy balance equation for the cylindrical cable can be constructed by considering the heat generation, heat conduction, and heat transfer at the boundaries. The heat generated per unit volume is given by Q (W/m3.s) = 4x10-3 T0.5, where T is the temperature. The heat conduction within the cable can be described by Fourier's law of heat conduction. The energy balance equation can be written as the sum of the rate of heat generation and the rate of heat conduction, which should be equal to zero for steady-state conditions. The equation can be solved to determine the temperature profile within the cable.
b) Solving the energy balance with MATLAB: To obtain the temperature profile within the cylindrical cable, MATLAB can be used to numerically solve the energy balance equation. The equation involves a second-order partial differential equation, which can be discretized using appropriate numerical methods like finite difference or finite element methods. By discretizing the cable into small segments and solving the equations iteratively, the temperature distribution can be obtained. Assumptions such as uniform heat generation, isotropic heat conductivity, and steady-state conditions can be made to simplify the problem. MATLAB provides built-in functions and tools for solving partial differential equations, making it suitable for this type of analysis. By implementing the appropriate numerical method and applying boundary conditions, the temperature profile within the cylindrical cable can be calculated using MATLAB.
To learn more about cylindrical cable, click here:https://brainly.com/question/32491161
#SPJ11
Calculate the magnitude of the clockwise couple M required to turn the \( 56-\mathrm{kg} \) cylinder in the supporting block shown. The coefficient of kinetic friction is \( 0.3 \). Answer: \( M= \) \
The magnitude is M = 192.34 Nm.
When you apply a force to an object, a force couple may occur.
A force couple occurs when two forces of equal magnitude and opposite direction act on an object at different points.
A force couple causes an object to rotate because it creates a torque.
The answer to the given question is, M = 192.34 Nm
Given,
Mass of the cylinder, m = 56 kg
Coefficient of kinetic friction, μk = 0.3
Normal force, N = mg
Here, g = 9.8 m/s²N = 56 × 9.8 = 548.8 N
The frictional force acting on the cylinder
= friction coefficient × normal force
= μkN
= 0.3 × 548.8
= 164.64 N
Now, calculate the torque produced by the force couple when cylinder is turning.
Torque is defined as the force times the lever arm distance.
So,τ = F × r Where,
τ is torque
F is force applied
r is the distance from the pivot point or the moment arm.
To calculate torque produced by the force couple, we need to first calculate the force required to move the cylinder in clockwise direction.
Now, find the force required to move the cylinder.
The force required to move the cylinder is the minimum force that can overcome the force of friction.
The force required to move the cylinder
= force of friction + the force required to lift the weight
= frictional force + m × g
= 164.64 + 56 × 9.8
= 811.84 N
The force couple produces torque in the clockwise direction.
Hence, the direction of torque is negative.
So,τ = −F × r
Now, calculate the torque.
τ = −F × r
= −(811.84) × 0.1
= −81.184 Nm
The negative sign means that the torque produced by the force couple is in the clockwise direction.
Now, find the magnitude of the force couple.
The magnitude of the force couple is the absolute value of the torque.
Magnitude of the force couple, M = |τ|= |-81.184| = 81.184 Nm
Learn more about force from the given link
https://brainly.com/question/12785175
#SPJ11
A hydrogenic ion with Z = 25 is excited from its ground state to the state with n = 3. How much energy (in eV) must be absorbed by the ion?
Enter a number with one digit after the decimal point.
The energy in electron-volts (eV) required for an excited hydrogenic ion with Z = 25 to move from the ground state to the n = 3 state can be calculated using the Rydberg formula, which is given by:
[tex]\[E_n = -\frac{Z^2R_H}{n^2}\][/tex]Where Z is the atomic number of the nucleus, R_H is the Rydberg constant, and n is the principal quantum number of the energy level. The Rydberg constant for hydrogen-like atoms is given by:
[tex]\[R_H=\frac{m_ee^4}{8ε_0^2h^3c}\][/tex]Where m_e is the mass of an electron, e is the electric charge on an electron, ε_0 is the electric constant, h is the Planck constant, and c is the speed of light.
Substituting the values,[tex]\[R_H=\frac{(9.11\times10^{-31}\text{ kg})\times(1.60\times10^{-19}\text{ C})^4}{8\times(8.85\times10^{-12}\text{ F/m})^2\times(6.63\times10^{-34}\text{ J.s})^3\times(3\times10^8\text{ m/s})}=1.097\times10^7\text{ m}^{-1}\][/tex]
To know more about required visit:
https://brainly.com/question/2929431
#SPJ11
8. A rotor disk in your car's wheel with radius of 34.0 cm and mass of 10.0 kg rotates with 800 rpm and it slows down to 60 rpm in 9 second. Find its angular acceleration? (b) Number of revolutions during this period of time.(c) The required force to do this action during this period of time.
To find the angular acceleration, we can use the following formula:
angular acceleration (α) = (final angular velocity - initial angular velocity) / time
Initial angular velocity (ω1) = 800 rpm
Final angular velocity (ω2) = 60 rpm
Time (t) = 9 seconds
ω1 = 800 rpm * (2π rad/1 min) * (1 min/60 s) = 800 * 2π / 60 rad/s
ω2 = 60 rpm * (2π rad/1 min) * (1 min/60 s) = 60 * 2π / 60 rad/s
α = (ω2 - ω1) / t
= (60 * 2π / 60 - 800 * 2π / 60) / 9
= (2π / 60) * (60 - 800) / 9
= - 798π / 540
≈ - 4.660 rad/s^2
Therefore, the angular acceleration is approximately -4.660 rad/s^2 (negative sign indicates deceleration).
To find the number of revolutions during this period of time, we can calculate the change in angle:
Change in angle = (final angular velocity - initial angular velocity) * time
Change in angle = (60 * 2π / 60 - 800 * 2π / 60) * 9
= - 740π radians
Since one revolution is equal to 2π radians, we can divide the change in angle by 2π to find the number of revolutions:
Number of revolutions = (- 740π radians) / (2π radians/revolution)
= - 740 / 2
= - 370 revolutions
Therefore, the number of revolutions during this period of time is approximately -370 revolutions (negative sign indicates rotation in the opposite direction).
Finally, to calculate the required force to slow down the rotor disk during this period of time, we need to use the formula:
Force (F) = Moment of inertia (I) * angular acceleration (α)
The moment of inertia for a disk is given by:
I = (1/2) * m * r^2
I = (1/2) * 10.0 kg * (0.34 m)^2
= 0.289 kg·m^2
F = I * α
= 0.289 kg·m^2 * (-4.660 rad/s^2)
≈ -1.342 N
Therefore, the required force to slow down the rotor disk during this period of time is approximately -1.342 N (negative sign indicates opposite direction of force).
Learn more about angular acceleration here : brainly.com/question/30237820
#SPJ11
The electric field E in a given region is described by E - Eo a, where a, is the unit vector along x-direction. The potential difference VAB between 2 points A and B located at A(x-d) and B(x-0) is given by: (a) VAB= Eod (b) VAB= -Eod (c) VAB= 0
The uniform plane wave in a non-magnetic medium has an electric field component: E-10 cos (2x10 t-2z) a, V/m. The wave propagation constant k and wavelength λ are given by: (a) π.2 (b) 2, π
(c) 2X10³, (d), 2X10^8
in summary, For the first question, the potential difference VAB between points A and B in the given region is VAB = -Eo d. Therefore, the correct answer is (b) VAB = -Eo d. For the second question, the wave propagation constant k and wavelength λ are related by the equation k = 2π/λ. Since the given wave has a wave number of 10, the wavelength can be calculated as λ = 2π/10 = π/5. Hence, the correct answer is (b) 2, π.
1.In the given scenario, the electric field E is given as E = Eo a, where a is the unit vector along the x-direction. To find the potential difference VAB between two points A and B located at A(x - d) and B(x - 0), we need to integrate the electric field over the distance between A and B. Since the electric field is constant, the integration simply results in the product of the electric field and the distance (Eo * d). Therefore, the potential difference VAB is given by VAB = Eo * d. Hence, the correct answer is (a) VAB = Eo * d.
2.In the case of the uniform plane wave with an electric field component E = 10 cos(2x10 t - 2z) a V/m, we can observe that the wave is propagating in the z-direction. The wave propagation constant k is determined by the coefficient in front of the z variable, which is 2 in this case. The wavelength λ is given by the formula λ = 2π/k. Substituting the value of k as 2, we find that λ = 2π/2 = π. Hence, the correct answer is (b) 2, π, where the wave propagation constant k is 2 and the wavelength λ is π.
learn more about electric field here:
https://brainly.com/question/11482745
#SPJ11
Normally, on roller coasters, the cars are pulled up a lift hill and then accelerated down the descent by gravity. This imaginary roller coaster is different. The roller coaster car is to be accelerated by an initially tensioned spring so that it then runs through a loop with r=18m and then drives up a ramp. It is again accelerated by gravity and now runs through the loop in the opposite direction. The roller coaster car with the mass m = 250 kg should not fall out of the loop. The spring constant is k=6 250 N/m.
a) Make a sketch of the question.
b) Determine the maximum speed of the roller coaster car over the entire route.
c) Calculate the height of the ramp after the loop.
d) Calculate the amount by which the spring must be stretched
For the provided data, (a) the sketch is drawn below ; (b) the maximum speed of the roller coaster car over the entire route is 17.35 m/s ; (c) the height of the ramp after the loop is 15.24 m ; (d) the amount by which the spring must be stretched is 0.796 m.
a) Sketch of the question :
ramp
___________
/ \
/ \
/ \
loop ramp
\ /
\ /
\____________/
b) The initial potential energy of the roller coaster car, which is the energy stored in the spring, will be converted into kinetic energy, which is the energy of motion. When the roller coaster car goes up, kinetic energy is converted back to potential energy.When the roller coaster car is released, it will be accelerated by the spring.
Therefore, the initial potential energy of the spring is given as U1 = (1/2) kx²
where x is the amount of stretch in the spring and k is the spring constant.
From the conservation of energy law, the initial potential energy, U1, will be converted to kinetic energy, KE1.
Therefore,KE1 = U1 (initial potential energy)
KE1 = (1/2) kx²......(1)
The initial potential energy is also equal to the potential energy of the roller coaster car at the highest point.
Therefore, the initial potential energy can be expressed as U1 = mgh......(2)
where m is the mass of the roller coaster car, g is the acceleration due to gravity, and h is the height of the roller coaster car at the highest point.
Substituting equation (2) into equation (1), (1/2) kx² = mgh
Thus, the maximum speed of the roller coaster car is vmax = √(2gh)
Substituting the given values, m = 250 kg, g = 9.81 m/s², h = 18 m
Therefore, vmax = √(2 × 9.81 × 18)
vmax = 17.35 m/s
Thus, the maximum speed of the roller coaster car over the entire route is 17.35 m/s.
c) Calculation of height of ramp after the loop
At the highest point of the roller coaster car on the ramp, the total energy is the potential energy, U2, which is equal to mgh, where m is the mass of the roller coaster car, g is the acceleration due to gravity, and h is the height of the roller coaster car at the highest point.
The potential energy, U2, is equal to the kinetic energy, KE2, at the bottom of the loop.
Therefore,mgh = (1/2) mv²
v² = 2gh
h = (v²/2g)
Substituting the values, m = 250 kg, v = 17.35 m/s, g = 9.81 m/s²,
h = (17.35²/2 × 9.81) = 15.24 m
Therefore, the height of the ramp after the loop is 15.24 m.
d) Calculation of amount by which spring must be stretched
The amount by which the spring must be stretched, x can be calculated using the conservation of energy law.
The initial potential energy of the spring is given as U1 = (1/2) kx²
where k is the spring constant.
Substituting the given values,
U1 = mghU1 = (1/2) kx²
Therefore, mgh = (1/2) kx²
x² = (2mgh)/k
x = √((2mgh)/k)
Substituting the values, m = 250 kg, g = 9.81 m/s², h = 18 m, k = 6250 N/m
x = √((2 × 250 × 9.81 × 18)/6250)
x = 0.796 m
Thus, the amount by which the spring must be stretched is 0.796 m.
The correct answers are : (a) the sketch is drawn above ; (b) 17.35 m/s ; (c) 15.24 m ; (d) 0.796 m.
To learn more about speed :
https://brainly.com/question/13943409
#SPJ11
Please do the Convex Mirror ray Diagram.
A CONVEX mirror has a radius of curvature with absolute value 20 cm. Find graphically the image of an object in the form of an arrow perpendicular to the axis of the mirror at object distances of (a)
Answer:
To determine the image formed by a convex mirror for different object distances, let's examine the following object distances:
(a) Object distance (u) = 10 cm
Explanation:
To determine the image formed by a convex mirror for different object distances, let's examine the following object distances:
(a) Object distance (u) = 10 cm
To construct the ray diagram:
Draw the principal axis: Draw a horizontal line representing the principal axis of the convex mirror.
Locate the center of curvature: Measure a distance of 20 cm from the mirror's surface along the principal axis in both directions. Mark these points as C and C', representing the center of curvature and its image.
Place the object: Choose an object distance (u) of 10 cm. Mark a point on the principal axis and label it as O (the object). Draw an arrow perpendicular to the principal axis to represent the object.
Draw incident rays: Draw two incident rays from the object O: one parallel to the principal axis (ray 1) and another that passes through the center of curvature C (ray 2).
Reflect the rays: Convex mirrors always produce virtual and diminished images, so the reflected rays will diverge. Draw the reflected rays by extending the incident rays backward.
Locate the image: The image is formed by the apparent intersection of the reflected rays. Mark the point where the two reflected rays appear to meet and label it as I (the image).
Measure the image characteristics: Measure the distance of the image from the mirror along the principal axis and label it as v (the image distance). Measure the height of the image and label it as h' (the image height).
Repeat these steps for different object distances as required.
Since you have not specified the remaining object distances, I can provide the ray diagrams for additional object distances if you provide the values.
Learn more about convex mirror here:
brainly.com/question/13647139
#SPJ11
A 725-kg two-stage rocket is traveling at a speed of 6.60 x 10³ m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.80 x 10³ m/s relative to each other along the original line of motion. (a) What is the speed and direction of each section (relative to Earth) after the explosion? (b) How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]
After the explosion, one section of the rocket moves to the right and the other section moves to the left. The velocity of each section relative to Earth is determined using the principle of conservation of momentum. The energy supplied by the explosion can be calculated as the change in kinetic energy, which is the difference between the final and initial kinetic energies of the rocket.
(a) To determine the speed and direction of each section (relative to Earth) after the explosion, we can use the principle of conservation of momentum. The initial momentum of the rocket before the explosion is equal to the sum of the momenta of the two sections after the explosion.
Mass of the rocket, m = 725 kg
Initial velocity of the rocket, v₁ = 6.60 x 10³ m/s
Velocity of each section relative to each other after the explosion, v₂ = 2.80 x 10³ m/s
Let's assume that one section moves to the right and the other moves to the left. The mass of each section is 725 kg / 2 = 362.5 kg.
Applying the conservation of momentum:
(mv₁) = (m₁v₁₁) + (m₂v₂₂)
Where:
m is the mass of the rocket,
v₁ is the initial velocity of the rocket,
m₁ and m₂ are the masses of each section,
v₁₁ and v₂₂ are the velocities of each section after the explosion.
Plugging in the values:
(725 kg)(6.60 x 10³ m/s) = (362.5 kg)(v₁₁) + (362.5 kg)(-v₂₂)
Solving for v₁₁:
v₁₁ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(-v₂₂)] / (362.5 kg)
Similarly, for the section moving to the left:
v₂₂ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(v₁₁)] / (362.5 kg)
(b) To calculate the energy supplied by the explosion, we need to determine the change in kinetic energy of the rocket before and after the explosion.
The initial kinetic energy is given by:
KE_initial = (1/2)mv₁²
The final kinetic energy is the sum of the kinetic energies of each section:
KE_final = (1/2)m₁v₁₁² + (1/2)m₂v₂₂²
The energy supplied by the explosion is the change in kinetic energy:
Energy_supplied = KE_final - KE_initial
Substituting the values and calculating the expression will give the energy supplied by the explosion.
Note: The direction of each section can be determined based on the signs of v₁₁ and v₂₂. The magnitude of the velocities will provide the speed of each section.
To know more about kinetic energy refer to-
https://brainly.com/question/999862
#SPJ11
Question 10 What control surface movements will make an aircraft fitted with ruddervators yaw to the left? a Both ruddervators lowered Ob Right ruddervator lowered, left ruddervator raised c. Left rud
The control surface movement that will make an aircraft fitted with ruddervators yaw to the left is left ruddervator raised . Therefore option C is correct.
Ruddervators are the combination of rudder and elevator and are used in aircraft to control pitch, roll, and yaw. The ruddervators work in opposite directions of each other. The movement of ruddervators affects the yawing motion of the aircraft.
Therefore, to make an aircraft fitted with ruddervators yaw to the left, the left ruddervator should be raised while the right ruddervator should be lowered.
The correct option is c. Left ruddervator raised, and the right ruddervator lowered, which will make the aircraft fitted with ruddervators yaw to the left.
to know more about rudder and elevator visit:
brainly.com/question/31571266
#SPJ11