express the limit as a definite integral on the given interval. lim n→[infinity] n cos(xi) xi δx, [2????, 5????] i

Answers

Answer 1

 The limit, as n approaches infinity, of the summation of cos(xi)∆x / xi from i = 1 to n over the interval [2π, 5π], can be expressed as the definite integral of cos(x)/x from 2π to 5π.

To express the given limit as a definite integral, we need to recognize that the limit is equivalent to the Riemann sum of the function cos(x)/x over the interval [2π, 5π]. The Riemann sum approximates the area under the curve of the function by dividing the interval into smaller subintervals and summing the values of the function at each subinterval.
In this case, as n approaches infinity, the interval [2π, 5π] is divided into n subintervals, each with width ∆x = (5π - 2π)/n = 3π/n. The xi values represent the endpoints of these subintervals. The function cos(xi)∆x / xi is evaluated at each xi, and the sum is taken over all the subintervals from i = 1 to n.
As n tends to infinity, the Riemann sum converges to the definite integral of cos(x)/x over the interval [2π, 5π]. Therefore, the given limit can be expressed as the definite integral from 2π to 5π of cos(x)/x.

learn  more about limit here
https://brainly.com/question/12383180

#SPJ11

the complete question is:
Express the limit as a definite integral on the given interval. lim n→[infinity] summation i is from 1 to n cos(xi)∆x /xi [2π, 5π] = integral 2π to 5π ???


Related Questions

Find the Taylor polynomial for f(x) = (x − 1) * sin(2(x − 1)), xo = 1, n = 2. f(x) = P₂(x) = ax² + bx+c a Submit the Answer 1

Answers

The Taylor polynomial for f(x) = (x − 1) * sin(2(x − 1)), with xo = 1 and n = 2, is P₂(x) = (x − 1)².

To find the Taylor polynomial for the function f(x) = (x − 1) * sin(2(x − 1)), with xo = 1 and n = 2, we can use the formula for the Taylor polynomial centered at xo:

Pn(x) = f(xo) + f'(xo)(x − xo) + (1/2!)f''(xo)(x − xo)² + ... + (1/n!)fⁿ(xo)(x − xo)ⁿ

In this case, xo = 1 and n = 2. Let's start by finding the first and second derivatives of f(x):

f(x) = (x − 1) * sin(2(x − 1))
f'(x) = sin(2(x − 1)) + (x − 1) * 2cos(2(x − 1))
f''(x) = 2cos(2(x − 1)) + 2(x − 1) * (-2sin(2(x − 1)))

Next, we evaluate f(x), f'(x), and f''(x) at xo = 1:

f(1) = (1 − 1) * sin(2(1 − 1)) = 0
f'(1) = sin(2(1 − 1)) + (1 − 1) * 2cos(2(1 − 1)) = 0
f''(1) = 2cos(2(1 − 1)) + (1 − 1) * (-2sin(2(1 − 1))) = 2cos(0) = 2

Now, we can substitute these values into the Taylor polynomial formula:

P₂(x) = f(1) + f'(1)(x − 1) + (1/2!)f''(1)(x − 1)²
P₂(x) = 0 + 0(x − 1) + (1/2!)(2)(x − 1)²
P₂(x) = (x − 1)²

Therefore, the Taylor polynomial for f(x) = (x − 1) * sin(2(x − 1)), with xo = 1 and n = 2, is P₂(x) = (x − 1)².

To know  more about "Taylor polynomial"

https://brainly.com/question/2533683

#SPJ11

Let A,B and C be three invertible n×n matrices such that ABT=BC, then which of the following are true? (choose ALL correct answers) A. A=(BCTBT)−1
B. A−1=BT(BC)−1 C. B−1=AT[(BC)−1]T D. B=AT(CB)−1 E. None of the above

Answers

The correct statement is option D: B = A^T(CB)^(-1). This option is not equivalent to the obtained equation, so it is not true.

From the equation AB^T = BC, we can manipulate the equation to obtain the following:

AB^T(B^T)^(-1) = BCB^(-1)

A = BC(B^T)^(-1)

Now let's analyze the given options:

A. A = (B^T(C^T(B^T)^(-1)))^(-1) - This option is not equivalent to the obtained equation, so it is not true.

B. A^(-1) = B^T(BC)^(-1) - This option is also not equivalent to the obtained equation, so it is not true.

C. B^(-1) = A^T[(BC)^(-1)]^T - This option is not equivalent to the obtained equation, so it is not true.

D. B = A^T(CB)^(-1) - This option matches the obtained equation, so it is true.

Know more about equationhere:

https://brainly.com/question/29657983

#SPJ11

3. The following integral is given. 2 [² ( x + ²)² dx (c) Evaluate Trapezoidal rule (n=2) and evaluate the error. (5pt.)

Answers

The value of integral using trapezoidal rule with n=2 is  [tex]$\frac{17}{\sqrt{3}} \approx 9.817$[/tex] and the error is approximately -0.2616.

The given integral is:  [tex]$\int_{2}^{4} \frac{2x}{\sqrt{x^2-4}} dx$[/tex]

(c) Using the trapezoidal rule with [tex]n=2:$$\int_{2}^{4} \frac{2x}{\sqrt{x^2-4}} dx \approx \frac{b-a}{2n} \left( f(a) + 2 \sum_{i=1}^{n-1} f(a+ih) + f(b) \right) $$[/tex]

where,[tex]a=2, b=4, n=2, and h=(b-a)/n=1.$$\begin{aligned}&= \frac{4-2}{2(2)} \left( \frac{2(2)}{\sqrt{2^2-4}} + 2\left[ \frac{2(2+1)}{\sqrt{(2+1)^2-4}} \right] + \frac{2(4)}{\sqrt{4^2-4}} \right) \\&= 1 \left( \frac{4}{\sqrt{4}} + 2\left[ \frac{6}{\sqrt{5}} \right] + \frac{8}{\sqrt{12}} \right) \\&= \frac{17}{\sqrt{3}} \\&\approx 9.817\end{aligned}$$[/tex]

Now, we need to evaluate the error. Using the error formula for trapezoidal rule:[tex]$$E_T = -\frac{(b-a)^3}{12n^2} f''(\xi)$$where, $f''(x) = \frac{8x(x^2-7)}{(x^2-4)^{\frac{5}{2}}}$[/tex].

Also, [tex]$\xi \in [a,b]$[/tex] and [tex]$\xi$[/tex]

is the point of maximum or minimum value of [tex]$f''(x)$[/tex] in the interval [tex]$[2,4]$.$$E_T = -\frac{(4-2)^3}{12(2)^2} \frac{8 \xi (\xi^2-7)}{(\xi^2-4)^{\frac{5}{2}}}$[/tex]

For maximum value of [tex]$f''(x)$[/tex] i[tex]n $[2,4]$[/tex] , [tex]$\xi=4$[/tex]  .

Therefore,  [tex]$$E_T = -\frac{(4-2)^3}{12(2)^2} \frac{8 (4) (4^2-7)}{(4^2-4)^{\frac{5}{2}}} \\ \approx -0.2616$$[/tex]

Thus, the value of integral using trapezoidal rule with n=2 is  [tex]$\frac{17}{\sqrt{3}} \approx 9.817$[/tex] and the error is approximately -0.2616.

Learn more about trapezoidal rule

https://brainly.com/question/30401353

#SPJ11

The approximate value of the integral using the Trapezoidal rule with n = 2 is 802.

In this case, f''(c) represents the second bof f(x) evaluated at some point c in the interval [a, b]. Since we don't have the function f(x) provided, we cannot directly calculate the error.

To evaluate the integral using the Trapezoidal rule with n = 2, we need to divide the interval of integration into two subintervals and approximate the integral using trapezoids.

The formula for the Trapezoidal rule is:

∫[a, b] f(x) dx ≈ (h/2) * [f(a) + 2 * (sum of f(xi) from i = 1 to n-1) + f(b)]

In this case, a = 2, b = 4, and n = 2. Let's proceed with the calculations:

Step 1: Calculate the step size (h)

h = (b - a) / n

h = (4 - 2) / 2

h = 1

Step 2: Calculate the values of f(x) at the endpoints and the midpoint.

[tex]f(a) = f(2) = 2 * (2^2 + 2^2)^2 = 2 * (4 + 4)^2 = 2 * 8^2 = 2 * 64 = 128[/tex]

[tex]f(b) = f(4) = 2 * (4^2 + 2^2)^2 = 2 * (16 + 4)^2 = 2 * 20^2 = 2 * 400 = 800[/tex]

Step 3: Calculate the value of f(x) at the midpoint.

[tex]f(2 + h) = f(3) = 2 * (3^2 + 2^2)^2 = 2 * (9 + 4)^2 = 2 * 13^2 = 2 * 169 = 338[/tex]

Step 4: Substitute the values into the Trapezoidal rule formula.

∫[2, 4] 2[(x + 2)^2] dx ≈ (h/2) * [f(a) + 2 * f(2 + h) + f(b)]

≈ (1/2) * [128 + 2 * 338 + 800]

≈ 0.5 * [128 + 676 + 800]

≈ 0.5 * 1604

≈ 802

Therefore, the approximate value of the integral using the Trapezoidal rule with n = 2 is 802.

To calculate the error, we can use the error formula for the Trapezoidal rule:

Error ≈ -((b - a)^3 / (12 * n^2)) * f''(c)

Learn more about Trapezoidal rule

https://brainly.com/question/30886083

#SPJ11

In a certain animal species, the probability that a healthy adult female will have no offspring in a given year is 0.30, while the probabilities of 1, 2, 3, or 4 offspring are, respectively, 0.22, 0.18, 0.16, and 0.14. Find the expected number of offspring. E(x) = (Round to two decimal places as needed.) 1 Paolla

Answers

The expected number of offspring is 2.06.

The probability distribution function is given below:P(x) = {0.30, 0.22, 0.18, 0.16, 0.14}

The mean of the probability distribution is: μ = ∑ [xi * P(xi)]

where xi is the number of offspring and

P(xi) is the probability that x = xiμ

                                      = [0 * 0.30] + [1 * 0.22] + [2 * 0.18] + [3 * 0.16] + [4 * 0.14]

                                      = 0.66 + 0.36 + 0.48 + 0.56= 2.06

Therefore, the expected number of offspring is 2.06.

Learn more about probability

brainly.com/question/31828911

#SPJ11

There exists a setA, such that for all setsB,A∩B=∅. Prove the above set A is unique.

Answers

To prove that the set A, such that for all sets B, A∩B=∅, is unique, we need to show that there can only be one such set A.


Let's assume that there are two sets, A and A', that both satisfy the condition A∩B=∅ for all sets B. We will show that A and A' must be the same set.

First, let's consider an arbitrary set B. Since A∩B=∅, this means that A and B have no elements in common. Similarly, since A'∩B=∅, A' and B also have no elements in common.

Now, let's consider the intersection of A and A', denoted as A∩A'. By definition, the intersection of two sets contains only the elements that are common to both sets.

Since we have already established that A and A' have no elements in common with any set B, it follows that A∩A' must also be empty. In other words, A∩A'=∅.

If A∩A'=∅, this means that A and A' have no elements in common. But since they both satisfy the condition A∩B=∅ for all sets B, this implies that A and A' are actually the same set.

Therefore, we have shown that if there exists a set A such that for all sets B, A∩B=∅, then that set A is unique.

To learn more about "Sets" visit: https://brainly.com/question/24462379

#SPJ11

For each problem: a. Verify that E is a Lyapunov function for (S). b. Find the equilibrium points of (S), and classify each as an attractor, repeller, or neither. 7. dx dt dy dt sin x cos y - cos x sin y - sin x cos y - cos x sin y E(x, y) = sin x sin y

Answers

E(x, y) = sin(x)sin(y) is a Lyapunov function for the system (S).

The equilibrium points are of the form (x, y) = (nπ, (n + 1/2)π) for integer n.

Further analysis is needed to determine the stability of each equilibrium point.

To verify whether E(x, y) = sin(x)sin(y) is a Lyapunov function for the system (S), we need to check two conditions:

a. E(x, y) is positive definite:

  - E(x, y) is a trigonometric function squared, and the square of any trigonometric function is always nonnegative.

  - Therefore, E(x, y) is positive or zero for all (x, y) in its domain.

b. The derivative of E(x, y) along the trajectories of the system (S) is negative definite or negative semi-definite:

  - Taking the derivative of E(x, y) with respect to t, we get:

    dE/dt = (∂E/∂x)dx/dt + (∂E/∂y)dy/dt

          = cos(x)sin(y)dx/dt + sin(x)cos(y)dy/dt

          = sin(x)cos(y)(sin(x)cos(y) - cos(x)sin(y)) - cos(x)sin(y)(cos(x)sin(y) - sin(x)cos(y))

          = 0

The derivative of E(x, y) along the trajectories of the system (S) is identically zero. This means that the derivative is negative semi-definite.

Now, let's find the equilibrium points of the system (S) by setting dx/dt and dy/dt equal to zero and solve for x and y:

sin(x)cos(y) - cos(x)sin(y) = 0

sin(y)cos(x) - cos(y)sin(x) = 0

These equations are satisfied when sin(x)cos(y) = 0 and sin(y)cos(x) = 0. This occurs when:

1. sin(x) = 0, which implies x = nπ for integer n.

2. cos(y) = 0, which implies y = (n + 1/2)π for integer n.

The equilibrium points are of the form (x, y) = (nπ, (n + 1/2)π) for integer n.

To classify the stability of these equilibrium points, we need to analyze the behavior of the system near each point. Since the derivative of E(x, y) is identically zero, we cannot determine the stability based on Lyapunov's method. We need to perform further analysis, such as linearization or phase portrait analysis, to determine the stability of each equilibrium point.

Learn more about Lyapunov function

https://brainly.com/question/32668960

#SPJ11

Abigail received a $34,550 loan from a bank that was charging interest at 5.75% compounded semi-annually. a. How much does she need to pay at the end of every 6 months to settle the loan in 5 years? $0.00 Round to the nearest cent b. What was the amount of interest charged on the loan over the 5-year period? $0.00 Round to the nearest cent

Answers

Abigail needs to pay $1,045.38 at the end of every 6 months to settle the loan in 5 years, and the amount of interest charged on the loan over the 5-year period is $0.00.

a) The amount to be paid at the end of every 6 months is $1,045.38. The loan is to be paid back in 5 years, which is 10 half-year periods. The principal amount borrowed is $34,550. The annual interest rate is 5.75%. The semi-annual rate can be calculated as follows:

i = r/2, where r is the annual interest rate

i = 5.75/2%

= 0.02875

P = 34550

PVIFA (i, n) = (1- (1+i)^-n) / i,

where n is the number of semi-annual periods

P = 34550

PVIFA (0.02875,10)

P = $204.63

The amount payable every half year can be calculated using the following formula:

R = (P*i) / (1- (1+i)^-n)

R = (204.63 * 0.02875) / (1- (1+0.02875)^-10)

R = $1,045.38

Hence, the amount to be paid at the end of every 6 months is $1,045.38.

b) The total amount paid by Abigail at the end of 5 years will be the sum of all the semi-annual payments made over the 5-year period.

Total payment = R * n

Total payment = $1,045.38 * 10

Total payment = $10,453.81

Interest paid = Total payment - Principal

Interest paid = $10,453.81 - $34,550

Interest paid = -$24,096.19

This negative value implies that Abigail paid less than the principal amount borrowed. This is because the interest rate on the loan is greater than the periodic payment made, and therefore, the principal balance keeps growing throughout the 5-year period. Hence, the interest charged on the loan over the 5-year period is $0.00 (rounded to the nearest cent).

Conclusion: Abigail needs to pay $1,045.38 at the end of every 6 months to settle the loan in 5 years, and the amount of interest charged on the loan over the 5-year period is $0.00.

To know more about amount visit

https://brainly.com/question/32453941

#SPJ11

Identify the vertex, the axis of symmetry, the maximum or minimum value, and the domain and the range of each function.

y=-1.5(x+20)² .

Answers

The graph of the function lies below or touches the x-axis but does not rise above it.

The axis of symmetry is a vertical line passing. For the function y = -1.5(x + 20)², the vertex is (-20, 0), the axis of symmetry is the vertical line x = -20, the function has a maximum value of 0, the domain is all real numbers (-∞, ∞), and the range is y ≤ 0.

The vertex of the function is obtained by taking the opposite sign of the values inside the parentheses of the quadratic term. In this case, the vertex is (-20, 0), indicating that the vertex is located at x = -20 and y = 0.

The axis of symmetry is a vertical line passing through the vertex. In this case, the axis of symmetry is x = -20.

Since the coefficient of the quadratic term is negative (-1.5), the parabola opens downward, and the vertex represents the maximum point of the function. The maximum value is 0, which occurs at the vertex (-20, 0).

The domain of the function is all real numbers since there are no restrictions on the x-values.

The range of the function is y ≤ 0, indicating that the function has values less than or equal to 0. The graph of the function lies below or touches the x-axis but does not rise above it.

Learn more about axis of symmetry here:

brainly.com/question/22495480

#SPJ11

The amount of syrup that people put on their pancakes is normally distributed with mean 58 mL and standard deviation 13 mL. Suppose that 14 randomly selected people are observed pouring syrup on their pancakes. Round all answers to 4 decimal places where possible. a. What is the distribution of X?X∼N( b. What is the distribution of xˉ?xˉ∼N( c. If a single randomly selected individual is observed, find the probability that this person consumes is between 62 mL and 64 mL. d. For the group of 14 pancake eaters, find the probability that the average amount of syrup is between 62 mL and 64 mL. e. For part d), is the assumption that the distribution is normal necessary? Yes No

Answers

a. X ~ N(58, 169) b. X ~ N(58, 4.6154) c. P(62 ≤ X ≤ 64) depends on z-scores d. P(62 ≤ X ≤ 64) depends on z-scores e. Yes, normal distribution assumption is necessary for part d).

a. The distribution of X (individual syrup amount) is a normal distribution with a mean of 58 mL and a standard deviation of 13 mL. Therefore, X ~ N(58, 13²) = X ~ N(58, 169).

b. The distribution of X (sample mean syrup amount) follows a normal distribution as well. The mean of X is the same as the mean of the population, which is 58 mL. The standard deviation of X is the population standard deviation divided by the square root of the sample size. In this case, since 14 people are observed, the standard deviation of X is 13 mL / √14.

Therefore, X ~ N(58, 13²/14) = X ~ N(58, 4.6154)

c. To find the probability that a single randomly selected individual consumes between 62 mL and 64 mL of syrup, we need to calculate the area under the normal distribution curve between these two values.

Using the standard normal distribution, we can calculate the z-scores corresponding to 62 mL and 64 mL:

z₁ = (62 - 58) / 13 = 0.3077

z₂ = (64 - 58) / 13 = 0.4615

Next, we can use a standard normal distribution table or a calculator to find the probability associated with these z-scores. The probability can be calculated as P(0.3077 ≤ Z ≤ 0.4615).

d. For the group of 14 pancake eaters, the average amount of syrup follows a normal distribution with a mean of 58 mL and a standard deviation of 13 mL divided by the square root of 14 (as mentioned in part b).

To find the probability that the average amount of syrup is between 62 mL and 64 mL, we can again use the standard normal distribution and calculate the z-scores for these values. Then, we can find the probability associated with the range P(62 ≤ X ≤ 64) using the z-scores.

e. Yes, the assumption that the distribution is normal is necessary for part d) because we are using the properties of the normal distribution to calculate probabilities.

If the distribution of the average amount of syrup was not approximately normal, the calculations and interpretations based on the normal distribution would not be valid.

To know more about z-score:

https://brainly.com/question/31871890

#SPJ4

9. [0/1 Points]
DETAILS
PREVIOUS ANSWERS
ZILLDIFFEQMODAP11 5.1.033.
MY NOTES
ASK YOUR TEACHER
PRACTICE ANOTHER
A mass weighing 16 pounds stretches a spring feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to
f(t) = 20 cos(3t). (Use g = 32 ft/s² for the acceleration due to gravity.)
x(t) =
Need Help?
Read It
Watch It
Submit Answer

Answers

Equation of motion not possible without additional information.

Provide additional information to determine the equation of motion.

The equation of motion for the given system can be found using Newton's second law and the damping force.

Since the damping force is numerically equal to the instantaneous velocity, we can write the equation of motion as mx'' + bx' + kx = f(t), where m is the mass, x is the displacement, b is the damping coefficient, k is the spring constant, and f(t) is the external force.

In this case, the mass is 16 pounds, the damping force is equal to the velocity, and the external force is given by f(t) = 20 cos(3t).

To find the equation of motion x(t), we need to determine the values of b and k for the system.

Additional information or equations related to the system would be required to proceed with finding the equation of motion.

Learn more about additional

brainly.com/question/29343800

#SPJ11

Solve the second order ODE x^2y′′ −xy′ + 10y=0

Answers

We conclude that the second-order[tex]ODE x^2y'' - xy' + 10y = 0[/tex] does not have a simple closed-form solution in terms of elementary functions.

Let's assume that the solution to the ODE is in the form of a power series:[tex]y(x) = Σ(a_n * x^n)[/tex]where Σ denotes the summation and n is a non-negative integer.

Differentiating y(x) with respect to x, we have:

[tex]y'(x) = Σ(n * a_n * x^(n-1))y''(x) = Σ(n * (n-1) * a_n * x^(n-2))[/tex]

Substituting these expressions into the ODE, we get:

[tex]x^2 * Σ(n * (n-1) * a_n * x^(n-2)) - x * Σ(n * a_n * x^(n-1)) + 10 * Σ(a_n * x^n) = 0[/tex]

Simplifying the equation and rearranging the terms, we have:

[tex]Σ(n * (n-1) * a_n * x^n) - Σ(n * a_n * x^n) + Σ(10 * a_n * x^n) = 0[/tex]

Combining the summations into a single series, we get:

[tex]Σ((n * (n-1) - n + 10) * a_n * x^n) = 0[/tex]

For the equation to hold true for all values of x, the coefficient of each term in the series must be zero:

n * (n-1) - n + 10 = 0

Simplifying the equation, we have:

[tex]n^2 - n + 10 = 0[/tex]

Solving this quadratic equation, we find that it has no real roots. Therefore, the power series solution to the ODE does not exist.

Hence, we conclude that the second-order[tex]ODE x^2y'' - xy' + 10y = 0[/tex] does not have a simple closed-form solution in terms of elementary functions.

Learn more about  differential equations visit:

https://brainly.com/question/1164377

#SPJ11

How many gallons of washer fluid that is 13.5% antifreeze must a
manufacturer add to 500 gallons of washer fluid that is 11%
antifreeze to yield washer fluid that is 13% antifreeze?

Answers

The manufacturer must add 13,000 gallons of washer fluid that is 13.5% antifreeze to the existing 500 gallons of washer fluid that is 11% antifreeze to obtain a total volume of washer fluid with a 13% antifreeze concentration.

Let's denote the number of gallons of washer fluid that needs to be added as 'x'.

The amount of antifreeze in the 500 gallons of washer fluid is given by 11% of 500 gallons, which is 0.11 * 500 = 55 gallons.

The amount of antifreeze in the 'x' gallons of washer fluid is given by 13.5% of 'x' gallons, which is 0.135 * x.

To yield washer fluid that is 13% antifreeze, the total amount of antifreeze in the mixture should be 13% of the total volume (500 + x gallons).

Setting up the equation:

55 + 0.135 * x = 0.13 * (500 + x)

Simplifying and solving for 'x':

55 + 0.135 * x = 0.13 * 500 + 0.13 * x

0.135 * x - 0.13 * x = 0.13 * 500 - 55

0.005 * x = 65

x = 65 / 0.005

x = 13,000

Therefore, the manufacturer must add 13,000 gallons of washer fluid that is 13.5% antifreeze to the 500 gallons of washer fluid that is 11% antifreeze to yield washer fluid that is 13% antifreeze.

To know more about total volume refer here:

https://brainly.com/question/28505619#

#SPJ11

Consider a discrete random variable X which takes 3 values {1,2,3} with probabilities 0.1,0.2,0.7, respectively, (a) What is the pmf of random variable X ? (b) Define a new random variable Y=FX​(X), where FX​ is the DF for a random variable X. What is the DF and pmf of Y ?

Answers

(a) the pmf of X is {0.1, 0.2, 0.7} for X = {1, 2, 3}, respectively. (b) The pmf of Y, a new random variable defined as Y = F(X), is {0.1, 0.2, 0.7} for Y = {0.1, 0.3, 1}, respectively. The CDF of Y is F(Y = 0.1) = 0.1, F(Y = 0.3) = 0.3, and F(Y = 1) = 1.

(a) The pmf (probability mass function) of a discrete random variable gives the probability of each possible value. For X, we have:

P(X = 1) = 0.1

P(X = 2) = 0.2

P(X = 3) = 0.7

Therefore, the pmf of X is:

P(X) = {0.1, 0.2, 0.7} for X = {1, 2, 3}, respectively.

(b) The random variable Y = F(X) is a transformation of X using the CDF (cumulative distribution function) F. The CDF of X is:

F(X = 1) = P(X ≤ 1) = 0.1

F(X = 2) = P(X ≤ 2) = 0.1 + 0.2 = 0.3

F(X = 3) = P(X ≤ 3) = 0.1 + 0.2 + 0.7 = 1

Using the CDF F, we can find the values of Y as follows:

Y = F(X) = {0.1, 0.3, 1} for X = {1, 2, 3}, respectively.

To find the pmf of Y, we can use the formula:

P(Y = y) = P(F(X) = y) = P(X ∈ A) where A = {X | F(X) = y}

For y = 0.1, we have:

P(Y = 0.1) = P(X ≤ 1) = 0.1

For y = 0.3, we have:

P(Y = 0.3) = P(X ≤ 2) - P(X ≤ 1) = 0.2

For y = 1, we have:

P(Y = 1) = P(X ≤ 3) - P(X ≤ 2) = 0.7

Therefore, the pmf of Y is:

P(Y) = {0.1, 0.2, 0.7} for Y = {0.1, 0.3, 1}, respectively.

The CDF of Y is:

F(Y = 0.1) = P(Y ≤ 0.1) = 0.1

F(Y = 0.3) = P(Y ≤ 0.3) = 0.1 + 0.2 = 0.3

F(Y = 1) = P(Y ≤ 1) = 1

Here, we assumed that the function F is invertible, which is true for a continuous and strictly increasing distribution function.

to know more about  random variable , visit:
brainly.com/question/30789758
#SPJ11

A conducting wire of radius 1 mm is carrying a uniformly distributed current of 50 A. If the electron density in this wire is 8.1×10^28 electrons /m3, (a) What is the average drift velocity of the electrons? (b) What is the electric field intensity in the wire? [The resistivity of the wire is 1.81 ×10^−8.] (c) If the wire is 50 km long, what is the potential difference between its ends? (d) What is the resistance of the wire?

Answers

(a) The average drift velocity of the electrons = 1.22 × 10⁻³

(b)  The electric field intensity in the wire = 0.286N/C

(c) The potential difference between its ends = 1.43 × 10 ⁴ volt.

(d) The resistance of the wire =  286 ohm.

A conducting wire of radius 1 mm is carrying a uniformly distributed current of 50 A.

If the electron density in this wire is 8.1 × 10²⁸ electrons /m3.

(a) Average velocity = I/neA

                                 = 50/ (8.1 × 10²⁸) × 1.6 × 10⁻¹⁹ × π × 10⁻³

                                  = 1.22 × 10⁻³

(b) The electric field intensity in the wire = 1.81 × 10⁻⁸

E = 8.1 × 10²⁸ × 1.6 × 10 ⁻¹⁹ × 1.22 × 10⁻³ × 1.81 × 10 ⁻⁸

  = 0.286.

(c) The wire is 50 km long, the potential difference between its ends

V = E × d

   = 0.286 × 50 × 10³

   = 1.43 × 10 ⁴ volt.

(d) The resistance of the wire

Resistance = V/I = 1.43 × 10⁴/ 50 = 286 ohm.

Learn more about velocity here:

https://brainly.com/question/33368486

#SPJ4

In terms of regular polygons, as we saw earlier, let’s say we wanted to find an estimate for pi, which is used in finding the area of a circle. We won’t actually find an estimate, because the math is a bit tricky, but how would we go about finding that estimation? How can we change our polygon to look like a circle, and what does that mean about our variables in the equation we made above?

Answers

By increasing the number of sides of a regular polygon, we can estimate the value of pi. Repeat steps 3 and 4 until the area of the polygon is close to the area of a circle with the same radius.

To find an estimate for pi using regular polygons, we can do the following:

Start with a regular polygon with a small number of sides, such as a triangle.

Calculate the area of the polygon.

Increase the number of sides of the polygon.

Calculate the area of the new polygon.

Repeat steps 3 and 4 until the area of the polygon is close to the area of a circle with the same radius.

As the number of sides of the polygon increases, the area of the polygon will get closer and closer to the area of a circle. This is because a regular polygon with a large number of sides will closely resemble a circle.

The equation for the area of a regular polygon is:

Area = (s^2 * n) / 4

where s is the side length of the polygon, n is the number of sides, and pi is approximately equal to 3.14.

As the number of sides of the polygon increases, the value of n in the equation will increase. This will cause the area of the polygon to increase, and the value of pi in the equation will approach 3.14.

Therefore, by increasing the number of sides of a regular polygon, we can estimate the value of pi.

The more sides the polygon has, the closer the estimate will be to the actual value of pi. However, the math involved in calculating the area of a polygon with a large number of sides can be very complex.

For such more question on polygon:

https://brainly.com/question/29425329

#SPJ8

The line L1 has an equation r1=<6,4,11>+n<4,2,9> and the line L2 has an equation r2=<−3,10,,2>+m<−5,8,0> Different values of n give different points on line L1. Similarly, different values of m give different points on line L2. If the two lines intersect then r1=r2 at the point of intersection. If you can find values of n and m.which satisfy this condition then the two lines intersect. Show the lines intersect by finding these values n and m hence find the point of intersection. n= ?

Answers

The values of n and m that satisfy the condition for intersection are n = -1 and m = -1.

The point of intersection for the lines L1 and L2 is (2, 2, 2).

To find the values of n and m that satisfy the condition for intersection, we need to equate the two equations for r1 and r2:

r1 = <6, 4, 11> + n<4, 2, 9>

r2 = <-3, 10, 2> + m<-5, 8, 0>

Setting the corresponding components equal to each other, we get:

6 + 4n = -3 - 5m --> Equation 1

4 + 2n = 10 + 8m --> Equation 2

11 + 9n = 2 --> Equation 3

Let's solve these equations to find the values of n and m:

From Equation 3, we have:

11 + 9n = 2

9n = 2 - 11

9n = -9

n = -1

Now substitute the value of n into Equation 1:

6 + 4n = -3 - 5m

6 + 4(-1) = -3 - 5m

6 - 4 = -3 - 5m

2 = -3 - 5m

5m = -3 - 2

5m = -5

m = -1

Therefore, the values of n and m that satisfy the condition for intersection are n = -1 and m = -1.

To find the point of intersection, substitute these values back into either of the original equations. Let's use r1:

r1 = <6, 4, 11> + n<4, 2, 9>

= <6, 4, 11> + (-1)<4, 2, 9>

= <6, 4, 11> + <-4, -2, -9>

= <6 - 4, 4 - 2, 11 - 9>

= <2, 2, 2>

Therefore, the point of intersection for the lines L1 and L2 is (2, 2, 2).

Learn more about intersection: https://brainly.com/question/29185601

#SPJ11

prove that:
trigonometric question no.h​

Answers

By algebra properties and trigonometric formulas, the equivalence between trigonometric expressions [1 + tan² (π / 4 - A)] / [1 - tan² (π / 4)] and csc 2A is true.

How to prove an equivalence between two trigonometric expressions

In this problem we must determine if the equivalence between trigonometric expression [1 + tan² (π / 4 - A)] / [1 - tan² (π / 4)] and csc 2A is true. This can be proved by both algebra properties and trigonometric formulas. First, write the entire expression:

[1 + tan² (π / 4 - A)] / [1 - tan² (π / 4 - A)]

Second, use trigonometric formulas to eliminate the double angle:

[1 + [[tan (π / 4) - tan A] / [1 + tan (π / 4) · tan A]]²] / [1 - [[tan (π / 4) - tan A] / [1 + tan (π / 4) · tan A]]²]

[1 + [(1 - tan A) / (1 + tan A)]²] / [1 - [(1 - tan A) / (1 + tan A)]²]

Third, simplify the expression by algebra properties:

[(1 + tan A)² + (1 - tan A)²] / [(1 + tan A)² - (1 - tan A)²]

(2 + 2 · tan² A) / (4 · tan A)

(1 + tan² A) / (2 · tan A)

Fourth, use trigonometric formulas once again:

sec² A / (2 · tan A)

(1 / cos² A) / (2 · sin A / cos A)

1 / (2 · sin A · cos A)

1 / sin 2A

csc 2A

To learn more on trigonometric expressions: https://brainly.com/question/11659262

#SPJ1

Prove that 1+3+9+27+…+3^n=3^n+1−1/2​ Let n be a positive integer,

Answers

Using mathematical induction, we can prove that the equation 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2 holds true for all positive integers n.

To prove the equation 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2, we can use mathematical induction.

1. Base Case:

For n = 1, we have 1 = (3^(1+1) - 1) / 2.

1 = (3^2 - 1) / 2.

1 = (9 - 1) / 2.

1 = 8 / 2.

1 = 4.

The base case holds true.

2. Inductive Step:

Assume that the equation holds true for some positive integer k, i.e., 1 + 3 + 9 + 27 + ... + 3^k = (3^(k+1) - 1) / 2.

We need to prove that it also holds true for k + 1, i.e., 1 + 3 + 9 + 27 + ... + 3^k + 3^(k+1) = (3^((k+1)+1) - 1) / 2.

Starting from the left side of the equation:

1 + 3 + 9 + 27 + ... + 3^k + 3^(k+1) = (3^(k+1) - 1) / 2 + 3^(k+1)

= (3^(k+1) - 1 + 2 * 3^(k+1)) / 2

= (3^(k+1) - 1 + 2 * 3 * 3^k) / 2

= (3^(k+1) + 2 * 3 * 3^k - 1) / 2

= (3^(k+1) + 2 * 3^(k+1) - 1) / 2

= (3 * 3^(k+1) + 3^(k+1) - 1) / 2

= (3^(k+2) + 3^(k+1) - 1) / 2

= (3^(k+2) + 3^(k+1) - 1 * 2/2) / 2

= (3^(k+2) + 3^(k+1) - 2) / 2

= (3^(k+2) + 3^(k+1) - 2) / 2

= (3^(k+2) + 3^(k+1) - 1) / 2 - 1/2

= (3^(k+2+1) - 1) / 2 - 1/2

= (3^((k+1)+1) - 1) / 2 - 1/2

Thus, we have shown that if the equation holds true for k, it also holds true for k + 1.

By the principle of mathematical induction, the equation is true for all positive integers n. Therefore, we have proven that 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2 for any positive integer n.

To know more about mathematical induction, refer to the link below:

https://brainly.com/question/32554849#

#SPJ11

find the perimeter of a square is half a diagonal is equal to eight 

Answers

To find the perimeter of a square when half of its diagonal is equal to eight, we can use the following steps:

Let's assume the side length of the square is "s" and the length of the diagonal is "d". Since half of the diagonal is equal to eight, we have:

[tex]\displaystyle \frac{1}{2}d=8[/tex]

Multiplying both sides by 2, we find:

[tex]\displaystyle d=16[/tex]

In a square, the length of the diagonal is equal to [tex]\displaystyle \sqrt{2}s[/tex]. Substituting the value of "d", we have:

[tex]\displaystyle 16=\sqrt{2}s[/tex]

To find the value of "s", we can square both sides:

[tex]\displaystyle (16)^{2}=(\sqrt{2}s)^{2}[/tex]

Simplifying, we get:

[tex]\displaystyle 256=2s^{2}[/tex]

Dividing both sides by 2, we find:

[tex]\displaystyle 128=s^{2}[/tex]

Taking the square root of both sides, we have:

[tex]\displaystyle s=\sqrt{128}[/tex]

Simplifying the square root, we get:

[tex]\displaystyle s=8\sqrt{2}[/tex]

The perimeter of a square is given by 4 times the length of one side. Substituting the value of "s", we find:

[tex]\displaystyle \text{Perimeter}=4\times 8\sqrt{2}[/tex]

Simplifying, we get:

[tex]\displaystyle \text{Perimeter}=32\sqrt{2}[/tex]

Therefore, the perimeter of the square is [tex]\displaystyle 32\sqrt{2}[/tex].

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

Which of the following lines is parallel to the line 3x+6y=5?
A. y=2x+6
B. y=3x-2
C. y= -2x+5
D. y= -1/2x-5
E. None of the above

Answers

The correct answer is B. y=3x-2.

The slope of a line determines its steepness and direction. Parallel lines have the same slope, so for a line to be parallel to 3x+6y=5, it should have a slope of -1/2. Since none of the given options have this slope, none of them are parallel to the line 3x+6y=5. This line has the same slope of 3 as the given line, which makes them parallel.

Learn more about Parallel lines here

https://brainly.com/question/19714372

#SPJ11

Once sales tax is included, a $650 snowboard ends up costing $715. What is the sales tax percentage?

Answers

The sales tax percentage is approximately 10%.

To find the sales tax percentage, we can use the following formula:

Sales Tax = Final Cost - Original Cost

Let's assume the sales tax percentage is represented by "x".

Given that the original cost of the snowboard is $650 and the final cost (including sales tax) is $715, we can set up the equation as follows:

Sales Tax = $715 - $650

Sales Tax = $65

Using the formula for calculating the sales tax percentage:

Sales Tax Percentage = (Sales Tax / Original Cost) * 100

Sales Tax Percentage = ($65 / $650) * 100

Sales Tax Percentage ≈ 10%

Learn more about sales tax percentage here :-

https://brainly.com/question/1579410

#SPJ11

Solve the system of equations by ELIMINA TION Cherk your anjwer by substituting back into the equation and how it y true Leave you anwer ai a traction. • 6x+5y=4
6x−7y=−20
• (x+2)2+(y−2)2=1
y=−(x+2)2+3

Answers

To solve the system of equations by elimination, we'll need to eliminate one of the variables.

[tex]Here's how to solve each system of equations:6x + 5y = 46x − 7y = −20[/tex]

To eliminate x, we will multiply the first equation by 7 and the second equation by 6.

[tex]This gives us:42x + 35y = 28636x − 42y = −120[/tex]

[tex]Now we will add the two equations together:78y = 166y = 166/78y = 83/39[/tex]

Now we will substitute the value of y into one of the original equations to find x.

[tex]We'll use the first equation:6x + 5y = 46x + 5(83/39) = 46x = (234/39) - (415/39)6x = -181/39x = (-181/39) ÷ 6x = -181/234[/tex]

[tex]Therefore, the solution of the system of equations is x = -181/234, y = 83/39(x+2)² + (y-2)² = 1y = - (x+2)² + 3[/tex]

To solve this system of equations, we will substitute y in the first equation by the right-hand side of the second equation.

[tex]This gives us:(x+2)² + (- (x+2)² + 3 - 2)² = 1(x+2)² + (-(x+2)² + 1)² = 1(x+2)² + (x+1)² = 1x² + 4x + 4 + x² + 2x + 1 = 1 2x² + 6x + 4 = 0 x² + 3x + 2 = 0  (Divide by 2) (x+2)(x+1) = 0x = -1, x = -2.[/tex]

[tex]We will now use the second equation to find the values of y:y = -(x+2)² + 3When x = -1: y = -(-1+2)² + 3 = -1When x = -2: y = -(-2+2)² + 3 = 3[/tex]

Therefore, the solutions of the system of values are (-1, -1) and (-2, 3).

To know more about the word values visits :

https://brainly.com/question/24503916

#SPJ11

rowan found a four out of 28 students in her class bike to school what is the ratio of students that bike to school to the number of students that do not bike to school right argument to defend your solution

Answers

The ratio of students who bike to school to the number of students who do not bike to school is 1:6, indicating that for every one student who bikes to school, there are six students who do not bike.

The ratio of students who bike to school to the number of students who do not bike to school can be calculated by dividing the number of students who bike to school by the number of students who do not bike to school. In this case, Rowan found that four out of 28 students bike to school.

To find the ratio of students who bike to school to the number of students who do not bike to school, we divide the number of students who bike by the number of students who do not bike. In this case, Rowan found that four out of 28 students bike to school. Therefore, the ratio of students who bike to school to the number of students who do not bike to school is 4:24 or 1:6.
To defend this solution, we can look at the definition of a ratio. A ratio is a comparison of two quantities or numbers expressed as a fraction. In this case, the ratio represents the number of students who bike to school (4) compared to the number of students who do not bike to school (24). This ratio can be simplified to 1:6 by dividing both numbers by the greatest common divisor, which in this case is 4.
Therefore, the ratio of students who bike to school to the number of students who do not bike to school is 1:6, indicating that for every one student who bikes to school, there are six students who do not bike.

Learn more about ratio here:

https://brainly.com/question/29467965

#SPJ11

E(x, y) = 5x² + 6xy+5y² dx dt dy dt = = -6x-10y 10x+6y (S) (b) Find the equilibria of (S) and state what the term means. (c) Find the critical points of E, state what the term means, and classify each as extremum or saddle point. (d) Classify each equilibrium of (S) as stable or unstable.

Answers

(a) The equilibria of the system (S) are the points where both derivatives dx/dt and dy/dt are equal to zero.

(b) The term "equilibrium" refers to the points in a dynamical system where the rates of change of the variables are zero, resulting in a stable state.

To find the equilibria of the system (S), we set both derivatives dx/dt and dy/dt to zero and solve the resulting system of equations. This will give us the values of x and y where the system is in equilibrium.

(c) The critical points of the function E(x, y) are the points where both partial derivatives ∂E/∂x and ∂E/∂y are equal to zero. The term "critical point" refers to the points where the gradient of the function is zero, indicating a possible extremum or saddle point. To classify each critical point, we need to analyze the second partial derivatives of the function E and determine their signs.

(d) To classify each equilibrium point of the system (S) as stable or unstable, we examine the eigenvalues of the Jacobian matrix of the system evaluated at each equilibrium point. If all eigenvalues have negative real parts, the equilibrium is stable. If at least one eigenvalue has a positive real part, the equilibrium is unstable.

By finding the equilibria of the system (S), determining the critical points of the function E, and classifying each equilibrium of (S) as stable or unstable, we can understand the behavior and stability of the system and the critical points of the function.

Learn more about Equilibria

brainly.com/question/31827354

#SPJ11

(GIVING OUT BRAINLIEST) please help asap

Answers

Answer:  A 38, 20

Step-by-step explanation:

Range is largest number minus smallest

Range = 50-12 = 38

IQR is interquartile range where largest number from box minus smallest number in box

IQR =  35-15

IQR = 20

Let A be the matrix:
0 0 0 1
A= 0 3 5 4
3 0 2 1
1 0 0 0
a) Determine characteristic polynomial of A
b) Determine eigenvalues of A
c) For each eigenvalue, determine basis and eigenvector
d) Determine if possible and justify an invertible matrix P so that P-1AP is a diagonal matrix and identify a diagonal matrix Λ and invertible matrix P so that Λ =P-1AP
Please answer all
THANKS!

Answers

a) The characteristic polynomial of matrix A is determined to find its eigenvalues. b) The eigenvalues of matrix A are identified. c) For each eigenvalue, the basis and eigenvector are determined. d) The possibility of finding an invertible matrix P such that [tex]P^(-1)AP[/tex] is a diagonal matrix is evaluated.

a) The characteristic polynomial of matrix A is found by subtracting the identity matrix multiplied by the variable λ from matrix A, and then taking the determinant of the resulting matrix. The characteristic polynomial of A is det(A - λI).

b) By solving the equation det(A - λI) = 0, we can find the eigenvalues of A, which are the values of λ that satisfy the equation.

c) For each eigenvalue λ, we can find the eigenvectors by solving the equation (A - λI)v = 0, where v is the eigenvector corresponding to λ. The eigenvectors form the basis for each eigenvalue.

d) To determine if it is possible to find an invertible matrix P such that P^(-1)AP is a diagonal matrix, we need to check if A is diagonalizable. If A is diagonalizable, we can find an invertible matrix P and a diagonal matrix Λ such that Λ = P^(-1)AP.

The steps involve determining the characteristic polynomial of A, finding the eigenvalues, identifying the basis and eigenvectors for each eigenvalue, and evaluating the possibility of diagonalizing A.

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

What is the polar equation of the given rectangular equation \( x^{2}=\sqrt{4} x y-y^{2} \) ? A. \( 2 \sin Q \cos Q=1 \) B. \( 2 \sin Q \cos Q=r \) C. \( r(\sin Q \cos Q)=4 \) D. \( 4(\sin Q \cos Q)=1

Answers

The polar equation of the given rectangular equation is 2 sin 2θ = 1.

The given rectangular equation is x² = √(4xy) - y². To find the polar equation, we can substitute the conversion rules:

x = r cos θ

y = r sin θ

Substituting these values into the given rectangular equation, we have:

r² cos² θ = √(4r² sin θ cos θ) - r² sin² θ

Simplifying further:

r² cos² θ + r² sin² θ = √(4r² sin θ cos θ

4r² sin θ cos θ = r² (cos² θ + sin² θ)

We can cancel out r² on both sides:

4 sin θ cos θ = 1

Multiplying both sides by 2, we get:

2(2 sin θ cos θ) = 1

Simplifying further:

2 sin 2θ = 1

The above rectangle equation's polar equation is 2 sin 2 = 1.

Learn more about polar equation

https://brainly.com/question/29083133

#SPJJ1

6. Prove that if n∈Z and n>2, then zˉ =z n−1 has n+1 solutions.

Answers

As θ ∈ [0, 2π), we have another solution at θ = 2π. Thus, this gives n solutions.

Given: n ∈ Z and n > 2, prove that z¯ = zn−1 has n+1 solutions.

Proof:Let z = r(cos θ + i sin θ) be the polar form of z, where r > 0 and θ ∈ [0, 2π).Then, zn = rⁿ(cos nθ + i sin nθ)and, z¯ = rⁿ(cos nθ - i sin nθ)

Now, z¯ = zn−1 will imply that: rⁿ(cos nθ - i sin nθ) = rⁿ(cos (n-1)θ + i sin (n-1)θ).

As the moduli on both sides are the same, it follows that cos nθ = cos (n-1)θ and sin nθ = -sin (n-1)θ.

Thus, 2cos(θ/2)sin[(n-1)θ + θ/2] = 0 or cos(θ/2)sin[(n-1)θ + θ/2] = 0.

As n > 2, we know that n - 1 ≥ 1.

Thus, there are two cases:

Case 1: θ/2 = kπ, where k ∈ Z. This gives n solutions.

Case 2: sin[(n-1)θ + θ/2] = 0. This gives (n-1) solutions.

However,as [0, 2], we have a different answer at [2:2].

Thus, this gives n solutions.∴ The total number of solutions is n + 1.

learn more about solution from given link

https://brainly.com/question/27371101

#SPJ11

Use the following graph of y=f(x) to graph each function g. (a) g(x)=f(x)−1 (b) g(x)=f(x−1)+2 (c) g(x)=−f(x) (d) g(x)=f(−x)+1

Answers

To graph each function g based on the given transformations applied to the graph of f(x):

(a) g(x) = f(x) - 1:

Shift the graph of f(x) downward by 1 unit.

(b) g(x) = f(x - 1) + 2:

Shift the graph of f(x) 1 unit to the right and 2 units upward.

(c) g(x) = -f(x):

Reflect the graph of f(x) across the x-axis.

(d) g(x) = f(-x) + 1:

Reflect the graph of f(x) across the y-axis and shift it upward by 1 unit.

(a) g(x) = f(x) - 1:

1. Take each point on the graph of f(x).

2. Subtract 1 from the y-coordinate of each point.

3. Plot the new points on the graph, forming the graph of g(x) = f(x) - 1.

(b) g(x) = f(x - 1) + 2:

1. Take each point on the graph of f(x).

2. Substitute (x - 1) into the function f(x) to get the corresponding y-coordinate for g(x).

3. Add 2 to the y-coordinate obtained in the previous step.

4. Plot the new points on the graph, forming the graph of g(x) = f(x - 1) + 2.

(c) g(x) = -f(x):

1. Take each point on the graph of f(x).

2. Multiply the y-coordinate of each point by -1.

3. Plot the new points on the graph, forming the graph of g(x) = -f(x).

(d) g(x) = f(-x) + 1:

1. Take each point on the graph of f(x).

2. Replace x with -x to get the corresponding y-coordinate for g(x).

3. Add 1 to the y-coordinate obtained in the previous step.

4. Plot the new points on the graph, forming the graph of g(x) = f(-x) + 1.

Following these steps, you should be able to graph each function g based on the given transformations applied to the graph of f(x).

Learn more about graph visit

brainly.com/question/17267403

#SPJ11

sorry bad photo quality but does someone know the answer please

Answers

Answer:

x | f(x)

6 | 8

-1 | 6

0 | 4

4 | 14

Step-by-step explanation:

For x = 6:

f(6) = |-2(6) + 4| = |-12 + 4| = | -8 | = 8

For x = -1:

f(-1) = |-2(-1) + 4| = |2 + 4| = |6| = 6

For f(x) = 4:

|-2x + 4| = 4

-2x + 4 = 4 (Case 1)

-2x + 4 = -4 (Case 2)

Case 1:

-2x + 4 = 4

-2x = 0

x = 0

Case 2:

-2x + 4 = -4

-2x = -8

x = 4

For f(x) = 14:

|-2x + 4| = 14

-2x + 4 = 14 (Case 1)

-2x + 4 = -14 (Case 2)

Case 1:

-2x + 4 = 14

-2x = 10

x = -5

Case 2:

-2x + 4 = -14

-2x = -18

x = 9

Completing the table:

x | f(x)

6 | 8

-1 | 6

0 | 4

4 | 14

Other Questions
Nametwo accessory organs of digestive system that come in directcontact of food What is the most common class of medication used by athletes?A. Stimulants.B. Benzodiazepines.C. NSAIDsD. Beta-blockers. Your task in physics lab is to make a microscope from two lenses. One lens has a focal length of 12 cm , the other a focal length of 2.0 cm . You plan to use the more powerful lens as the objective, and you want its image to be 16 cm from the lens, as in a standard biological microscope.a) How far should the objective lens be from the object to produce a real image 16 cm from the objective? In cmb) What will be the magnification of your microscope? QUESTION 1 (30 MARKS) Sam and Lizzy are white maize meal-mealie production duopoly companies that face a market demand function given by P = 300 - 3Q, where Q = Qs + QL Qs denotes quantity produced by Sam and Q, denotes quantity produced by Lizzy. Both firms have a marginal cost of R100. a) Derive the equation of each firm's reaction curve. (5 marks) b) Find the Cournot equilibrium quantity per company, price, profit and thereafter show them in graph of these curves. (8 marks) c) Find the equilibrium price in the meal mealie market if it is perfectly competitive. (3 marks) d) Find the equilibrium price, quantity and profits if the companies colluded to form a cartel. (6 marks) e) Find the Bertrand equilibrium price in this market. (3 marks) f) Find the Cournot equilibrium quantities and industry price when Sam's marginal cost is R100 while Lizzy's marginal cost is R90. (5 marks) QUESTION 2 (25 MARKS) A cruise liner company has market segments for the adult passengers and younger passengers. The demand curve for the market segment is Qy = 800-100P. The demand curve for the adults' market segment is QA = 1600-100P. In each equation, Q denotes the number of passengers on a cruise and P denotes the price per trip. The marginal cost of serving each passenger in the ship is R2 per trip. a) What is the profit-maximizing number of passengers of each type if the company can price discriminate? (5 marks) b) Assume the cruise liner company has hired you as consultant to advise them on how to maximize their profit. With aid of a clearly done calculations, please advise the company regarding what will happen when the company does not price discriminate? (15 marks) who first used the term magical realism to describe the works of artists who put dreamlike image in their paintings explain in 1000 words.discuss tour operators in Canada focuss wholesaling, tour groups, regulations on Tour dustry, A travel agency operations etc discrete math Work Problem Work Problem (15 pts) Let S(n) be1/1.4 + 1/4.7 + + 1/(3n-2) (3n+1) = n/(3n+1)Verify S(3) What is the activity (in Bq) of a sample of Cs-137 if 31.6 yearsago it was recorded to have an activity of 9932.8 Bq. Select one of the below that has the highest standard deviation of returns. Common stocks Long-term Treasury bonds Treasury bills Corporate bonds -100 Min 1 -88 -80 -68 -40 -20 nin I 2 8 Max I 20 20 Min I 34 48 60 1 75 80 Max 1 88 100 01 D2 D3 Which of the following are true? A. All the data values for boxplot D1 are greater than the median value for D2. B. The data for D1 has a greater median value than the data for D3. OC. The data represented in D2 is symmetric. OD. At least three quarters of the data values represented in D1 are greater than the median value of D3. OE. At least one quarter of the data values for D3 are less than the median value for D2 A galvanometer has an internal resistance of (RG-59), and a maximum deflection current of IGMax = 15 mA). If the shunt resistance is given by : Max RS (16) mar RG I max - (16) max Then the value of the shunt resistance Rs (in) needed to convert it into an ammeter reading maximum value of 'Max = 500 mA is: Develop the following prompt into a well-knit story not forgetting to add atitle to it.I sat down at my desk and sifted through the mail that had been placed in frontof my computer. All junk, of course. I was about to dump it all in the recyclingbin when I saw my favorite magazine at the bottom of the pile. Tossing the restaside, I snatched it up, but something unexpected fell out from between thepages Trialability is the degree to which the results of an innovation are visible to others. True False Question 42 2 pts The observability of an innovation, as perceived by the members of a social syster is positively related to its rate of adoption True & False ment D Question 43 2 pts The complexity of an innovation, as perceived by members of a social system, is negatively related to its rate of adoption True O False D Question 44 2 pts Early adopters have the highest degree of opinion leadership. True O False Show that for any x0R,lim xx0 x=x0 One study researched about 2400 childrencomparing 25% of them who had autism with the other 75% who did notto see whether there was any link between getting the MMR vaccine between 12 and 18 months of age and developing autism. It concluded there was not. Ten years later, another study was published that focused only on the African American children within the same sample. This sample was much smaller. This time, a link was found between the boys who did get the MMR vaccine before 36 months and having a higher likelihood of autism than those who did not get the vaccine. Although both studies were published in peer-reviewed medical journals, one was eventually retracted by the journal.Without looking up the studies (we have deliberately omitted the author and journal names and exact findings/titles to discourage you from looking it up just yet), make a prediction as to which study you think was deemed not statistically significant and why. Starting question:How does the presence of a member with Alzheimer's affect the experience ofa family?Hypothesis:Vulnerable families with a low level of education tend to be moreaffected by the presence of a member with Alzheimer's.Main goal:Understanding the experience and causes of a possible disaffection in a familyof a member with Alzheimer's.Specific objective:Discuss risk factors;Understand the stages of the disease and their respective symptoms;Understand the difficulties that caregivers/family members of the member withalzheimer face; Density of orbitals in one and two dimensions. (a) Show that the density of orbitals of a free electron in one dimension is 1/2 2m D7(e) = 4 (19 where L is the length of the line. (b). Show that in two dimensions, for a square of area A, D,(E) = Am Th2 independent of E Roller Inc. has just paid an annual dividend of $0.87. Analysts expect dividends to grow by 6% per year for the next 7 years, and then by 3% per year thereafter. The company has a required return of 12%.Attempt 4/10 for 10 pts.Part 1What is the value of the stock now?My answer was 10.6, but that is wrong?? What medication class can impair both female and male fertility when given at high or cumulative doses? A. Tyrosine kinase inhibitors B. Alkylating agents C. Antitumor antibiotics D. Antimetabolites Which of the following is not a type of compensation? a. commissions b. hourly wage c. profit-sharing d. comparable worth e. monthly salary