Find a polynomial f(x) that has the given degree and given zeros and that satisfies the given condition. Leave f in factored form. degree 3;, zeros -8,8,22;,f(2)=4800

Answers

Answer 1

The polynomial `f(x)` is `f(x) = -5(x + 8)(x - 8)(x - 22)

The polynomial f(x) that has the given degree, given zeros and satisfies the given condition are as follows;Firstly, we know that a polynomial with degree 3 has four terms. Now, let's build the factored form of the polynomial. We know that the zeros are -8, 8 and 22, which means that our polynomial should have these three factors: (x + 8), (x - 8) and (x - 22). We multiply these factors and get: `f(x) = (x + 8)(x - 8)(x - 22)`The polynomial f(x) is in factored form as requested.

Now let's determine the value of the constant `a` such that `f(2) = 4800`.We substitute `x = 2` in `f(x) = (x + 8)(x - 8)(x - 22)` to get `f(2) = (2 + 8)(2 - 8)(2 - 22)` which simplifies to `f(2) = (-6)(-6)(-20) = 720`. Therefore, `f(2) ≠ 4800`.So, we need to multiply f(x) by a constant to achieve the desired result. Let the constant be `a`. So, the polynomial `f(x)` is given by `f(x) = a(x + 8)(x - 8)(x - 22)`We know that `f(2) = 4800`. So, `a(2 + 8)(2 - 8)(2 - 22) = 4800`. This simplifies to `a(-6)(-6)(-20) = 4800`. Solving for `a` we get `a = -5`. Therefore,the polynomial `f(x)` is `f(x) = -5(x + 8)(x - 8)(x - 22).

To know more about constant visit:

https://brainly.com/question/31730278

#SPJ11


Related Questions

Suppose a two-sided hypothesis test has a null hypothesis H0: p
= 0.5. The test result fail to reject the null hypothesis at 0.05
significance level. Use the same data to construct a confidence
interv

Answers

In hypothesis testing, a hypothesis is rejected if the p-value is less than the level of significance α. If the p-value is more significant than α, the null hypothesis is not rejected.

Confidence intervals, on the other hand, are used to estimate a parameter with a certain level of confidence. Suppose a two-sided hypothesis test has a null hypothesis H0: p = 0.5. The test result fail to reject the null hypothesis at the 0.05 significance level. Use the same data to construct a confidence interval.Since the null hypothesis has failed to be rejected, the interval estimate must include the null hypothesis value. The point estimate for this hypothesis is simply the sample proportion p.

The standard error for the sample proportion is: SE = sqrt[(p)(1-p)/n]where n is the sample size .The formula for a 95 percent confidence interval is: p ± 1.96 * S E We can substitute p = 0.5, SE, and n to find the confidence interval. The critical value for a 95 percent confidence interval is 1.96. SE is computed by taking the square root of (p)(1-p)/n.

To know more about hypothesis visit:

https://brainly.com/question/31319397

#SPJ11

What is the Sample Skewness for the following numbers:
mean of 75.67 , median of 81, and standard deviation of
46.56?

Answers

The sample skewness for the given numbers ≈ -0.344.

To calculate the sample skewness, we need to use the formula:

Sample Skewness = (3 * (mean - median)) / standard deviation

Mean = 75.67, Median = 81, Standard Deviation = 46.56

Substituting these values into the formula, we get:

Sample Skewness = (3 * (75.67 - 81)) / 46.56

Simplifying the expression:

Sample Skewness = (3 * (-5.33)) / 46.56

              = -15.99 / 46.56

              ≈ -0.344

To know more about skewness refer here:

https://brainly.com/question/15422644#

#SPJ11

Find the simplest interest paid to borrow $4800 for 6 months at 7%.

Answers

To calculate the simple interest paid on a loan, we can use the formula:

Simple Interest = Principal * Rate * Time

Given:

Principal (P) = $4800

Rate (R) = 7% = 0.07 (converted to decimal)

Time (T) = 6 months = 6/12 = 0.5 years

Substituting the values into the formula:

Simple Interest = $4800 * 0.07 * 0.5 = $168

Therefore, the simplest interest paid to borrow $4800 for 6 months at 7% is $168.

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

find the volume of the solid bounded by the planes x=0,y=0,z=0, and x+y+z= 3

Answers

We are given four planes, i.e. x = 0, y = 0, z = 0, and x + y + z = 3 and we are supposed to find the volume of the solid bounded by them. To do this, we first need to plot the planes and see how they intersect. Let's plot the planes in 3D space. We can see that the planes x = 0, y = 0, and z = 0 intersect at the origin (0, 0, 0).

The plane x + y + z = 3 intersects the three planes at the points (3, 0, 0), (0, 3, 0), and (0, 0, 3).Thus, the solid bounded by these four planes is a tetrahedron with vertices at the origin, (3, 0, 0), (0, 3, 0), and (0, 0, 3).To find the volume of the tetrahedron, we can use the formula V = (1/3) * A * h, where A is the area of the base and h is the height.

The base of the tetrahedron is a triangle with sides 3, 3, and sqrt(18) (using Pythagoras theorem) and the height is the perpendicular distance from the top vertex to the base.To find the height, we can use the equation of the plane x + y + z = 3, which can be rewritten as z = -x - y + 3. Substituting x = 0 and y = 0, we get z = 3. Thus, the height of the tetrahedron is 3.Using the formula V = (1/3) * A * h, we getV = (1/3) * (1/2 * 3 * sqrt(18)) * 3V = 9sqrt(2)/2Thus, the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 3 is 9sqrt(2)/2 cubic units.

To know more about Pythagoras theorem visit:

https://brainly.com/question/31658142

#SPJ11

Find the 25th, 50th, and 75th percentile from the following list of 29 data 11 12.1 12.2 13.7 15.8 18.6 18.8 19.5 21 22.3 24.7 26.6 27.7 29.2 29.7 31.8 33.2 39.1 40.6 41.5 43.1 44.5 44.9 46.7 47 47.1

Answers

The 25th, 50th, and 75th percentiles from the given data set are 20.25, 29.2, and 44.7, respectively. The percentiles divide a given data set into 100 equal portions. The 25th percentile is a value below which 25% of the data lies.

Similarly, the 50th percentile (or median) is the middle value of the data set. Finally, the 75th percentile is a value below which 75% of the data lies.

We have a total of 29 data points, so the formula for finding percentiles is:(n + 1) * p/100,  Where n is the total number of data points, and p is the percentile that we want to find.

For the 25th percentile: (29 + 1) * 25/100 = 7.5. The 25th percentile is between the 7th and 8th data points (after sorting in ascending order).

So, the 25th percentile = (19.5 + 21) / 2

= 20.25

For the 50th percentile: (29 + 1) * 50/100 = 15

The 50th percentile is the 15th data point (after sorting in ascending order).

So, the 50th percentile = 29.2

For the 75th percentile: (29 + 1) * 75/100 = 22.5

The 75th percentile is between the 22nd and 23rd data points (after sorting in ascending order).

So, the 75th percentile = (44.5 + 44.9) / 2

= 44.7

Thus, the 25th, 50th, and 75th percentiles from the given data set are 20.25, 29.2, and 44.7, respectively.

To know more about percentiles, refer

https://brainly.com/question/2263719

#SPJ11

Which Relation Is A Direct Variation That Contains The Ordered Pair (2,7) ? Y=4x-1 Y=(7)/(X) Y=(2)/(7)X Y=(7)/(2)X

Answers

A direct variation equation is option D: y = (7/2)x.

A direct variation equation has the form y = kx, where k is the constant of variation.

To determine which relation is a direct variation that contains the ordered pair (2, 7), we can substitute the given x and y values into each option and see which one holds true.

Option A: y = 4x - 1

Substituting x = 2, y = 7:

7 = 4(2) - 1

7 = 8 - 1

7 = 7

Option B: y = (7/x)

Substituting x = 2, y = 7:

7 = 7/2

Option C: y = (2/7)x

Substituting x = 2, y = 7:

7 = (2/7)(2)

7 = 4/7

Option D: y = (7/2)x

Substituting x = 2, y = 7:

7 = (7/2)(2)

7 = 7

From the above substitutions, we can see that option D: y = (7/2)x is the only equation that satisfies the ordered pair (2, 7).

Therefore, the correct answer is option D: y = (7/2)x.

To know more about equation visit:

brainly.com/question/649785

#SPJ11

13. A class has 10 students of which 4 are male and 6 are female. If 3 students are chosen at random from the class, find the probability of selecting 2 females using binomial approximation. a) 0.288

Answers

The answer is 0.432

To find the probability of selecting 2 females out of 3 students chosen at random from a class with 4 males and 6 females, we can use the binomial distribution formula:

P(X = k) = C(n, k) * p^k * q^(n-k)

where:

P(X = k) is the probability of selecting exactly k females,
C(n, k) is the number of combinations of selecting k females out of n total students,
p is the probability of selecting a female (6/10),
q is the probability of selecting a male (4/10),
n is the total number of students chosen (3), and
k is the number of females selected (2).
Substituting the values into the formula, we have:

P(X = 2) = C(3, 2) * (6/10)^2 * (4/10)^(3-2)

C(3, 2) represents the number of ways to choose 2 females out of 3, which is calculated as:

C(3, 2) = 3! / (2! * (3-2)!) = 3

Calculating further:

P(X = 2) = 3 * (6/10)^2 * (4/10)^1

P(X = 2) = 3 * (36/100) * (4/10)

P(X = 2) = 3 * 36/100 * 4/10

P(X = 2) = 432/1000

P(X = 2) = 0.432

Therefore, the probability of selecting 2 females using binomial approximation is approximately 0.432.

The Outdoor Furniture Corporation manufactures two products, benches and picnic tables, for use in yards and parks. The firm has two main resources: its carpenters (labor force) and a supply of redwood for use in the furniture. During the next production cycle, 1,200 hours of labor are available under a union agreement. The firm also has a stock of 3,500 feet of good-quality redwood. Each bench that Outdoor Furniture produces requires 4 labor hours and 10 feet of redwood; each picnic table takes 6 labor hours and 35 feet of redwood. Completed benches will yield a profit of $9 each, and tables will result  in a profit of $20 each. How many benches and tables should Outdoor Furniture produce to obtain the largest possible profit? Use the graphical LP approach.

Answers

Answer:.

Step-by-step explanation:

Therefore, The Outdoor Furniture Corporation should produce 120 benches and 175 picnic tables to obtain the largest possible profit of $4,015.

Explanation:The given problem can be expressed in the form of a mathematical equation as: Maximize P = 9x + 20ySubject to constraints

:4x + 6y <= 120010x + 35y <= 35004x + 10y <= 12003x + 5y <= 1200x >= 0, y >= 0

Where, x = Number of Benchesy = Number of Picnic TablesFirst, we need to plot all the constraints on a graph. The shaded region in the figure below represents the feasible region for the given problem. Feasible region[tex]P = 9x + 20y = Z[/tex]The feasible region is bounded by the following points:

A (0, 60)B (120, 175)C (70, 80)D (300, 0)

We need to calculate the profit at each of these points. Profit at

A(0, 60) = 0 + 20(60) = $1200Profit at B(120, 175) = 9(120) + 20(175) = $4,015

Profit at C(70, 80) = 9(70) + 20(80) = $1,630Profit at D(300, 0) = 9(300) + 20(0) = $2,700

From the above calculations, we can see that the maximum profit of $4,015 is obtained at point B (120, 175). Hence, the number of benches and tables that Outdoor Furniture should produce to obtain the largest possible profit are 120 and 175, respectively.

Therefore, The Outdoor Furniture Corporation should produce 120 benches and 175 picnic tables to obtain the largest possible profit of $4,015.

To know more about equations visit:

https://brainly.com/question/22688504

#SPJ11

A mass is measured as 1kg ±1 g and the acceleration due to gravity is 9.8 +0.01 m/s². What is the uncertainty of the measured weight? 014N 014N 0 0.14N O 0.014N

Answers

If the mass is measured as 1kg ±1 g and the acceleration due to gravity is 9.8 +0.01 m/s² then the uncertainty of the measured weight is 0.014N.

To calculate the uncertainty of the weight, we need to consider the uncertainties in both the mass and the acceleration due to gravity. The mass is measured as 1kg ±1g, which means the uncertainty in the mass is ±0.001kg. The acceleration due to gravity is given as 9.8m/s² ±0.01m/s², which means the uncertainty in acceleration is ±0.01m/s².

To calculate the uncertainty in weight, we multiply the mass and the acceleration due to gravity, taking into account their respective uncertainties. ΔW = (1kg ±0.001kg) × (9.8m/s² ±0.01m/s²).

Performing the calculations, we get

ΔW = 1kg × 9.8m/s² ± (0.001kg × 9.8m/s²) ± (1kg × 0.01m/s²)

     ≈ 9.8N ± 0.0098N ± 0.01N.

Combining the uncertainties, we get ΔW ≈ 9.8N ± 0.0198N.

Rounding to the appropriate number of significant figures, the uncertainty of the measured weight is approximately 0.014N. Therefore, the correct answer is 0.014N.

To know more about weight refer here:

https://brainly.com/question/10069252#

#SPJ11

the
following is a list of 15 measurements 58, -89, -32, - 63, -88,
-62, -83, 86, -90, 89, 79, 78, 87, 8, -52 suppose that those 15
measurements are respectively labled x 1, x2,...,x15. ( Thus, 58 is

Answers

The given list of measurements can be represented as:58, -89, -32, - 63, -88, -62, -83, 86, -90, 89, 79, 78, 87, 8, -52.The measurements can be labelled as x1, x2, x3, ..., x15. So,

x1 = 58,

x2 = -89,

x3 = -32,

x4 = -63,

x5 = -88,

x6 = -62,

x7 = -83,

x8 = 86,

x9 = -90,

x10 = 89,

x11 = 79,

x12 = 78,

x13 = 87,

x14 = 8,

x15 = -52.

Understood. Given the list of 15 measurements:

58, -89, -32, -63, -88, -62, -83, 86, -90, 89, 79, 78, 87, 8, -52

Let's label these measurements as x1, x2, ..., x15 in order.

To know more about measurements visit:

https://brainly.com/question/28913275

#SPJ11

s3 is the given function even or odd or neither even nor odd? find its fourier series. show details of your work. f (x) = x2 (-1 ≤ x< 1), p = 2

Answers

Therefore, the Fourier series of the given function is `f(x) = ∑[n=1 to ∞] [(4n²π² - 12)/(n³π³)] cos(nπx/2)`

The given function f(x) = x² (-1 ≤ x < 1), and we have to find whether it is even, odd or neither even nor odd and also we have to find its Fourier series. Fourier series of a function f(x) over the interval [-L, L] is given by `

f(x) = a0/2 + ∑[n=1 to ∞] (an cos(nπx/L) + bn sin(nπx/L))`

where `a0`, `an` and `bn` are the Fourier coefficients given by the following integrals: `

a0 = (1/L) ∫[-L to L] f(x) dx`, `

an = (1/L) ∫[-L to L] f(x) cos(nπx/L) dx` and `

bn = (1/L) ∫[-L to L] f(x) sin(nπx/L) dx`.

Let's first determine whether the given function is even or odd:

For even function f(-x) = f(x). Let's check this:

f(-x) = (-x)² = x² which is equal to f(x).

Therefore, the given function f(x) is even.

Now, let's find its Fourier series.

Fourier coefficients `a0`, `an` and `bn` are given by:

a0 = (1/2) ∫[-1 to 1] x² dx = 0an = (1/1) ∫[-1 to 1] x² cos(nπx/2) dx = (4n²π² - 12) / (n³π³) if n is odd and 0 if n is even

bn = 0 because the function is even

Therefore, the Fourier series of the given function is `

f(x) = ∑[n=1 to ∞] [(4n²π² - 12)/(n³π³)] cos(nπx/2)`

To know more about Fourier series visit:

https://brainly.com/question/30763814

#SPJ11

orary Find the critical value to for the confidence level c=0.98 and sample size n = 27 Click the icon to view the t-distribution table. arre t(Round to the nearest thousandth as needed.) Get more hel

Answers

Answer : The critical value for the confidence level c = 0.98 and sample size n = 27 is ± 2.787.

Explanation :

Given that the confidence level is c = 0.98 and the sample size is n = 27.

The critical value for the confidence level c = 0.98 and sample size n = 27 has to be found.

The formula to find the critical value is:t_(α/2) = ± [t_(n-1)] where t_(α/2) is the critical value, t_(n-1) is the t-value for the degree of freedom (n - 1) and α = 1 - c/2.

We know that c = 0.98. Hence, α = 1 - 0.98/2 = 0.01. The degree of freedom for a sample size of 27 is (27 - 1) = 26. Now, we need to find the t-value from the t-distribution table.

From the given t-distribution table, the t-value for 0.005 and 26 degrees of freedom is 2.787.

Therefore, the critical value for the confidence level c = 0.98 and sample size n = 27 is given by:t_(α/2) = ± [t_(n-1)]t_(α/2) = ± [2.787]

Substituting the values of t_(α/2), we get,t_(α/2) = ± 2.787

Therefore, the critical value for the confidence level c = 0.98 and sample size n = 27 is ± 2.787.

Learn more about critical value here https://brainly.com/question/32389590

#SPJ11

is λ=3 an eigenvalue of 2 0 −1 2 2 3 −4 3 −4 ? if so, find one corresponding eigenvector.

Answers

Thus, we can write that the value of λ=3 is an eigenvalue of the given matrix A and the corresponding eigenvector is v=[-2 5 1]T.

Given matrix is:[tex]$$A = \begin {bmatrix} 2 & 0 & -1 \\ 2 & 2 & 3 \\ -4 & 3 & -4 \end {bmatrix}$$[/tex]Now, to check whether λ = 3 is an eigenvalue of the given matrix A, we will find the determinant of the matrix (A - λI), where I is the identity matrix. If the determinant is zero, then λ is an eigenvalue of the matrix A. The matrix (A - λI) is[tex]:$$\ {bmatrix} 2 - 3 & 0 & -1 \\ 2 & 2 - 3 & 3 \\ -4 & 3 & -[/tex]end {bmatrix}$$Now, finding the determinant of the above matrix using the cofactor expansion along the first row:$${\begin{aligned}\det(A-\lambda I)&=-1\cdot \begin{vmatrix} -1 & 3 \\ 3 & -7 \end{vmatrix}-0\cdot \begin{vmatrix} 2 & 3 \\ 3 & -7 \end{vmatrix}-1\cdot \begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix}\\&=-1((1\cdot -7)-(3\cdot 3))-1((2\cdot 3)-(3\cdot -7))\\&=49\end{aligned}}$$Since the determinant is non-zero, hence λ = 3 is an eigenvalue of the matrix A.

Now, to find the corresponding eigenvector, we will solve the equation (A - λI)v = 0, where v is the eigenvector and 0 is the zero vector. The equation becomes:[tex]$$\begin{bmatrix} -1 & 0 & -1 \\ 2 & -1 & 3 \\ -4 & 3 & -7 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$$$\Rightarrow -x - z = 0$$$$2x - y + 3z = 0$$$$-4x + 3y - 7z = 0$$[/tex]Solving the above system of equations using substitution method, we get y = 5z and x = -2z. Taking z = 1, we get the eigenvector as[tex]:$$v = \begin{bmatrix} -2 \\ 5 \\ 1 \end{bmatrix}$$[/tex]Therefore, λ = 3 is an eigenvalue of the given matrix A and the corresponding eigenvector is v = [-2 5 1]T.

To know more about eigenvalue visit:-

https://brainly.com/question/31650198

#SPJ11

19. Messages arrive at a message center according to a Poisson process of rate λ. Every hour the messages that have arrived during the previous hour are forwarded to their destination. Find the mean

Answers

The mean value of the Poisson distribution is μ = λ(1) = λ.

A Poisson process with a rate λ has the following properties:

The number of arrivals within a time interval is Poisson distributed.

The arrival rate is constant across time.

The number of arrivals in the one-time interval is independent of the number of arrivals in any other disjoint time interval.

The mean value of the Poisson distribution is given by μ = λt where λ is the arrival rate and t is the time interval. Here, t = 1 hour.

Hence the mean value of the Poisson distribution is μ = λ(1) = λ.

Therefore, the mean of the Poisson process with a rate λ is λ. Hence the required answer is λ.

To know more about Poisson distribution visit:

https://brainly.in/question/32038831

#SPJ11

What is the length of the diagonal of a square of the square has a perimeter of 60 inches A. 15 inches B. 15 root 3 C. 15 root 2 inches D. 15.5

Answers

The length of the diagonal of a square with a perimeter of 60 inches is 15 inches (Option A).

Let's assume the side length of the square is "s".

The perimeter of a square is given by the formula P = 4s, where P represents the perimeter.

In this case, the given perimeter is 60 inches. So we have:

60 = 4s

To find the side length of the square, we divide both sides of the equation by 4:

s = 60/4

s = 15

Since a square has all sides equal, the side length of the square is 15 inches.

The diagonal of a square divides it into two congruent right triangles. Using the Pythagorean theorem, we can find the length of the diagonal "d" in terms of the side length "s":

d² = s² + s²

d² = 2s²

Substituting the value of "s" as 15 inches, we get:

d² = 2(15)²

d² = 2(225)

d² = 450

d ≈ √450 ≈ 15.81

Rounding to the nearest whole number, the length of the diagonal is approximately 15 inches, which corresponds to Option A.

To learn more about length visit:

brainly.com/question/19976644

#SPJ11

find the most general form of the antiderivative of f(t) = e^(7 t).

Answers

The antiderivative is also known as an indefinite integral, while the definite integral gives the area under the curve of a function.

The antiderivative of f(t) = e^(7t) is given as F(t).

The most general form of the antiderivative of f(t) = e^(7 t) is as follows:

F(t) = (1/7)e^(7t) + Cwhere C is the constant of integration.

The constant of integration arises because there is an infinite number of functions whose derivative is e^(7t), and so we must add a constant to our antiderivative to include all of them.  

In this case, the constant of integration is represented by C.

The antiderivative of a function is the opposite of its derivative. The antiderivative is also known as an indefinite integral, while the definite integral gives the area under the curve of a function.

To know more about antiderivative, visit:

https://brainly.com/question/31396969

#SPJ11

which line is the best model for the data in the scatter plot? responses

Answers

To determine the best model for the data in a scatter plot, we need to look at the general trend of the data points.

There are different types of models that can be used to represent the relationship between two variables, such as linear, quadratic, exponential, and logarithmic models.

One way to do this is to calculate the correlation coefficient, which measures the strength and direction of the linear relationship between two variables.

The correlation coefficient ranges from -1 to 1, with values closer to -1 or 1 indicating a stronger relationship and values closer to 0 indicating a weaker relationship.

A correlation coefficient of 0 means that there is no linear relationship between the variables. If the data in a scatter plot shows a strong linear relationship, then a linear model is likely to be the best model.

To find the equation of the line that best fits the data, we can use linear regression.

Linear regression is a statistical method that finds the line of best fit that minimizes the distance between the observed data points and the predicted values of the model.

In summary, to determine the best model for the data in a scatter plot, we need to analyze the general trend of the data points and consider different types of models that can represent the relationship between the variables.

To know more about Linear regression visit:

https://brainly.com/question/29231735

#SPJ11

0 Find the sample variance and the standard deviation for the following sample. Round the answers to at least two decimal places as needed. 17 40 22 15 12 Send data to Excel The sample variance is 123

Answers

The sample variance and the standard deviation of the sample set {17, 40, 22, 15, 12} are calculated as shown below.

Sample variance:

Step 1: Find the mean of the sample data. The sample mean is calculated as follows:Mean = (17 + 40 + 22 + 15 + 12) / 5 = 21.2

Step 2: Subtract the sample mean from each observation, square the difference, and add all the squares. This is the numerator of the variance formula.(17 - 21.2)² + (40 - 21.2)² + (22 - 21.2)² + (15 - 21.2)² + (12 - 21.2)² = 1146.16

Step 3: Divide the numerator by the sample size minus one. n = 5 - 1 = 4S² = 1146.16/4 = 286.54

Thus, the sample variance is 286.54. Standard deviation of the sample:SD = √S² = √286.54 = 16.93

Therefore, the sample variance and the standard deviation of the sample set {17, 40, 22, 15, 12} are 286.54 and 16.93, respectively.

To know more about the word sample variation visit

https://brainly.com/question/31030932

#SPJ11

l. For each of the following models indicate whether it is a linear re gression model, an intrinsically linear regression model, or neither of these. In the case of an intrinsically linear model, state how it can be expressed in the form of Y; = o + Xi + X2i + ... + Xi + ; by a suitable transformation. (a) Y;=+X1i + 1og X2i + 3X2+e

Answers

In summary: (a) Model is an intrinsically linear regression model, and it can be expressed in the form Yᵢ = β₀ + β₁X₁ᵢ + β₂Zᵢ + β₃X₃ᵢ + ɛᵢ, where Zᵢ = log(X₂ᵢ).

To determine whether a model is a linear regression model, an intrinsically linear regression model, or neither, we need to examine the form of the model equation. (a) Yᵢ = β₀ + β₁X₁ᵢ + β₂log(X₂ᵢ) + β₃X₃ᵢ + ɛᵢ In this case, the model is an intrinsically linear regression model because it can be expressed in the form: Yᵢ = β₀ + β₁X₁ᵢ + β₂Zᵢ + β₃X₃ᵢ + ɛᵢ where Zᵢ = log(X₂ᵢ). By transforming the variable X₂ to its logarithm, we can express the model as a linear regression model. This transformation allows us to capture the linear relationship between Y and the transformed variable Z.

Learn more about linear regression model here:

https://brainly.com/question/30596225

#SPJ11

find the points of intersection of the line x = 4 2t, y = 5 6t, z = −2 t, that is, l(t) = (4 2t, 5 6t, −2 t), with the coordinate planes.

Answers

The line given by the parametric equations x = 4 - 2t, y = 5 - 6t, z = -2t intersects the coordinate planes at certain points.

To find the points of intersection with the coordinate planes, we set each variable (x, y, z) to zero individually and solve for the corresponding parameter (t).
Intersection with the xy-plane (z = 0):
Setting z = 0, we have -2t = 0, which gives us t = 0. Substituting t = 0 into the equations for x and y, we get x = 4 - 2(0) = 4 and y = 5 - 6(0) = 5. So the point of intersection with the xy-plane is (4, 5, 0).
Intersection with the xz-plane (y = 0):
Setting y = 0, we have 5 - 6t = 0, which gives us t = 5/6. Substituting t = 5/6 into the equations for x and z, we get x = 4 - 2(5/6) and z = -2(5/6). Simplifying, we find x = 2/3 and z = -5/3. So the point of intersection with the xz-plane is (2/3, 0, -5/3).
Intersection with the yz-plane (x = 0):
Setting x = 0, we have 4 - 2t = 0, which gives us t = 2. Substituting t = 2 into the equations for y and z, we get y = 5 - 6(2) = -7 and z = -2(2) = -4. So the point of intersection with the yz-plane is (0, -7, -4).
In summary, the line intersects the xy-plane at (4, 5, 0), the xz-plane at (2/3, 0, -5/3), and the yz-plane at (0, -7, -4).

Learn more about intersects here
https://brainly.com/question/14217061



#SPJ11

Nurse Number 8 9 Sick Nurse Sick Nurse Sick Number Days Days Number Days 2 7 15 9 2 9 8 16 2 3 I 10 8 17 8 4 0 11 6 18 9 5 5 12 3 19 6 6 4 20 7 6 14 8 21 The above table shows the number of annual sick days taken by nurses in a large urban hospital in 2003. Nurses are listed by seniority, i.e. nurse number 1 has the least seniority, while nurse 21 has the most seniority. Let represent the number of annual sick days taken by the i nurse where the index i is the nurse number. Find each of the following: a).. c) e) 5. Suppose that each nurse took exactly three more sick days than what was reported in the table. Use summation notation to re-express the sum in 4e) to reflect the additional three sick days taken by each nurse. (Only asking for notation here - not a value) 6. Use the nurse annual sick days data to construct table of frequency, cumulative frequency, relative frequency and cumulative frequency. 7. Use the nurse annual sick days data to calculate each of the following (Note: Please use the percentile formula introduced in class. While other formulas may exist, different approaches may provide a different answer): a) mean b) median c) mode d) variance e) standard deviation f) 5th Percentile g) 25 Percentile h) 50th Percentile i) 75th Percentile 95th Percentile j)

Answers

5. The re-expressed sum using summation notation to reflect the additional three sick days taken by each nurse is: Σ([tex]n_i[/tex] + 3)

7. a) Mean = 7.303

b) Median= 8

c) Mode= No

d) Variance = 33.228

e) Standard Deviation = 5.765

f) 5th Percentile: 2.

g) 25th Percentile: 5.

h) 50th Percentile (Median): 8.

i) 75th Percentile: 9.

j) 95th Percentile: 19.

e)To re-express the sum in 4e) using summation notation to reflect the additional three sick days taken by each nurse, we can represent it as:

Σ([tex]n_i[/tex] + 3), where [tex]n_i[/tex] represents the number of annual sick days taken by the i-th nurse.

In this case, the original sum in 4e) is:

Σ([tex]n_i[/tex])

To reflect the additional three sick days taken by each nurse, we can modify the sum as follows:

Σ([tex]n_i[/tex]+ 3)

So, the re-expressed sum using summation notation to reflect the additional three sick days taken by each nurse is:

Σ([tex]n_i[/tex] + 3)

f) To construct a table of frequency, cumulative frequency, relative frequency, and cumulative relative frequency using the nurse annual sick days data, we first need to count the number of occurrences for each sick day value.

| Sick Days | Frequency | CF | Relative Frequency | C. Relative Frequency

| 0         | 1         | 1                   | 0.04               | 0.04                         |

| 2         | 3         | 4                   | 0.12               | 0.16                         |

| 3         | 2         | 6                   | 0.08               | 0.24                         |

| 4         | 2         | 8                   | 0.08               | 0.32                         |

| 5         | 2         | 10                  | 0.08               | 0.4                          |

| 6         | 3         | 13                  | 0.12               | 0.52                         |

| 7         | 3         | 16                  | 0.12               | 0.64                         |

| 8         | 3         | 19                  | 0.12               | 0.76                         |

| 9         | 4         | 23                  | 0.16               | 0.92                         |

| 10        | 1         | 24                  | 0.04               | 0.96                         |

| 11        | 1         | 25                  | 0.04               | 1.0                          |

| 12        | 1         | 26                  | 0.04               | 1.0                          |

| 14        | 1         | 27                  | 0.04               | 1.0                          |

| 15        | 1         | 28                  | 0.04               | 1.0                          |

| 16        | 1         | 29                  | 0.04               | 1.0                          |

| 17        | 1         | 30                  | 0.04               | 1.0                          |

| 18        | 1         | 31                  | 0.04               | 1.0                          |

| 19        | 1         | 32                  | 0.04               | 1.0                          |

| 20        | 1         | 33                  | 0.04               | 1.0                          |

7. From the given table, the nurse sick days are as follows:

2, 7, 15, 9, 2, 9, 8, 16, 2, 3, 10, 8, 17, 8, 4, 0, 11, 6, 18, 9, 5, 5, 12, 3, 19, 6, 6, 4, 20, 7, 6, 14, 8, 21

a) Mean:

Mean = (2 + 7 + 15 + 9 + 2 + 9 + 8 + 16 + 2 + 3 + 10 + 8 + 17 + 8 + 4 + 0 + 11 + 6 + 18 + 9 + 5 + 5 + 12 + 3 + 19 + 6 + 6 + 4 + 20 + 7 + 6 + 14 + 8 + 21) / 33

Mean = 7.303

b) Median:

The median is the middle value, which in this case is the 17th value, which is 8.

c) Mode:

In this case, there is no single mode as multiple values occur more than once.

d) Variance:

Variance = 33.228

e) Standard Deviation:

Standard Deviation = 5.765

f) 5th Percentile:

In this case, the 5th percentile value is 2.

g) 25th Percentile:

In this case, the 25th percentile value is 5.

h) 50th Percentile (Median):

In this case, the 50th percentile value is 8.

i) 75th Percentile:

In this case, the 75th percentile value is 9.

j) 95th Percentile:

In this case, the 95th percentile value is 19.

Learn more about Mean, Mode and Median here:

https://brainly.com/question/30891252

#SPJ4

How can you use transformations to graph this function? y=3⋅7 −x+2 Explain vour stess.

Answers

Given the function y=3⋅7−x+2, the general form of the function is y = a(x-h) + k, where "a" represents the vertical stretch or compression of the function, "h" represents the horizontal shift, and "k" represents the vertical shift of the graph.The given function can be transformed by applying vertical reflection and horizontal translation to the graph of the parent function.

Hence, we can use the transformations to graph the given function y=3⋅7−x+2.Solution:Comparing the given function with the general form of the function, y = a(x-h) + k, we can identify that:a = 3, h = 7, and k = 2We can now use these values to graph the given function and obtain its transformational form

.First, we will graph the parent function y = x by plotting the coordinates (-1,1), (0,0), and (1,1).Next, we will reflect the parent function vertically about the x-axis to obtain the transformational form y = -x.Now, we will stretch the graph of y = -x vertically by a factor of 3 to obtain the transformational form y = 3(-x).Finally, we will translate the graph of y = 3(-x) horizontally by 7 units to the right and vertically by 2 units upwards to obtain the final transformational form of the given function y=3⋅7−x+2.

Hence, the graph of the given function y=3⋅7−x+2 can be obtained by applying the vertical reflection, vertical stretch, horizontal translation, and vertical translation to the parent function y = x.

To know moreb about graph visit :

https://brainly.com/question/10712002

#SPJ11

Sequences of partial sums: For the following infinite series, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series or state that the series diverges.

0.6 + 0.06 + 0.006 + ...

Answers

The first four terms of the sequence of partial terms:

S1 = 0.6/10

S2 =0.6/10 + 0.6/10²

S3 =  0.6/10 + 0.6/10² + 0.6/10³

S4 = 0.6/10 + 0.6/10² + 0.6/10³ + 0.6/[tex]10^{4}[/tex]

Given,

Sequence : 0.6 + 0.06 + 0.006 +....

Now,

First term of the series of partial sum,

S1 = a1

S1 = 0.6/10

Second term of the series of partial sum,

S2 = a2

S2 = a1 + a2

S2 = 0.6/10 + 0.6/10²

Third term of the series of partial sum,

S3 =a3

S3 =  0.6/10 + 0.6/10² + 0.6/10³

Fourth term of the series of partial sum,

S4 = a4

S4 = 0.6/10 + 0.6/10² + 0.6/10³ + 0.6/[tex]10^{4}[/tex]

Hence the next terms of series can be found out .

Know more about partial sum,

https://brainly.com/question/31900309

#SPJ4

what common characteristics do linear and quadratic equations have

Answers

Linear and quadratic equations share several common characteristics:

1. Polynomial Equations: Both linear and quadratic equations are types of polynomial equations. A linear equation has a polynomial of degree 1, while a quadratic equation has a polynomial of degree 2.

2. Variable Exponents: Both equations involve variables raised to specific exponents. In linear equations, variables are raised to the first power (exponent 1), while in quadratic equations, variables are raised to the second power (exponent 2).

3. Constants: Both equations contain constants. In linear equations, constants are multiplied by variables, whereas in quadratic equations, constants are multiplied by variables and squared variables.

4. Solutions: Both linear and quadratic equations have solutions that satisfy the equation. A linear equation typically has a single solution, whereas a quadratic equation can have two distinct solutions or no real solutions depending on the discriminant.

5. Graphs: The graphs of linear and quadratic equations exhibit distinct shapes. The graph of a linear equation is a straight line, while the graph of a quadratic equation is a curve known as a parabola.

6. Algebraic Manipulation: Both linear and quadratic equations can be solved and manipulated algebraically using various techniques such as factoring, completing the square, or using the quadratic formula.

Despite these common characteristics, linear and quadratic equations have distinct properties and behaviors due to their differing degrees and forms.

To know more about quadratic visit-

brainly.com/question/866935

#SPJ11

given: δwxy is isosceles with legs wx and wy; δwvz is isosceles with legs wv and wz. prove: δwxy ~ δwvz complete the steps of the proof. ♣: ♦: ♠:

Answers

According to the statement the ratio of the corresponding sides of both triangles is equal.i.e., δWXY ~ δWVZ.

Given: δWXY is isosceles with legs WX and WY; δWVZ is isosceles with legs WV and WZ.To prove: δWXY ~ δWVZProof:In δWXY and δWVZ;WX = WY (Legs of isosceles triangle)WV = WZ (Legs of isosceles triangle)We have to prove δWXY ~ δWVZWe know that two triangles are similar when their corresponding sides are in the same ratio i.e., when they have the same shape.So, we have to prove that the ratio of the corresponding sides of both triangles is equal.(i) Corresponding sides WX and WVIn δWXY and δWVZ;WX/WV = WX/WZ (WZ is the corresponding side of WV)WX/WV = WY/WZ (WX is the corresponding side of WY)WX.WZ = WY.WV (Cross Multiplication).....(1)(ii) Corresponding sides WY and WZIn δWXY and δWVZ;WY/WZ = WX/WZ (WX is the corresponding side of WY)WY/WZ = WX/WV (WV is the corresponding side of WZ)WX.WZ = WY.WV (Cross Multiplication).....(2)From (1) and (2), we getWX.WZ = WY.WVHence, the ratio of the corresponding sides of both triangles is equal.i.e., δWXY ~ δWVZHence, Proved.

To know more about isosceles visit :

https://brainly.com/question/11388653

#SPJ11

4 0 points 01:46:30 Suppose that x has a Poisson distribution with = 3.7 (0) Compute the mean. p. variance, o2. and standard deviation, a. (Do not round your intermediate calculation. Round your final

Answers

Therefore, the mean (μ) is 3.7, the variance ([tex]σ^2[/tex]) is 3.7, and the standard deviation (σ) is approximately 1.923.

To compute the mean, variance, and standard deviation of a Poisson distribution, we use the following formulas:

Mean (μ) = λ

Variance [tex](σ^2)[/tex] = λ

Standard Deviation (σ) = √(λ)

In this case, λ (lambda) is given as 3.7.

Mean (μ) = 3.7

Variance [tex](σ^2)[/tex] = 3.7

Standard Deviation (σ) = √(3.7)

Now, let's calculate the standard deviation:

Standard Deviation (σ) = √(3.7)

≈ 1.923

Rounding the standard deviation to three decimal places, we get approximately 1.923.

To know more about standard deviation,

https://brainly.com/question/32258728

#SPJ11

need asap!!! and full sentences will give rating!! Suppose that 7.5% of all sparkplugs produced for a specific model of automobile will require a gap adjustment before they are installed in the engine. We are about to perform a tune up with new plugs on a V8 engine (8 plugs needed): What is the probability that during the install of the plugs that 2 of them need to be gapped? You may assume that each plug was randomly selected (Not from the same run of production)

Answers

The probability that 2 of the spark plugs require a gap adjustment is 0.04767 or 4.77%.

The given scenario involves a binomial distribution, which consists of two possible outcomes such as success or failure. If a specific event occurs with a probability of P, then the probability of the event not occurring is 1-P.

Since the installation of 2 spark plugs with a gap adjustment is required, the probability of success is 0.075, and the probability of failure is 1-0.075 = 0.925.

In order to calculate the probability that 2 of the spark plugs require a gap adjustment, we have to use the binomial probability formula. P(x=2) = (nCx)(P^x)(q^(n-x))Where x is the number of successes, P is the probability of success, q is the probability of failure (1-P), n is the number of trials, and nCx represents the number of ways to choose x items from a set of n items.

To find the probability of 2 spark plugs requiring a gap adjustment, we can plug the given values into the formula:P(x=2) = (8C2)(0.075^2)(0.925^(8-2))P(x=2) = (28)(0.005625)(0.374246)P(x=2) = 0.04767

Therefore, the probability that 2 of the spark plugs require a gap adjustment is 0.04767 or 4.77%.

Answer: The probability that during the installation of plugs, 2 of them require a gap adjustment is 0.04767 or 4.77% if we assume that each plug was randomly selected.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

6. Convert each of the following equations from polar form to rectangular form. a) r² = 9 b) r = 7 sin 0.

Answers

The rectangular form of the equation r = 7 sin θ is: x² + y² = (7 sin θ)², x = 7 sin θ cos θ.  Conversion of polar form equation r² = 9 to rectangular form: In polar coordinates, a point (r, θ) in the polar plane is given by r = the distance from the origin to the point, and θ = the angle measured counterclockwise from the positive x-axis to the point.

a) Conversion of polar form equation r² = 9 to rectangular form: In polar coordinates, a point (r, θ) in the polar plane is given by r = the distance from the origin to the point, and θ = the angle measured counterclockwise from the positive x-axis to the point. To convert the polar form equation r² = 9 to rectangular form, we use the conversion formulae:

r = √(x² + y²), θ = tan⁻¹(y/x)

where x and y are rectangular coordinates. Hence, we obtain: r² = 9 ⇒ r = ±3

We take the positive value because the radius cannot be negative. Substituting this value of r in the above conversion formulae, we get: x² + y² = 3², y/x = tan θ ⇒ y = x tan θ

Putting the value of y in the equation x² + y² = 3², we get: x² + x² tan² θ = 3² ⇒ x²(1 + tan² θ) = 3²⇒ x² sec² θ = 3²⇒ x = ±3sec θ

Again, we take the positive value because x cannot be negative. Therefore, the rectangular form of the equation r² = 9 is: x² + y² = 9, y = x tan θ isx² + (x² tan² θ) = 9⇒ x²(1 + tan² θ) = 9⇒ x² sec² θ = 9⇒ x = 3 sec θ.

b) Conversion of polar form equation r = 7 sin θ to rectangular form: In polar coordinates, the conversion formulae from rectangular to polar coordinates are: r = √(x² + y²), θ = tan⁻¹(y/x)

Hence, we obtain: r = 7 sin θ = y ⇒ y² = 49 sin² θ

We substitute this value of y² in the equation x² + y² = r², which gives: x² + 49 sin² θ = (7 sin θ)²⇒ x² = 49 sin² θ - 49 sin² θ⇒ x² = 49 sin² θ (1 - sin² θ)⇒ x² = 49 sin² θ cos² θ⇒ x = ±7 sin θ cos θ

Again, we take the positive value because x cannot be negative. Therefore, the rectangular form of the equation r = 7 sin θ is: x² + y² = (7 sin θ)², x = 7 sin θ cos θ.

Conversion of equations from polar form to rectangular form is an essential process in coordinate geometry. In polar coordinates, a point (r, θ) in the polar plane is given by r = the distance from the origin to the point, and θ = the angle measured counterclockwise from the positive x-axis to the point. On the other hand, in rectangular coordinates, a point (x, y) in the rectangular plane is given by x = the distance from the point to the y-axis, and y = the distance from the point to the x-axis. To convert the polar form equation r² = 9 to rectangular form, we use the conversion formulae:

r = √(x² + y²), θ = tan⁻¹(y/x)

where x and y are rectangular coordinates. Similarly, to convert the polar form equation r = 7 sin θ to rectangular form, we use the conversion formulae: r = √(x² + y²), θ = tan⁻¹(y/x)

Here, we obtain: r = 7 sin θ = y ⇒ y² = 49 sin² θ

We substitute this value of y² in the equation x² + y² = r², which gives: x² + 49 sin² θ = (7 sin θ)²⇒ x² = 49 sin² θ - 49 sin² θ⇒ x² = 49 sin² θ (1 - sin² θ)⇒ x² = 49 sin² θ cos² θ⇒ x = ±7 sin θ cos θ

Again, we take the positive value because x cannot be negative. Therefore, the rectangular form of the equation r = 7 sin θ is: x² + y² = (7 sin θ)², x = 7 sin θ cos θ.

To know more about polar coordinates visit: https://brainly.com/question/31904915

#SPJ11

A linear constant coefficient difference equation
y[n] = −3y[n −1] + 10y[n −2] + 2x[n] −5x[n −2]
has initial conditions y[−1] = 2, y[−2] = 3, and an input of x[n] = (2)^2n u[n]
(a) Find the impulse response.
(b) Find the zero-state response.
(c) Find the total response.

Answers

(a) The impulse response is given by: h[n] = {2, 0, 12, −48, −96, 252, …} and (b) The zero-state response is given by: y[n] = (29/15)(2)n + (16/15)(5)n and (c) The total response is: y[n] = (29/15)(2)n + (16/15)(5)n + 2(1) + 12(2)n−2 − 48(2)n−3 + … + {−1/16}[2]n−8.

Given difference equation is:

y[n] = −3y[n −1] + 10y[n −2] + 2x[n] −5x[n −2]

The impulse response of a system is the output of a system when a delta function is the input. A delta function is defined as follows

δ[n] = 1 if n = 0, and δ[n] = 0 if n ≠ 0. If x[n] = δ[n], then the output of the system is the impulse response h[n].

(a) Impulse Response

The input is x[n] = (2)^2n u[n]

Therefore, the impulse response h[n] can be found by setting x[n] = δ[n] in the difference equation. The equation then becomes:

h[n] = −3h[n −1] + 10h[n −2] + 2δ[n] −5δ[n −2]

Initial conditions: y[−1] = 2, y[−2] = 3, and x[n] = δ[n].

The initial conditions determine the values of h[0] and h[1].

For n = 0,h[0] = −3h[−1] + 10h[−2] + 2δ[0] −5δ[−2] = 2

For n = 1,h[1] = −3h[0] + 10h[−1] + 2δ[1] −5δ[−1] = 0

Using the difference equation, we can solve for h[2]:h[2] = −3h[1] + 10h[0] + 2δ[2] −5δ[0] = 12

Using the difference equation, we can solve for h[3]:h[3] = −3h[2] + 10h[1] + 2δ[3] −5δ[1] = −48

Similarly, using the difference equation, we can find h[4], h[5], h[6], … .

The impulse response is given by:

h[n] = {2, 0, 12, −48, −96, 252, …}

(b) Zero-State Response

The zero-state response is the output of the system due to initial conditions only. It is found by setting the input x[n] to zero in the difference equation. The equation then becomes:

y[n] = −3y[n −1] + 10y[n −2] −5x[n −2]

The characteristic equation is:r2 − 3r + 10 = 0(r − 2)(r − 5) = 0

The roots are:

r1 = 2, r2 = 5

The zero-state response is given by:

y[n] = c1(2)n + c2(5)n

We can solve for c1 and c2 using the initial conditions:

y[−1] = 2 = c1(2)−1 + c2(5)−1 ⇒ c1/2 + c2/5 = 2y[−2] = 3 = c1(2)−2 + c2(5)−2 ⇒ c1/4 + c2/25 = 3

Solving these equations simultaneously gives:c1 = 29/15, c2 = 16/15

Therefore, the zero-state response is given by:y[n] = (29/15)(2)n + (16/15)(5)n

(c) Total Response

The total response is the sum of the zero-state response and the zero-input response. Therefore,

y[n] = (29/15)(2)n + (16/15)(5)n + y*[n]where y*[n] is the zero-input response.

The zero-input response is the convolution of the impulse response h[n] and the input x[n]. Therefore,y*[n] = h[n] * x[n]

where * denotes convolution. We can use the definition of convolution:

y*[n] = ∑k=−∞n h[k] x[n − k]Since x[n] = (2)n u[n], we can simplify the expression:

y*[n] = ∑k=0n h[k] (2)n−k

The zero-input response is then:

y*[n] = h[0](2)n + h[1](2)n−1 + h[2](2)n−2 + … + h[n](2)0

Substituting the values of h[n] gives:

y*[n] = 2(1) + 0(2)n−1 + 12(2)n−2 − 48(2)n−3 + … + {−1/16}[2]n−8

Therefore, the total response is given by:

y[n] = (29/15)(2)n + (16/15)(5)n + y*[n]

y[n] = (29/15)(2)n + (16/15)(5)n + 2(1) + 0(2)n−1 + 12(2)n−2 − 48(2)n−3 + … + {−1/16}[2]n−8

The total response is: y[n] = (29/15)(2)n + (16/15)(5)n + 2(1) + 12(2)n−2 − 48(2)n−3 + … + {−1/16}[2]n−8

To know more about impulse visit:

https://brainly.com/question/30466819

#SPJ11

Determine whether the geometric series is convergent or divergent. [infinity] (2)^n /(6^n +1) n = 0

convergent ?divergent

If it is convergent, find its sum

Answers

Therefore, the sum of the geometric series is `1`.

The given series is `[infinity] (2)^n /(6^n +1) n = 0`.

We are to determine whether this geometric series is convergent or divergent.

Therefore, using the formula for the sum of a geometric series; for a geometric series `a, ar, ar^2, ar^3, … , ar^n-1, …` where the first term is a and the common ratio is r, the formula for the sum of the first n terms is:`

S n = a(1 - r^n)/(1 - r)`

In the given series `a = 1` and `r = 2/ (6^n +1)`

Thus the sum of the first n terms is given as follows:`

S n = 1(1 - (2/(6^n +1))^n) / (1 - 2/(6^n +1))`

For large values of n, the denominator `6^n +1` dominates the numerator, so that `2/(6^n +1)`approaches zero.

Hence, `r = 2/(6^n +1)`approaches zero and we have `lim r→0 = 0`

When `r = 0`, then `S n` becomes

`S n = 1(1 - 0^n)/ (1 - 0)

= 1`

To know more about geometric visit:

https://brainly.com/question/29170212

#SPJ11

Other Questions
The president of the retailer Prime Products has just approached the company's bank with a request for a $93.000, 90-day loan The purpose of the loan is to assist the company in acquiring inventories. Because the company has had some difficulty in paying off its loans in the past, the loan officer has asked for a cash budget to help determine whether the loan should be made. The following data are available for the months April through June, during which the loan will be used a. On April 1, the start of the loan period, the cash balance will be $36.000. Accounts receivable on April 1 will total $179.200, of which $153,600 will be collected during April and $20,480 will be collected during May. The remainder will be uncollectible b Past experience shows that 30% of a month's sales are collected in the month of sale, 60% in the month following sale, and 8% in the second month following sale. The other 2% is bad debts that are never collected. Budgeted sales and expenses for the three- month period follow Sales (011 on account) Merchandise purchases Payroll Lease payments Advertising Equipment purchases Depreciation April $ 232,000 $ 105,000 $ 22,500 $33,469 $ 63,500 5 $ 17,860 May $ 476,000 $ 163,500 $ 22.300 $ 31,400 $63.600 50 $ 37.se June 5 296,000 $ 135,500 $ 25,900 591,409 $ 41,650 S 102.ee $ 17,800 c. Merchandise purchases are paid in full during the month following purchase. Accounts payable for merchandise purchases during March, which will be paid in April, total $162,500. d. In preparing the cash budget, assume that the $93,000 loan will be made in April and repaid in June. Interest on the loan will total $1,280 Required: 1. Calculate the expected cash collections for April, May, and June, and for the three months in total 2. Prepare a cash budget, by month and in total, for the three-month period. Answer is not complete. Beginning cash balance Add receipts Prime Products Cash Budget S Collections from customers Total cash available Less cash disbursements Merchandise purchases Payroll Loase payments Advertising Equipment purchases Total cash disbursements Excess (deficiency) of cash available over disbursements Financing + Borrowings Repayments Interest Total financing Ending cash balance $ April 36,000 223,200 250,200 162.500 162,500 96,700 0 96,700 May 302,480 302,480 0 302,400 $302.400 < Prev June 392.960 392,960 0 392,900 0 $302.960 3 of 6 Quarter 918,640 918,640 D 918.640 0 $910,640 Next > The president of the retailer Prime Products has just approached the company's bank with a request for a $93.000, 90-day loan. The purpose of the loan is to assist the company in acquiring inventories. Because the company has had some difficulty in paying off its loans in the past, the loan officer has asked for a cash budget to help determine whether the loan should be made. The following data are available for the months April through June, during which the loan will be used a. On April 1, the start of the loan period, the cash balance will be $36,000. Accounts receivable on April 1 will total $179,200, of which $153,600 will be collected during April and $20,480 will be collected during May. The remainder will be uncollectible b. Past experience shows that 30% of a month's sales are collected in the month of sale, 60% in the month following sale, and 8% in the second month following sale. The other 2% is bad debts that are never collected. Budgeted sales and expenses for the three- month period follow April May June $ 476,000 $ 296,000 Sales (all on account) Merchandise purchases Payroll $ 232,000 $ 188,000 $ 163,500 $ 135,500 Lease payments Advertising $ 22,000 $ 31,400 $ 63,600 50 $ 22,000 $31,400 $63,600 $ 00 $ 17,000 $ 26,900 $31,400 $ 41,680 $ 102,000 $ 17,000 Equipment purchases Depreciation $ 17,900 c Merchandise purchases are paid in full during the month following purchase. Accounts payable for merchandise purchases during March, which will be paid in April, total $162,500 d. In preparing the cash budget, assume that the $93,000 loan will be made in April and repaid in June. Interest on the loan will total $1,280 Beginning cash balance Add receipts Prime Products Cash Budget April $ Collections from customers Total cash available Less cash disbursements Merchandise purchases Payroll Lease payments Advertising Equipment purchases Total cash disbursements Excess (deficiency) of cash available over disbursements Financing Borrowings Repayments Interest Total financing Ending cash balance 36,000 223,200 259,200 162,500 162,500 96,700 0 $ 96,700 May June 302,480 392,900 302,480 -392,900 0 0 302.400 392,960 0 $302.480 $382.960 Prev 3db #I Quarter 918,640 918,640 0 918,640 0 $918,640 What are all values of k for which the series n=0[infinity]((k 3+2)e k) nconverges? (A) k=1.314,k=1.193, and k=4.596 only (B) k4.596 only a. What are the differences between downward communication,upward communication, and lateral or horizontal communication? Useexamples in your explanation.b. What is the difference between the direc Question 9 Use the Law of Cosines to find the missing angle. Find mA to the nearest tenth of a degree. 22 17 B O 33.9 O 57.7 O 46.3 O 85.7 30 A A lawnmower operates in a perfectly competitive industry and its total costs are given by:TC(q) = 3q2+ 18q, where q denotes the number of lawns mowed.(a) (2) What is the firms marginal cost?(b) (3) What is the firms average costs? Does the firm have increasing, constant, or decreasingreturns to scale?(c) (2) Graph the marginal and average cost curves on the same set of axes.(d) (3) What is the price beneath which this lawnmower would choose to shut down?(e) (4) If the market price of a mowed lawn is $102 (!), how many lawns will this firm mow? Whatis the firms average cost at that level of output? How does it compare to the market price?(f) (6) Find an expression that denotes this firms profits as a function of the market price ((p)).Your answer should depend on p and otherwise contain only numerical constants. Hint: youranswer should be a piecewise function (see part (d)) and you will need to solve for supply as ageneral function of the market price. Pure butanol (C4H9OH)is fed into a semi-batch reactor containing pure ethyl acetate (CH3COOC2H5)to produce butyl acetate (CH3COOC4H9) and ethanol (C2H5OH)according to the following elementary and reversible reaction:CH3COOC2H5+C4H9OH CH3COOC4H9+C2H5OHThe reaction is carried out isothermally at 300K giving an equilibrium constant of 1.08 and a forward reaction rate constant of 9x10-5dm3/mol.s. Initially there is 200 dm3 of ethyl acetate in the reactor and butanol is fed in at a rate of 0.05 dm3/s. The feed and initial concentrations of butanol and ethyl acetate are 10.93 mol/dm3and 7.72 mol/dm3, respectively.(a)Plot the concentrations of butanol and butyl acetate as a function of time.(b)Suggest an optimum reaction time and total reactor volume to maximise the concentration of butyl acetate and avoid overflowing the vessel Suppose two firms (A and B) form a cartel, which decides to produce 100 units overall. Now, the cartel must distribute these 100 units to maximize cartel profit. Suppose the marginal cost of firm A equals. MCA = 100 + 2A, where A is the amount firm A produces; while the marginal cost of firm B equals: MCB = 200 + 42, where is the amount firm B produces. Accordingly, in order to maximize cartel profit, the cartel should set quotas such that A produces_units and B produces units. 50; 50 100; 0 0; 100 100; 100 A. B. C. D [36] Antitrust laws have been criticized on the basis that (i) it is expensive to litigate cases and (ii) the deadweight loss due to monopoly is very small. True False A. B. A. B. D. $1 [37] Which of the following are implicit forms of collusion? Price leadership Predatory pricing C. Cartel All of the above [38] Suppose a town has one provider of cable TV service, facing the following market conditions: Note: The industry marginal cost (MC) is constant at $12. 16 The deadweight loss in market welfare 15 due to monopoly in this case equals: A. $12,000 B 13.00 $3,000 c. $2,000 12.50 D. $0 12 = MC ATC MR D 800 1,000 2,000 2,500 Number of cable subscribers Dollars MU [39] A. B. C. D. A cartel is a group of firms that attempts to: maximize collective (i.e., joint) revenue. maximize collective (i.e., joint) profit. act independent of one another. maximize consumer surplus. B) Analytical Part (Each section is worth 10 points) Question 1) Assume the formula below as the main formulas central bank of Turkey. Central Bank Interest Rate= 2.07+1.28* inflation rate-1.95* unemployment gap, Unemployment gap-Unemployment rate - Natural Rate of Unemployment (If inflation is 10%, in the formula inflation rate=10, NOT 0,1, similarly if natural rate of unemployment is 10%, unemployment rate is 15%, unemployment gap is 5%, (15-10-5) and in the formula, unemployment gap=5, not 0,05) a) Choose a country from internet. Find its unemployment rate and the inflation rate. Find the interest rate its central bank should set according to Taylor Rule. b) Now assume the country you choose wants to cut its interest rate by half. How should unemployment rate or inflation rate should change so that the country can cut interest rate and still follow the Taylor's Rule? Charlie loves watching Teletubbies on his local public TV station, but he never sends any money to support the station during its fundraising drives. a. What name do economists have for people like Charlie? b. How can the government solve the problem caused by people like Charlie? c. Can you think of ways the private market can solve this problem? How does the existence of cable TV alter the situation? everyday biology cystic fibrosis and the promise of gene therapy If competitive markets, under certain conditions lead to efficient resource allocation, then there is no need for a central planner or government agency to exist. A) True B False the ability to distinguish fine detail between two very closely spaced objects CSR stands for Corporate Social Responsibility in this contextHow does CSR relate to law in business?Name a company you feel practices CSR in its business. Tell us why you picked this company.Do you feel CSR is a passing trend or here to stay? Provide details that support your viewpoint Three identical fatigue specimens (denoted A, B, and C) are fabricated from a nonferrous alloy. Each is subjected to one of the maximum-minimum stress cycles listed in the following table; the frequency is the same for all three tests.Specimen_max (MPa)_min (MPa)A+450-150B+300-300C+500-200A. Rank the fatigue lifetimes of these three specimens from the longest to the shortest.B. Now justify this ranking using a schematic S-N plot Inpatient psychiatric care is covered under Part A Medicare Insurance for 190 days per? Determine the shear force developed in each bolt If the bolts are spaced s = 250 mm apart and the applied shear is V = 39 k.N. Express your answer with the appropriate units. Suppose the random variables and have joint pdf f(x, y) = 15xy^2, 0 < y < x < 1. a) Find the marginal pdf f_1(x) of X. b) Find the conditional pdf f f_2 (y | x). c) Find P(Y > 1/3|X = x) for any x > 1/3. d) Are X and Y independent? Justify your answer. On December 29, 2011 Exxon Mobil encounters a major oil spill in connection with their oil rig off of the coast of Alabama. Exxon believes that it is probable that they will need to pay a significant amount in damages and fees, but they are not able to reasonably estimate the amount. On February 15, 2012, Exxon Mobil files their financial statements with the SEC. On March 15, 2012, Exxon Mobil settles all oil spill related lawsuits for $24 Billion cash. What journal entry will Exxon Mobil record on March 15, 2012? Edit View Insert Format Tools Table Question 2 3 pts On December 29, 2011 Exxon Mobil encounters a major oil spill in connection with their oil rig off of the coast of Alabama, Exxon believes that it is probable that they will need to pay a significant amount in damages and fees, but they are not able to reasonably estimate the amount. On February 15, 2012, Exxon Mobil files their financial statements with the SEC. On March 15, 2012, Exxon Mobil settles all oil spill related lawsuits for $24 Billion cash. What amount should Exxon Mobil report on their 2011 Balance Sheet related to this event? $0 $20 Billion O $24 Billion $30 Billion Question 1 3 pts On December 29, 2011 Exxon Mobil encounters a major oil spill in connection with their oil rig off of the coast of Alabama. Exxon believes that it is probable that they will need to pay a significant amount in damages and fees, but they are not able to reasonably estimate the amount. On February 15, 2012, Exxon Mobil files their financial statements with the SEC. On March 15, 2012, Exxon Mobil settles all oil spill related lawsuits for $24 Billion cash. How should this event be presented in the 2011 financial statements of Exxon Mobil? O Disclosure Only O Recognize (Create a Liability on the Balance Sheet) O Ignore, since the amount can't be estimated Suppose that the one-year forward dollar price of a euro is $1.31. Further, assume that the spot exchange rate is $1.3 per euro, and that the interest rate on euro deposits is 10 percent. What is the interest rate on dollar deposits that would make interest parity hold? Round to two decimal places. Enter a number like 2% as "2.00" and not "0.02." Note: you may end with a number that doesn't seem "realistic" and that's OK for the purposes of this question. Mass on a spring A mass oscillates up and down on the end of a spring. Find its position s relative to the equilibrium position if its acceleration is a(t)=sin t and its initial velocity and position are v(0)=3 and s(0)=0, respectively.