Find all solutions, if any, to the systems of congruences x ≡ 7 (mod 9), x ≡ 4 ( mod 12) and x ≡ 16 (mod 21).
What are the steps?
I know that you can't directly use the Chinese Remainder Theorem since your modulars aren't prime numbers.

Answers

Answer 1

x ≡ 859 (mod 756) is the solution to the system of congruences.

To solve the system of congruences x ≡ 7 (mod 9), x ≡ 4 ( mod 12) and x ≡ 16 (mod 21), we can use the method of simultaneous equations.

Step 1: Start with the first two congruences, x ≡ 7 (mod 9) and x ≡ 4 ( mod 12). We can write these as a system of linear equations:

x = 9a + 7

x = 12b + 4

where a and b are integers. Solving for x, we get:

x = 108c + 67

where c = 4a + 1 = 3b + 1.

Step 2: Substitute x into the third congruence, x ≡ 16 (mod 21), to get:

108c + 67 ≡ 16 (mod 21)

Simplify the congruence:

3c + 2 ≡ 0 (mod 21)

Step 3: Solve the simplified congruence, 3c + 2 ≡ 0 (mod 21), by trial and error or using a modular inverse. In this case, we can see that c ≡ 7 (mod 21) satisfies the congruence.

Step 4: Substitute c = 7 into the expression for x:

x = 108c + 67 = 108(7) + 67 = 859

Therefore, the solutions to the system of congruences are x ≡ 859 (mod lcm(9,12,21)), where lcm(9,12,21) is the least common multiple of 9, 12, and 21, which is 756.

Hence, x ≡ 859 (mod 756) is the solution to the system of congruences.

Learn more about congruences here

https://brainly.com/question/30818154

#SPJ11


Related Questions

Find the sum of this convergent series by using a well-known function. Identify the function and explain how you obtained the sum, manipulating your expression. ·?

Answers

A convergent series is a series in which the sum of its terms approaches a finite value as the number of terms increases to infinity. There are various methods for determining the sum of a convergent series, including the use of well-known functions such as geometric series, telescoping series, and power series.

For example, the sum of a geometric series with first term a and common ratio r can be found using the formula:

S = a/(1-r)

where S is the sum of the series. This formula can be derived by manipulating the expression for the sum of an infinite geometric series:

S = a + ar + ar^2 + ar^3 + ...

Multiplying both sides by r gives:

rS = ar + ar^2 + ar^3 + ar^4 + ...

Subtracting the second equation from the first gives:

S - rS = a

Solving for S gives the formula above.

In summary, well-known functions can be used to sum convergent series by manipulating the expressions for the series and applying appropriate formulas.

The correct question should be :

Find the sum of this convergent series by using a well-known function. Identify the function and explain how you obtained the sum, manipulating your expression.

∑(-1)ⁿ⁺¹(1/3ⁿn)

To learn more about convergent series visit : https://brainly.com/question/15415793

#SPJ11

Rocket mortgage

House cost:434,900

We will offer you a compounded annually loan,rate of 2. 625%,with a 10% deposit

Length of mortgage 20 years

Length of mortgage 30 years

Need answer ASAP

Answers

Assuming that the loan is for the full amount of the house cost ($434,900) and that the interest rate is compounded annually, the calculations are as follows:

For a 20-year mortgage:

10% deposit = $43,490

Loan amount = $391,410

Monthly payment = $2,256.91

Total interest paid over 20 years = $256,847.60

Total cost of the mortgage = $698,247.60

For a 30-year mortgage:

10% deposit = $43,490

Loan amount = $391,410

Monthly payment = $1,953.44

Total interest paid over 30 years = $333,038.40

Total cost of the mortgage = $767,448.40

To learn more about interest rate click here : brainly.com/question/15548383

#SPJ11

consider the r-vector space of infinitely-often differentiable r-valued functions c [infinity](r) on r. let d : c [infinity](r) → c[infinity](r) be the differential operator d : c [infinity](r) → c[infinity](r) , df = f 0 .

Answers

Differential operator d plays a central role in calculus, as it allows us to study the behavior of functions by analyzing their  

The question pertains to the r-vector space of infinitely-often differentiable r-valued functions c [infinity](r) on r. In this context, d is the differential operator which maps each function in the space to its derivative.

Specifically, given a function f in c [infinity](r), d(f) is defined as the derivative of f, denoted by f 0.

The differential operator d is a linear transformation, as it satisfies the properties of additivity and homogeneity. Additionally, it is continuous, meaning that small changes in the input function will result in small changes in the output function.

Moreover, the space of infinitely-often differentiable functions c [infinity](r) is an important one in mathematics, as it is used in various areas such as analysis, geometry, and physics.

To learn more about : functions

https://brainly.com/question/11624077

#SPJ11

For the following statement, explain the effect on the margin of error and hence the effect on the accuracy of estimating a population mean by a sample mean. Increasing the sample size while keeping the same confidence levelIncreasing the sample size while keeping the same confidence level __________ the margin of error and, hence, ________ the accuracy of estimating a population mean by a sample mean.

Answers

Increasing the sample size while keeping the same confidence level decreases the margin of error and, hence, increases the accuracy of estimating a population mean by a sample mean.

This is because a larger sample size reduces the variability in the data, resulting in a smaller standard error of the mean and a narrower confidence interval.

As a result, the estimate of the population mean based on the sample mean becomes more precise and closer to the true value of the population mean.

Sample size refers to the number of individuals or items selected from a population to be included in a statistical sample.

The margin of error (MOE) is the amount of random sampling error that is expected in a statistical survey's results.

Learn more about margin of error : https://brainly.com/question/10218601

#SPJ11

Layla ran the 200-meter race 3 times. Her fasted time was 26. 3 seconds. Her slowest time was 30. 3 seconds. If Layla's average time was 28. 0 seconds, what was her time for the third race?
Please help and show how to do it

Answers

Let's assume her time for the third race is x seconds.which is 27.4 seconds.

We know that her fastest time was 26.3 seconds and her slowest time was 30.3 seconds. Therefore, we can set up the following inequalities:

26.3 < x < 30.3

Now, we know that Layla ran the 200-meter race 3 times, and her average time was 28.0 seconds. The average is calculated by summing the times of all races and dividing by the number of races:

(26.3 + x + 30.3) / 3 = 28.0

Let's solve this equation to find the value of x:

26.3 + x + 30.3 = 3 * 28.0

56.6 + x = 84.0

x = 84.0 - 56.6

x = 27.4

Therefore, Layla's time for the third race was 27.4 seconds.

to know more about average,visit:

https://brainly.com/question/897199

#SPJ11

Admission to a theater cost $5. 50 for a child ticket and $11. 50 for an adult ticket. The theater sold 80 tickets for $734. 0. How many of each type of ticket was sold?

Answers

The number of child tickets sold is 56, and the number of adult tickets sold is 24.

Let's assume the number of child tickets sold is represented by 'x', and the number of adult tickets sold is represented by 'y'.

According to the given information, the total number of tickets sold is 80. Therefore, we have the equation:

x + y = 80 ---(1)

The total revenue generated from ticket sales is $734.00. Since each child ticket costs $5.50 and each adult ticket costs $11.50, we can express the total revenue as:

5.50x + 11.50y = 734.00 ---(2)

To solve this system of equations, we can use the substitution method or the elimination method. Let's use the elimination method:

Multiply equation (1) by 5.50 to eliminate 'x':

5.50(x + y) = 5.50(80)

5.50x + 5.50y = 440 ---(3)

Subtract equation (3) from equation (2) to eliminate 'x':

(5.50x + 11.50y) - (5.50x + 5.50y) = 734.00 - 440

6.00y = 294

y = 49

Substitute the value of y back into equation (1) to find x:

x + 49 = 80

x = 80 - 49

x = 31

Therefore, the number of child tickets sold is 31, and the number of adult tickets sold is 49, which adds up to a total of 80 tickets, as stated in the problem.

Visit here to learn more about revenue:

brainly.com/question/28558536

#SPJ11

Which expression represents the value, in dollars, of a certain number of dimes, d, and nickels, n? 0. 10d 0. 05n 0. 05d 0. 10n 0. 15d n 0. 15dn.

Answers

The expression that represents the value, in dollars, of a certain number of dimes, d, and nickels, n, is:

0.10d + 0.05n.

To determine the expression that represents the value, in dollars, of a certain number of dimes (d) and nickels (n), we can follow these steps:

Step 1: Consider the values associated with dimes and nickels.

Each dime has a value of $0.10.

Each nickel has a value of $0.05.

Step 2: Determine how the values of dimes and nickels contribute to the overall value.

The value of dimes is calculated by multiplying the number of dimes (d) by $0.10.

The value of nickels is calculated by multiplying the number of nickels (n) by $0.05.

Step 3: Combine the values of dimes and nickels to form the expression.

The value of dimes, 0.10d, represents the total value contributed by dimes.

The value of nickels, 0.05n, represents the total value contributed by nickels.

Therefore, Combining the value of dimes, 0.10d, and the value of nickels, 0.05n, gives us the expression 0.10d + 0.05n, which represents the value, in dollars, of a certain number of dimes (d) and nickels (n).

To know more about algebra, visit:

https://brainly.com/question/2601772

#SPJ11

Interest in first year 8% and beginning 2 year interest rate will go up to 23%. If balance is$1800 through the years what will be the difference in monthly interest owed during years 1 and 2

Answers

Suppose the initial balance is $1800, and the interest rate in the first year is 8 percent. In the second year, the interest rate would rise to 23 percent. We need to determine the difference in the monthly interest payable in years 1 and 2 in this case.  the difference in the monthly interest payable during years 1 and 2 is $22.5.

Here is how to compute the monthly interest for both years:

Year 1:In the first year, the interest rate is 8 percent.

Therefore, the monthly interest payable can be calculated as follows:

Monthly interest = (Annual interest rate x Balance)/12

Monthly interest = (8/100 x 1800)/12

Monthly interest = $12

Year 2:

In the second year, the interest rate is 23 percent.

Therefore, the monthly interest payable can be calculated as follows:

Monthly interest = (Annual interest rate x Balance)/12Monthly interest

= (23/100 x 1800)/12

Monthly interest = $34.5

Thus, the difference in the monthly interest payable between years 1 and 2 is:

$34.5 - $12

= $22.5.

Therefore, the difference in the monthly interest payable during years 1 and 2 is $22.5.

To know more about monthly interest payable visit:

https://brainly.com/question/24188453

#SPJ11

In any production process in which one or more workers are engaged in a variety of tasks, the total time spent in production varies as a function of the size of the workpool and the level of output of the various activities. In a large metropolitan department store, it is believed that the number of man-hours worked (y) per day by the clerical staff depends on the number of pieces of mail processed per day (x1) and the number of checks cashed per day (x2). Data collected for n = 20 working days were used to fit the model:
E(y) = Bo + B1x1+ B2x2
A partial printout for the analysis follows: Predicted
OBS x1 x2 Actual value predicted value Residual lower 95%CL Upper 95% CL
1 7781 644 74.707 83.175 -8.468 47.224 119.126
Interpret the 95% prediction interval for y shown on the printout.
A)We are 95% confident that the number of man-hours worked per day falls between 47.224 and 119.12.
B)We are 95% confident that the mean number of man-hours worked per day falls between 47.224 and 119.126 for all days in which 7,781 pieces of mail are processed and 644 checks are cashed
C)We expect to predict number of man-hours worked per day to within an amount between 47.224 and 119.126 of the true value.
D)We are 95% confident that between 47.224 and 119.126 man-hours will be worked during a single day in which 7,781 pieces of mail are processed and 644 checks are cashed.

Answers

The correct interpretation of the 95% prediction interval for y shown on the printout is:

D) We are 95% confident that between 47.224 and 119.126 man-hours will be worked during a single day in which 7,781 pieces of mail are processed and 644 checks are cashed.

This interpretation is based on the fact that a prediction interval gives a range of values in which we expect to find the response variable (in this case, the number of man-hours worked) for a specific set of predictor variable values (in this case, 7,781 pieces of mail processed and 644 checks cashed) with a certain level of confidence (in this case, 95%).

So, we can be 95% confident that the actual number of man-hours worked during a single day with these specific values of x1 and x2 falls between the lower and upper limits of the prediction interval, which are given as 47.224 and 119.126, respectively, in the printout.

Learn more about interval here:

https://brainly.com/question/13708942

#SPJ11

Problem 7.1 (35 points): Solve the following system of DEs using three methods substitution method, (2) operator method and (3) eigen-analysis method: ( x' =x - 3y y'=3x +7y

Answers

The integral value is x = -3c1*(e^(3t/2)/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)sin((sqrt(89)/2)t)) - 3c2(e^(3t/2)/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C

We have the following system of differential equations:

x' = x - 3y

y' = 3x + 7y

Substitution Method:

From the first equation, we have x' + 3y = x, which we can substitute into the second equation for x:

y' = 3(x' + 3y) + 7y

Simplifying, we get:

y' = 3x' + 16y

Now we have two first-order differential equations:

x' = x - 3y

y' = 3x' + 16y

We can solve for x in the first equation and substitute into the second equation:

x = x' + 3y

y' = 3(x' + 3y) + 16y

y' = 3x' + 25y

Now we have a single second-order differential equation for y:

y'' - 3y' - 25y = 0

The characteristic equation is:

r^2 - 3r - 25 = 0

Solving for r, we get:

r = (3 ± sqrt(89)i) / 2

The general solution for y is:

y = c1*e^(3t/2)cos((sqrt(89)/2)t) + c2e^(3t/2)*sin((sqrt(89)/2)t)

To find x, we can substitute this solution for y into the first equation and solve for x:

x' = x - 3(c1*e^(3t/2)cos((sqrt(89)/2)t) + c2e^(3t/2)*sin((sqrt(89)/2)t))

x' - x = -3c1*e^(3t/2)cos((sqrt(89)/2)t) - 3c2e^(3t/2)*sin((sqrt(89)/2)t)

This is a first-order linear differential equation that can be solved using an integrating factor:

IF = e^(-t)

Multiplying both sides by IF, we get:

(e^(-t)x)' = -3c1e^tcos((sqrt(89)/2)t) - 3c2e^t*sin((sqrt(89)/2)t)

Integrating both sides with respect to t, we get:

e^(-t)x = -3c1int(e^tcos((sqrt(89)/2)t) dt) - 3c2int(e^t*sin((sqrt(89)/2)t) dt) + C

Using integration by parts, we can solve the integrals on the right-hand side:

int(e^tcos((sqrt(89)/2)t) dt) = (e^t/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)*sin((sqrt(89)/2)t)) + C1

int(e^tsin((sqrt(89)/2)t) dt) = (e^t/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C2

Substituting these integrals back into the equation for x, we get:

x = -3c1*(e^(3t/2)/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)sin((sqrt(89)/2)t)) - 3c2(e^(3t/2)/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

Let's solve the system of differential equations using three different methods: substitution method, operator method, and eigen-analysis method.

Substitution Method:

We have the following system of differential equations:

x' = x - 3y ...(1)

y' = 3x + 7y ...(2)

To solve this system using the substitution method, we can solve one equation for one variable and substitute it into the other equation.

From equation (1), we can rearrange it to solve for x:

x = x' + 3y ...(3)

Substituting equation (3) into equation (2), we get:

y' = 3(x' + 3y) + 7y

y' = 3x' + 16y ...(4)

Now, we have a new system of differential equations:

x' = x - 3y ...(3)

y' = 3x' + 16y ...(4)

We can now solve equations (3) and (4) simultaneously using standard techniques, such as separation of variables or integrating factors, to find the solutions for x and y.

Operator Method:

The operator method involves representing the system of differential equations using matrix notation and finding the eigenvalues and eigenvectors of the coefficient matrix.

Let's represent the system as a matrix equation:

X' = AX

where X = [x, y]^T is the vector of variables, and A is the coefficient matrix given by:

A = [[1, -3], [3, 7]]

To find the eigenvalues and eigenvectors of A, we solve the characteristic equation:

det(A - λI) = 0

where I is the identity matrix and λ is the eigenvalue. By solving the characteristic equation, we can obtain the eigenvalues and corresponding eigenvectors.

Eigen-analysis Method:

The eigen-analysis method involves diagonalizing the coefficient matrix A by finding a diagonal matrix D and a matrix P such that:

A = PDP^(-1)

where D contains the eigenvalues of A on the diagonal, and P contains the corresponding eigenvectors as columns.

By diagonalizing A, we can rewrite the system of differential equations in a new coordinate system, making it easier to solve.

To solve the system using the eigen-analysis method, we need to find the eigenvalues and eigenvectors of A, and then perform the necessary matrix operations to obtain the solutions.

Please note that the above methods outline the general approach to solving the system of differential equations. The specific calculations and solutions may vary depending on the values of the coefficients and initial conditions provided.

Know more about differential equations here:

https://brainly.com/question/31583235

#SPJ11

Anya and Mari are 160 feet apart when they spot each other and they start moving toward one another at the same time. Anya, who is jogging, travels twice as fast as Mari, who is walking (a) (1 pt) If Mari travels 2 ft, how far does Anya travel? If Mari travels 4 ft, how far does Anya travel? Justify by explaining how you arrived at your answer. (b) (1 pt) If Mari travels M ft, how far does Anya travel? Write an expression using M. (©) (3 pts) Draw a diagram illustrating how far apart Anya and Mari are when they see each other. Include their positions and distance apart after Mari travels 4 feet. Label every length carefully and draw arrows to indicate the directions of travel. (d) (2 pts) Let D represent the varying distance in feet) between mari and Anya. Write D in terms of M. (e) (2 pts) Suppose instead that Anya decides to walk instead of jog. If Anya walks 25% faster than Mari, how far does Anya travel if Mari walks: 4 feet? 5 feet? M feet?

Answers

A) If Mari travels 2 ft, Anya travels for a distance of 4 ft

B) If Mari travels M ft, Anya travels for a distance of 2M ft

D)  D represents the varying distance in (feet) between Mari and Anya. D = 160 - 3M

E) If Anya walks 25% faster than Mari, Anya's travel if Mari walks M feet is M + 0.25M

A) If Mari travels 2 ft Anya will travel 4ft because Anya is jogging, and travels twice as fast as Mari.

Anya travels twice as fast as Mari

Mari travels = 2ft

Anya travel = 2 × 2

Arya travels = 4 ft

B) If Mari travels M ft, Anya travels 2M ft because Anya is jogging, and travels twice as fast as Mari.

Anya travels twice as fast as Mari

Mari travels = M ft

Anya travel = 2 × M

Arya travels = 2M ft

C)Refer to diagram

D) Total distance = 160

Distance between them = D

Distance between = total distance - total distance covered by Anya and Mari  

D = 160 -(2M +M)

D = 160 - 3M

E) Anya walks 25% faster than Mari

Anya travel = Mari walks + 25% Mari walks

Anya travel if Mari walks: 4 feet

= 4 +0.25(4)

= 5 feet

Anya travel if Mari walks: 5 feet

= 4 +0.25(5)

= 5.25 feet

Anya travel if Mari walks: M feet

=  M + 0.25(M)

Learn more about distance :

https://brainly.com/question/29300122

#SPJ4

Give the corresponding snapshots of memory after each of the following set of statements has been executed.1.int x1;x1=3+4int x(1),z(5);x=__z=__z=z/++x;Now z=__

Answers

These are the corresponding snapshots of memory after each set of statements have been executed.The value of x becomes 2 and the value of z becomes 2.

To answer this question, we need to understand how memory works in a computer. Whenever we declare a variable, it is assigned a memory location, and whenever we assign a value to it, that value is stored in that memory location. The corresponding snapshot of memory is the state of memory after each set of statements has been executed.
So, let's look at the given statements and their corresponding snapshots of memory:
1. int x1; x1 = 3+4
In this statement, we are declaring a variable x1 of type integer and assigning it the value 3+4, which is 7. Therefore, the corresponding snapshot of memory would look like this:
| Variable | Memory Location | Value |
|----------|----------------|-------|
| x1       | 1000           | 7     |
2. int x(1), z(5); x = __z = __z = z/++x;
In this statement, we are declaring two variables x and z of type integer and assigning the value 1 to x and 5 to z. Then, we are dividing z by the pre-incremented value of x and assigning the result to both x and z.
The pre-increment operator increases the value of x by 1 before it is used in the division. Therefore, the value of x becomes 2 and the value of z becomes 2.
So, the corresponding snapshot of memory would look like this:
| Variable | Memory Location | Value |
|----------|----------------|-------|
| x1       | 1000           | 7     |
| x        | 1004           | 2     |
| z        | 1008           | 2     |
In summary, the corresponding snapshots of memory after executing the given set of statements are:
1. x1 = 7
| Variable | Memory Location | Value |
|----------|----------------|-------|
| x1       | 1000           | 7     |
2. x = 2, z = 2
| Variable | Memory Location | Value |
|----------|----------------|-------|
| x1       | 1000           | 7     |
| x        | 1004           | 2     |
| z        | 1008           | 2     |
Therefore, these are the corresponding snapshots of memory after each set of statements have been executed.

To know more about corresponding visit :

https://brainly.com/question/29207897

#SPJ11

A scientist uses a submarine to study ocean life.
She begins 83 feet below sea level.
• After descending for 5 seconds, she's 151 feet below sea level.
Find the rate of change in the submarine's elevation in feet per second. If
necessary, round your answer to the nearest tenth

Answers

The scientist descends from 83 feet below sea level to 151 feet below sea level, a change in depth of 151 - 83 = 68 feet. This change occurs over a time of 5 seconds.

The rate of change in depth, or the speed at which the submarine is descending, is given by the ratio of the change in depth to the time taken:

Rate of change in depth = (final depth - initial depth) / time taken

Rate of change in depth = (151 ft - 83 ft) / 5 s

Rate of change in depth = 13.6 ft/s (rounded to one decimal place)

Therefore, the rate of change in the submarine's elevation is 13.6 feet per second.

Rewrite the product as a sum or difference. 16 sin(28x) sin(11x) Rewrite the product as a sum or difference. sin(-x) sin(9x)

Answers

The product as a sum or difference is:

1) 16 sin(28x) sin(11x) = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x) = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]

1) 16 sin(28x) sin(11x)
We can use the Product-to-Sum identity: sin(A)sin(B) = (1/2)[cos(A-B) - cos(A+B)]
So, 16 sin(28x) sin(11x) can be rewritten as:
8[cos(28x - 11x) - cos(28x + 11x)] = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x)
Again, we use the Product-to-Sum identity: sin(A)sin(B) = ([tex]\frac{1}{2}[/tex])[cos(A-B) - cos(A+B)]
So, sin(-x) sin(9x) can be rewritten as:
([tex]\frac{1}{2}[/tex])[cos(-x - 9x) - cos(-x + 9x)] = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]

Learn more about Product-to-Sum identity here:

https://brainly.com/question/29016343

#SPJ11

you pick one card at random from a standard deck of 52 cards. you pick a black card

Answers

Answer:

its like choosing one of 52 which is a 0,0213 chance

Step-by-step explanation:

Children living near a smelter were exposed to​ lead, and their IQ scores were subsequently measured. The histogram on the right was constructed from those IQ scores. Estimate the frequency for each of the six score categories.Category​20-39​40-59​60-79​80-99​100-119​120-139

Answers

From the given histogram, the frequency for each of the six score categories are :

(i) 20-39 is 4,

(ii) ​40-59 is 15,

(iii) ​60-79 is 39,

(iv) ​80-99 is 16,

(v) ​100-119 is 5,

(vi) ​120-139 is 3.

In order to estimate the frequency for each score category, we need to observe the given histogram and determine the height or frequency of each bar within the corresponding score range. The histogram have labeled intervals which represents IQ-Score,

Part (i) : For the category "20 - 39", we see that the frequency represented on "y-axis" is "4".

Part (ii) : For the category "40 - 59", we see that the frequency represented on "y-axis" is "15".

Part (iii) : For the category "60 - 79", we see that the frequency represented on "y-axis" is "39"

Part (iv) : For the category "80 - 99", we see that the frequency represented on "y-axis" is "16".

Part (v) : For the category "100 - 119", we see that the frequency represented on "y-axis" is "5".

Part (vi) : For the category "120 - 139", we see that the frequency represented on "y-axis" is "3".

Learn more about Histogram here

https://brainly.com/question/13177046

#SPJ4

The given question is incomplete, the complete question is

Children living near a smelter were exposed to​ lead, and their IQ scores were subsequently measured. The histogram on the right was constructed from those IQ scores. Estimate the frequency for each of the six score categories.

Category​ (i) 20-39, (ii) ​40-59, (iii) ​60-79, (iv) ​80-99, (v) ​100-119, (vi) ​120-139.

Consider the reduction of the rectangle. A large rectangle has a length of 16. 8 feet and width of 2. 3 feet. A smaller rectangle has a length of 4. 5 feet and width of x feet. Not drawn to scale Rounded to the nearest tenth, what is the value of x? 0. 1 feet 0. 6 feet 1. 6 feet 2. 0 feet.

Answers

A large rectangle has a length of 16.8 feet and width of 2.3 feet. A smaller rectangle has a length of 4.5 feet and width of x feet. the value of x is 0.6 feet

The solution of the given problem is as follows:

Given: A large rectangle has a length of 16.8 feet and width of 2.3 feet. A smaller rectangle has a length of 4.5 feet and width of x feet.

We know that the ratio of width is the same as the ratio of length of the rectangles of similar shape, thus the formula for the reduction of the rectangle is:

`large rectangle width / small rectangle width = large rectangle length / small rectangle length`

Putting the given values, we get:

`2.3 / x = 16.8 / 4.5`

Solving the above expression, we get:x = 0.6 feet (rounded to the nearest tenth)

Therefore, the value of x is 0.6 feet.Answer: 0.6 feet.

To know more about rectangle visit:

https://brainly.com/question/15019502

#SPJ11

create a table that lists all of the plumbing fixtures (with proper labeling) and their associated drainage fixture unit (dfu).

Answers

Here is a table that lists some common plumbing fixtures along with their corresponding Drainage Fixture Units (DFU):

Plumbing Fixture Drainage Fixture Unit (DFU)

Water closet (toilet).       4

Bathtub.                          2

Lavatory (sink)                1

Shower                           2

Bidet                               2

Floor drain                      2

Urinal, stall type             2

Drinking fountain           1

Dishwasher                    2

Washing machine          2

Note that DFUs are used to determine the size of a building's drain waste and vent (DWV) system, which is responsible for removing wastewater and other waste materials from the building. The DFU values assigned to plumbing fixtures are based on their flow rates and the amount of waste they produce.

To know more about Drainage Fixture Units refer here:

https://brainly.com/question/28430942

#SPJ11

(-1)×(-1)×(-1)×(2m+1) times where m is a natural number,is equal to?
1. 1
2. -1
3. 1 or-1
4. None​

Answers

(-1)×(-1)×(-1)×(2m+1) when m is a natural number is equal to 1.

As per the given question:(-1)×(-1)×(-1)×(2m+1) when m is a natural number. When multiplying two negative numbers the result is always positive. Hence, here we have three negative numbers hence the product of these three numbers will be negative(-1)×(-1)×(-1) = -1
When this is multiplied with (2m+1), we get (-1)×(-1)×(-1)×(2m+1) = -1×(2m+1) = -2m-1
To find the value of m, we need to set -2m-1 = 0
Solving this equation will give the value of m = -1/2
We know that as per the given question, m is a natural number and natural numbers are positive integers.

Hence, we cannot have a negative value of m.

Therefore, we can conclude that (-1)×(-1)×(-1)×(2m+1) when m is a natural number is equal to 1.

To know more about natural numbers, click here

https://brainly.com/question/17273836

#SPJ11

(1 point) find the angle θ between the vectors a=9i−j−5k and b=2i j−8k.

Answers

The  required answer is the angle between vectors a and b is 44.8 degrees.

To find the angle θ between two vectors a and b, we use the dot product formula:
a · b = |a| |b| cos θ

where |a| and |b| are the magnitudes of vectors a and b, respectively.
First, let's calculate the dot product of a and b:
a · b = (9)(2) + (-1)(0) + (-5)(-8) = 18 + 40 = 58
Variable  were explicit numbers solve a range of problems in a single computation. The quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula. A variable is either a symbol representing an unspecified term of the theory , or a basic object of the theory that is manipulated ,without referring to its possible intuitive interpretation.
Next, let's calculate the magnitudes of vectors a and b:
|a| = sqrt(9^2 + (-1)^2 + (-5)^2) = sqrt(107)
|b| = sqrt(2^2 + 1^2 + (-8)^2) = sqrt(69)
the angle θ by taking the inverse cosine of the cosine value: θ = (57 / (√107 * √69)
Now we can substitute these values into the dot product formula to solve for θ:
58 = sqrt(107) sqrt(69) cos θ
cos θ = 58 / (sqrt(107) sqrt(69))
θ = cos^-1(58 / (sqrt(107) sqrt(69)))
Now you have the angle θ between the two vectors a and b.
Using a calculator, we find that θ is approximately 44.8 degrees.

Therefore, the angle between vectors a and b is 44.8 degrees.

To know more about the variable. Click on the link.

https://brainly.com/question/15078630

#SPJ11

The relationship between the elapsed time, ttt, in years, since alina began studying the population, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, is modeled by the following function:

Answers

To model the relationship between the elapsed time, ttt, in years, since Alina began studying the population, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, we can use the following function:

n(t) = kt + b

where kk is a constant that represents the initial rate of population growth, and bb is a constant that represents the current population size.

To determine the values of kk and bb, we can use the following information:

The initial population size was 100,000 bears, so bb = 100,000.Alina began studying the population 10 years ago, so t = 10.

Substituting these values into the function, we get:

n(t) = 10(t + 10) + 100,000

n(t) = 100,000 + 100t

n(t) = 100,000 + 10t

Therefore, the relationship between the elapsed time, ttt, in years, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, can be modeled by the following function:

n(t) = 100,000 + 10t

Learn more about functions visit : brainly.com/question/11624077

#SPJ11

A bag is filled with 100 marbles each colored red, white or blue. The table
shows the results when Cia randomly draws
10 marbles. Based on this data, how many of
the marbles in the bag are expected to be red?

Answers

Based on the data we have, it is expected that there is a probability that there are 30 red marbles in the bag.

What is probability?

The probability of an event is  described as a number that indicates how likely the event is to occur.

There are 100 marbles in the bag which  are all either red, white or blue,

100/3 = 33.33  marbles of each color.

From the table ,  we know that Cia randomly drew 10 marbles, and 3 of them were red.

That means Probability of (red) = 3/10 = 0.3

The expected number of red marbles = Probability of (red) x  the total number of marbles

= 0.3 * 100

= 30 red marbles

Learn more about probability at:

https://brainly.com/question/13604758

#SPJ1

Find the outward flux of the vector field F = (x – y)i + (y – x)j across the square bounded by x = 0, x = 1, y = 0, y = 1. (Use the outward pointing normal). (a) Find the outward flux across the side x = = 0,0 < y < 1: M

Answers

The outward flux of the given vector field F across the square bounded by x = 0, x = 1, y = 0, y = 1 is 0.

To find the outward flux across the side x=0, we need to integrate the dot product of the vector field F and the outward pointing normal vector n on this side, over the range of values of y from 0 to 1.

The outward pointing normal vector n on the side x=0 is -i. Thus, the dot product of F and n is (x-y)(-1) = (y-x). So, the outward flux across this side is given by the integral of (y-x)dy from y=0 to y=1, which evaluates to 1/2.

However, since the outward flux across the other three sides is also 1/2, but in the opposite direction, the net outward flux across the entire square is 0.

For more questions like Integral click the link below:

https://brainly.com/question/22008756

#SPJ11

Find an increasing subsequence of maximal length and a decreasing subsequence of maximal length in the sequence $22, 5, 7, 2, 23, 10, 15, 21, 3, 17.$

Answers

The increasing subsequence of maximal length is $5,7,10,15,21$ and the decreasing subsequence of maximal length is $22,23,17$.

To find an increasing subsequence of maximal length, we can use the longest increasing subsequence algorithm. Starting with an empty sequence, we iterate through each element of the given sequence and append it to the longest increasing subsequence that ends with an element smaller than the current one.

If no such sequence exists, we start a new increasing subsequence with the current element. The resulting sequence is the increasing subsequence of maximal length.

Using this algorithm, we get the increasing subsequence $5,7,10,15,21$ of length 5.

To find a decreasing subsequence of maximal length, we can reverse the given sequence and use the longest increasing subsequence algorithm on the reversed sequence. The resulting sequence is the decreasing subsequence of maximal length.

Using this algorithm, we get the decreasing subsequence $22,23,17$ of length 3.

For more questions like Sequence click the link below:

https://brainly.com/question/21961097

#SPJ11

an adult is selected at random. the probability that the person's highest level of education is an undergraduate degree is

Answers

The probability that a randomly selected adult has an undergraduate degree would be 0.30 or 30%.

To determine the probability that an adult's highest level of education is an undergraduate degree, we would need information about the distribution of education levels in the population. Without this information, it is not possible to calculate the exact probability.

However, if we assume that the distribution of education levels in the population follows a normal distribution, we can make an estimate. Let's say that based on available data, we know that approximately 30% of the adult population has an undergraduate degree.

Know more about probability here:

https://brainly.com/question/30034780

#SPJ11

A garden supplier claims that its new variety of giant tomato produces fruit with an mean weight of 42 ounces. A test is made of H0: μ-42 versus H1 : μ 42. The null hypothesis is rejected. State the appropriate conclusion. The mean weight is equal to 42 ounces. There is not enough evidence to conclude that the mean weight is 42 ounces. There is not enough evidence to conclude that the mean weight differs from 42 ounces The mean weight is not equal to 42 ounces. 1 points Save Ans
Previous question

Answers

The mean weight will not be  equal to 42 ounces.

Based on the given information, we have conducted a hypothesis test with the null hypothesis H0: μ=42 and alternative hypothesis H1: μ≠42, where μ is the mean weight of the new variety of giant tomato.

The null hypothesis is rejected, which means that there is strong evidence against the claim made by the garden supplier that the mean weight is 42 ounces.

Therefore, we can conclude that the mean weight is not equal to 42 ounces, and it could be either more or less than 42 ounces. The appropriate conclusion is "The mean weight is not equal to 42 ounces."

To know more about null hypothesis refer here:

https://brainly.com/question/28920252

#SPJ11

A small computer store has room to display up to three computers for sale. Customers come at times of a Poisson process with rate 2 per week to buy a computer and will buy one if at least 1 is available. When the store bas only one computer left, it plaes an order for two more computets. Because the store always goes for the cheapest shipping option, they get the world's worst service, so the order takes exponentially distributed amount of time with mean 1 neek to arrive. Naturally, while waiting for a shipment, sometimes their inventory levels are reduced to 0 (a) Find the transition rate matrix Q (b) Find the stationary distribution for the inventory levels. (e) At what rate does the store make sales? (Hint: you need the answer to (b) for this)

Answers

The rate of sales is 2*(32/39)=64/39 per week.

To find the transition rate matrix Q, we need to consider the different possible inventory levels and the rates of transition between them. Let's label the states as 0, 1, 2, and 3, representing the number of computers in stock.

If there are 0 or 1 computers in stock, the arrival rate is 2 per week and the transition rate to the next state is 2. If there are 2 computers in stock, the arrival rate is still 2 per week, but the transition rate to the next state is 4 (since there are two opportunities for a customer to buy).

Finally, if there are 3 computers in stock, the arrival rate is 0 (since customers only buy when at least one computer is available), and the transition rate to the next state is 0 if there is no pending order, or 1/2 if there is.

The resulting transition rate matrix Q is:

[ -2   2   0   0 ]
[  2  -4   2   0 ]
[  0   2  -4 1/2 ]
[  0   0  1/2   0 ]

To find the stationary distribution for the inventory levels, we need to solve for the vector πQ=0, where π is the stationary distribution and Q is the transition rate matrix. Solving this system of equations, we get:

π0 = 16/39, π1 = 20/39, π2 = 4/13, π3 = 0

This means that the store is most likely to have 1 computer in stock, followed by 0, 2, and never 3.

To find the rate of sales, we need to consider the total arrival rate of customers, which is 2 per week. However, customers will only buy when at least 1 computer is available, which occurs with probability π1+π2+π3=20/39+4/13+0=32/39.

To learn more about : sales

https://brainly.com/question/24951536

#SPJ11

(a) The transition rate matrix Q =
[ -2   2   0   0 ]
[  0  -1   0   1 ]
[  0   0  -1   1 ]
[  0   2   0  -2 ]
(b) The store will have 1 computer in stock about 14% of the time, 2 computers in stock about 29% of the time, and 3 computers in stock about 57% of the time.

(c) The store makes sales at a rate of 1 per week on average.

To find the transition rate matrix Q, we need to consider all the possible states of the system. In this case, the inventory level can be 0, 1, 2, or 3. Let's represent these states by 0, 1, 2, and 3, respectively. The transition rate from state i to state j is denoted by qij.

Starting with state 0, customers arrive at a rate of 2 per week and buy a computer if one is available. Therefore, the transition rate from 0 to 1 is q01 = 2. Since the store orders 2 more computers when it has only 1 left, the transition rate from 1 to 3 is q13 = 1/1 = 1 (because the order takes 1 week on average to arrive). Similarly, the transition rate from 2 to 3 is q23 = 1/1 = 1. Once the order arrives, the inventory level goes up by 2, so the transition rate from 3 to 1 is q31 = 2. Finally, the transition rates for staying in the same state are q00 = 0, q11 = 0, q22 = 0, and q33 = 0.

Putting all these transition rates in a matrix, we get

Q =
[ -2   2   0   0 ]
[  0  -1   0   1 ]
[  0   0  -1   1 ]
[  0   2   0  -2 ]

To find the stationary distribution for the inventory levels, we need to solve the equation Qπ = 0, where π is the vector of stationary probabilities. Since the sum of probabilities in any state must be 1, we also have the condition π0 + π1 + π2 + π3 = 1.

Solving the system of equations, we get

π = [ 1/7   2/7   2/7   2/7 ]

This means that the store will have 1 computer in stock about 14% of the time, 2 computers in stock about 29% of the time, and 3 computers in stock about 57% of the time.

Finally, to find the rate at which the store makes sales, we need to consider the transitions from states 1, 2, and 3 (since no sales can happen in state 0). The total rate of leaving these states is λ = q13π3 + q23π3 + q31π1 = 1/7 + 2/7 + 4/7 = 1. Therefore, the store makes sales at a rate of 1 per week on average.
Visit here to learn more about transition rate matrix:

brainly.com/question/31473469

#SPJ11

Calculate the cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v)

Answers

The cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v) is                ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

The cross product of two vectors using the distributive property:

(u - 7v) × (u + 7v) = u × u + u × 7v - 7v × u - 7v × 7v

Also, cross product is anti-commutative. Specifically, the cross product of v × w is equal to the negative of the cross product of w × v. So, we can simplify the expression as follows:

(u - 7v) × (u + 7v) = u × 7v - 7v × u - 7(u × 7v)

Now, using u × v = ⟨7, 6, 0⟩ to evaluate the cross products:

u × 7v = 7(u × v) = 7⟨7, 6, 0⟩ = ⟨49, 42, 0⟩

7v × u = -u × 7v = -⟨7, 6, 0⟩ = ⟨-7, -6, 0⟩

Substituting these values into the expression:

(u - 7v) × (u + 7v) = ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - 7⟨7, 6, 0⟩ - 7⟨-7, -6, 0⟩

= ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - ⟨49, 42, 0⟩ + ⟨49, 42, 0⟩

= ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩

Therefore, (u - 7v) × (u + 7v) = ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

Know more about cross product here:

https://brainly.com/question/30284978

#SPJ11

verify that the inverse of at is (a- 1 )r. hint: use the multiplication rule for tranposes, (cd)r = d7cr.

Answers

By using the multiplication rule for transposes,  (cd)^t = d^t c^t  it is proved that the inverse of a^t is (a^- 1 )^t.The multiplication rule of transposes states that , the transpose of the product of two matrices is equal to the product of their transposes in the reverse order.

Follow the steps below to prove that inverse of a^t is (a- 1 )t,  (Let us assume A = a):

Consider a matrix A and its inverse A^-1. According to the definition of the inverse, AA^-1 = I (identity matrix). Take the transpose of both sides of the equation: (AA^-1)^T = I^T. Apply the multiplication rule for transposes: (A^-1)^T A^T = I^T. Note that the identity matrix is its own transpose (I^T = I).Now, we have (A^-1)^T A^T = I. This equation demonstrates that the product of (A^-1)^T and A^T results in the identity matrix.

Thus, we have verified that the inverse of A^T is indeed (A^-1)^T. Therefore it is proved that  inverse of a^t is (a^- 1 )^t.

To learn more about inverse : https://brainly.com/question/3831584

#SPJ11

Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}b. If a sequence of positive numbers converges, then the sequenceis decreasing.c. If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

Answers

a. True, b. False, c. False. are the correct answers.

Find out if the given statements are correct or not?

a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}

This statement is true. The sequence of partial sums for the series 1+2+3+⋯ is given by:

1, 1+2=3, 1+2+3=6, 1+2+3+4=10, …

We can see that each term in the sequence of partial sums is obtained by adding the next term in the series to the previous partial sum. For example, the second term in the sequence of partial sums is obtained by adding 2 to the first term. Similarly, the third term is obtained by adding 3 to the second term, and so on. Therefore, the sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}.

b. If a sequence of positive numbers converges, then the sequence is decreasing.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and converges to 0 as n approaches infinity. However, this sequence is not decreasing. In fact, each term in the sequence is greater than the previous term. For example, the second term (1/2) is greater than the first term (1/1), and the third term (1/3) is greater than the second term (1/2), and so on.

c. If the terms of the sequence {an} are positive and increasing, then the sequence of partial sums for the series ∑[infinity]k=1 ak diverges.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and increasing, since each term is greater than the previous term. The sequence of partial sums for the series ∑[infinity]k=1 ak is given by:

1, 1+1/2, 1+1/2+1/3, 1+1/2+1/3+1/4, …

We can see that the sequence of partial sums is increasing, but it is also bounded above by the value ln(2) (which is approximately 0.693). Therefore, by the Monotone Convergence Theorem, the series converges to a finite value (in this case, ln(2)).

Learn more  about  Sequence

brainly.com/question/16671654

a.  The statement "The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}" is true

b. The statement If a sequence of positive numbers converges, then the sequence is decreasing is false

c. the statement is false If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

a. The statement is true. The nth partial sum of the series 1 + 2 + 3 + ... + n is given by the formula Sn = n(n+1)/2. For example, S3 = 3(3+1)/2 = 6, which corresponds to the third term of the sequence {1,3,6,10,...}. This pattern continues for all n, so the sequence of partial sums for the series 1 + 2 + 3 + ... is indeed {1,3,6,10,...}.

b. The statement is false. A sequence of positive numbers may converge even if it is not decreasing. For example, the sequence {1, 1/2, 1/3, 1/4, ...} is not decreasing, but it converges to 0.

c. The statement is false. The sequence of partial sums for a series with positive, increasing terms may converge or diverge. For example, the series ∑[infinity]k=1(1/k) has positive, increasing terms, but its sequence of partial sums (1, 1+1/2, 1+1/2+1/3, ...) converges to the harmonic series, which diverges.

On the other hand, the series ∑[infinity]k=1(1/2^k) also has positive, increasing terms, and its sequence of partial sums (1/2, 3/4, 7/8, ...) converges to 1.

Learn more about converges series at https://brainly.com/question/15415793

#SPJ11

Other Questions
calculate g at 298 k for the given process: c2h5oh(l) c2h5oh(g) if the partial pressure of c2h5oh(g) is 0.0263 atm and g = 6.2 kj/mol at 298 k and 1 atm = 1.a. 6.2 KJb. 2.8 KJc. -15 KJd. 15 KJe. -2.8 KJ explain why the integral is improper. 11/10 8/(x 10)3/2 dx at least one of the limits of integration is not finite. the integrand is not continuous on [10, 11]. You want to conserve a species of monkey that has dull coloration and a limited home range, which is also difficult to breed in captivity. You should make use of ______.A. a reserveB. ecotourismC. predator removalD. habitat restoration during depolarization membrane potential becomes a. true b. false more positive a person standing a certain distance from eleven identical loudspeakers is hearing a sound level intensity of 112 db. what sound level intensity would this person hear if two are turned off? in dB I did not sign up for a brainly account an want to cancel any membership that I have. It was billed to my amex card according to howard gardner, gardeners and farmers are , and they need intelligence to do their jobs well. when a firm expands internationally through selling rights to foreign entities adopt its business format and use its brand name, it is called 4Why is it important to consider the historical context surrounding an eventwhen making a historical interpretation?A. A conclusion that does not consider context is a generalizationrather than an interpretation.B. Events happening at the same time might have influenced oneanother.C. Every historical interpretation must consider political and socialconsequences of an event.D. Historical interpretations are only valid if they are written in asimilar context as the event. evaluate the integral by making the given substitution. (use c c for the constant of integration.) cos 7 t sin t d t , u = cos t cos7tsint dt, u=cost A slice is made parallel to the base of a right rectangular pyramid. What is the shape of the resulting two-dimensional cross-section? Drag and drop the word to correctly complete the sentence. The cross-section is in the shape of a Response area. Identify whether each of the following statements is or is not a provision of Occupational Safety and Health Act (OSHA). Not a Provision Statement Provision OSHA is authorized to inspect and investigate during work hours at any place of employment and all pertinent conditions and to question privately any employer, owner, operator, agent, or employee. Self-employed workers are covered by OSHA. OSHA covers all private sector employees and public employees in state and local governments. An OSHA inspector finds that a construction company that has been given a stop work order told workers to continue digging trenches for a sewer ine. As a result, a construction worker is partially buried when a trench collapses. Fortunately, coworkers take quick action, saving the employee from what could have been a horrible death. The inspector is likely to issue citation. This citation carries: an other-than-serious a serious O A penalty of up to $50,000 per situation a willful A penalty of up to $126,749 for each violation O A penalty of up to $250,000 per individual A maximum penalty of $7,000 Two boxes with masses 2 kg and 8 kg are attached to the ends of a meter stick. At which of the following distances from the 2 kg box should a fulcrum be placed to balance the meter stick so it doesn't rotate? th 40 m 20 m .60 m O .80 m How long will it take to deposit 2.32 g of copper from a CuSO4(aq) solution using a current of 0.854 amps?A. 120 minutes B. 137 minutes C. 65 minutes D. 358 minutes E. 358 minutes determine the slope of the tangent line, then find the equation of the tangent line at t = 36 t=36 . The first step is to enter a formula to reference the loan amount for the beginning balance for the first payment.In cell B9, enter a formula that references cell D2. Identify the compound with ionic bonding. a. S b. LiBr c. H2O d. Na e. He the flower color of the four o clock plant is determined by alleles of genes that demonstrate___ The slope of a species-area relationship is expected to be lower in mainland areas compared to islands because: Consider the following problem: The data set includes 107 body temperatures of healthy adult humans for which x=98.7F and s = 0.72 F. Construct a 99% confidence interval estimate of the mean body temperature of all healthy humans. What is the appropriate symbol to use for the answer?___ < < ______ < < ______ < p < ______ < z < ______ < n < ___