Step-by-step explanation:
it will help u
The average undergraduate cost for tuition, fees, and room and board for two-year institutions last year was $13,252. The following year, a random sample of 20 two-year institutions had a mean of $15,560 and a standard deviation of $3500. Is there sufficient evidence at the ?= 0.05 level to conclude that the mean cost has increased. Solve the question by traditional approach.
Answer:
The p-value of the test is 0.0041 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean cost has increased.
Step-by-step explanation:
The average undergraduate cost for tuition, fees, and room and board for two-year institutions last year was $13,252. Test if the mean cost has increased.
At the null hypothesis, we test if the mean cost is still the same, that is:
[tex]H_0: \mu = 13252[/tex]
At the alternative hypothesis, we test if the mean cost has increased, that is:
[tex]H_1: \mu > 13252[/tex]
The test statistic is:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
13252 is tested at the null hypothesis:
This means that [tex]\mu = 13252[/tex]
The following year, a random sample of 20 two-year institutions had a mean of $15,560 and a standard deviation of $3500.
This means that [tex]n = 20, X = 15560, s = 3500[/tex]
Value of the test statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{15560 - 13252}{\frac{3500}{\sqrt{20}}}[/tex]
[tex]t = 2.95[/tex]
P-value of the test and decision:
The p-value of the test is found using a t-score calculator, with a right-tailed test, with 20-1 = 19 degrees of freedom and t = 2.95. Thus, the p-value of the test is 0.0041.
The p-value of the test is 0.0041 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean cost has increased.
Find the mean or average of these savings accounts $215, $156,$318, $75, and $25
Answer:
157.8
Step-by-step explanation:
Add them all up to get 789 and divide them by 5 as there are five numbers to get the answer:)
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
p(x, y) y
0 1 2
x 0 0.10 0.03 0.01
1 0 08 0.20 0.06
2 0.05 0.14 0.33
(a) Given that X = 1, determine the conditional pmf of Y�i.e., pY|X(0|1), pY|X(1|1), pY|X(2|1).
(b) Given that two hoses are in use at the self-service island, what is the conditional pmf of the number of hoses in use on the full-service island?
(c) Use the result of part (b) to calculate the conditional probability P(Y ? 1 | X = 2).
(d) Given that two hoses are in use at the full-service island, what is the conditional pmf of the number in use at the self-service island?
Answer:
(a): The conditional pmf of Y when X = 1
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
(b): The conditional pmf of Y when X = 2
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
(c): From (b) calculate P(Y<=1 | X =2)
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
(d): The conditional pmf of X when Y = 2
[tex]p_{X|Y}(0|2) = 0.025[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]
Step-by-step explanation:
Given
The above table
Solving (a): The conditional pmf of Y when X = 1
This implies that we calculate
[tex]p_{Y|X}(0|1), p_{Y|X}(1|1), p_{Y|X}(2|1)[/tex]
So, we have:
[tex]p_{Y|X}(0|1) = \frac{p(y = 0\ n\ x = 1)}{p(x = 1)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.08+0.20+0.06}[/tex]
[tex]p_{Y|X}(0|1) = \frac{0.08}{0.34}[/tex]
[tex]p_{Y|X}(0|1) = 0.2353[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|1) = \frac{0.20}{0.34}[/tex]
[tex]p_{Y|X}(1|1) = 0.5882[/tex]
[tex]p_{Y|X}(2|1) = \frac{0.06}{0.34}[/tex]
[tex]p_{Y|X}(2|1) = 0.1765[/tex]
Solving (b): The conditional pmf of Y when X = 2
This implies that we calculate
[tex]p_{Y|X}(0|2), p_{Y|X}(1|2), p_{Y|X}(2|2)[/tex]
So, we have:
[tex]p_{Y|X}(0|2) = \frac{p(y = 0\ n\ x = 2)}{p(x = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.05+0.14+0.33}[/tex]
[tex]p_{Y|X}(0|2) = \frac{0.05}{0.52}[/tex]
[tex]p_{Y|X}(0|2) = 0.0962[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{Y|X}(1|2) = \frac{0.14}{0.52}[/tex]
[tex]p_{Y|X}(1|2) = 0.2692[/tex]
[tex]p_{Y|X}(2|2) = \frac{0.33}{0.52}[/tex]
[tex]p_{Y|X}(2|2) = 0.6346[/tex]
Solving (c): From (b) calculate P(Y<=1 | X =2)
To do this, where Y = 0 or 1
So, we have:
[tex]P(Y\le1 | X =2) = P_{Y|X}(0|2) + P_{Y|X}(1|2)[/tex]
[tex]P(Y\le1 | X =2) = 0.0962 + 0.2692[/tex]
[tex]P(Y\le1 | X =2) = 0.3654[/tex]
Solving (d): The conditional pmf of X when Y = 2
This implies that we calculate
[tex]p_{X|Y}(0|2), p_{X|Y}(1|2), p_{X|Y}(2|2)[/tex]
So, we have:
[tex]p_{X|Y}(0|2) = \frac{p(x = 0\ n\ y = 2)}{p(y = 2)}[/tex]
Reading the data from the given table, the equation becomes
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.01+0.06+0.33}[/tex]
[tex]p_{X|Y}(0|2) = \frac{0.01}{0.40}[/tex]
[tex]p_{X|Y}(0|2) = 0.025[/tex]
Using the format of the above formula for the rest, we have:
[tex]p_{X|Y}(1|2) = \frac{0.06}{0.40}[/tex]
[tex]p_{X|Y}(1|2) = 0.150[/tex]
[tex]p_{X|Y}(2|2) = \frac{0.33}{0.40}[/tex]
[tex]p_{X|Y}(2|2) = 0.825[/tex]
Hattie had $3,000 to invest and wants to earn 10.6% interest per year. She will put some of the money into an account that earns 12% per year and the rest into an account that earns 10% per year. How much money should she put into each account?
Answer:
900 at 12%
2100 at 10%
Step-by-step explanation:
Let x= amount invested at 12%
let y= amount invested at 10%
with that being said we can write the two equation
Equation 1: x+y=3000
Equation 2: 3000*.106=.12x+.1y
isolte x from equation 1
x= 3000-y
plug this into equation 2
318=.12(3000-y)+.1y
318=360-.12y+.1y
-42= -.02y
y= 2100
Plug this into equation 1
x+2100=3000
x=900
she should invest $900 into the account earning 12% interest and $2100 into the account earning 10% interest.
How to determine How much money should she put into each accountLet's denote the amount of money Hattie invests at 12% as \(x\) dollars, and the amount she invests at 10% as \(\$3000 - x\) dollars.
The formula for calculating interest is: \(\text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time}\).
For the 12% account:
Interest_12% = \(x \times 0.12 \times 1\) (1 year)
For the 10% account:
Interest_10% = \((3000 - x) \times 0.10 \times 1\) (1 year)
Hattie wants to earn 10.6% interest on the total investment, so we can set up the equation:
\(\text{Total Interest} = \text{Interest}_12% + \text{Interest}_10%\)
\(3000 \times 0.106 = x \times 0.12 + (3000 - x) \times 0.10\)
Now, solve for \(x\):
\(318 = 0.12x + 300 - 0.10x\)
\(318 = 0.02x + 300\)
\(18 = 0.02x\)
\(x = 900\)
Hattie should invest $900 at 12% and \(3000 - 900 = 2100\) at 10%.
Therefore, she should invest $900 into the account earning 12% interest and $2100 into the account earning 10% interest.
Learn more about interest at https://brainly.com/question/29451175
#SPJ3
Few drivers realize that steel is used to keep the road surface flat despite the weight of buses and trucks. Steel bars, deeply embedded in the concrete, are sinews to take the stresses so that the stresses cannot crack the slab or make it wavy. The passage best supports the statement that a concrete road
Answer: Is reinforced with other material
Step-by-step explanation:
The options are:
A is expensive to build.
B usually cracks under heavy weights.
C looks like any other road.
D is reinforced with other material.
The passage best supports the statement that a concrete road are reinforced with other material. According to the information given in the passage, steel plays a vital role in keeping the road surface flat.
Steel bars are embedded in concrete so that the stresses cannot crack the slab. Therefore, it indicates that concrete road is reinforced with other material.
Which problem has a greater (bigger) answer? Solve both, choose the one that has the bigger answer and explain (1-2 sentences) how you found your
answer.
1) (2 + 3) (5 + 5)
2)2 + 3 x 5 + 5 =
I need so much helppppp pleaseeeee
Answer:
Problem 1 has a greater answer.
Step-by-step explanation:
Solve problem 1 using the order of operatiobs PEMDAS (Parentheses, Exponents, multiplication/division, and addition/subtraction):
Multiplication/division depends from left to right of the expression, the same goes to addition/subtraction.
(2 + 3) (5 + 5)
= (5)(10)
= 50
SOLVE problem 2 using PEMDAS:
2 + 3 x 5 + 5
= 2 + 15 + 5
= 17 + 5
= 22
Answer 1 (50) compared to Answer 2 (22):
50 > 22
HOPE THIS HELPS!
Compute ????×????, where ????=????−2????+5????, ????=2????+????+3????. (Write your solution using the standard basis vectors ????, ????, and ????. Use symbolic notation and fractions where needed.)
Given: ????=????−2????+5????
and ????=2????+????+3????
To find: We need to find the value of ????×????
Solution: Here given,
????=????−2????+5????
and ????=2????+????+3????
Therefore, solving these two we have, ????=0
So,????×????=0
Which ordered pair (a, b) is the solution to the given system of linear equations? 3a+b= 10 -4a-2b=2
(1,7)
(3, 1)
(11, -23)
(23, -11)
Hello,
answer C (11,-23)
[tex]\left\{\begin{array}{ccc}3a+b&=&10\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}6a+2b&=&20\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}3a+b&=&10\\2a&=&22\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&10-3*11\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&-21\end{array}\right.\\[/tex]
Answer: C. (11,-23)
Step-by-step explanation:
Use quadratic regression to find the
equation for the parabola going
through these 3 points.
(-4, -33) (1, 2) (9, 162)
HELP PLZ
9514 1404 393
Answer:
y = x^2 +10x -9
Step-by-step explanation:
Quadratic regression generally requires the use of "technology" to aid in finding the equation of the curve of best fit. Use the technology you've been introduced to.
__
When only a few data points are provided, I prefer to use the Desmos graphing calculator. It shows the equation to be ...
y = x^2 +10x -9
I am having trouble with this problem. If anyone could help that would be great.
Let M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x^2+y^2=16, 0≤z≤1, and a hemispherical cap defined by x^2+y^2+(z−1)^2=16, z≥1. For the vector field F=(zx+z^2y+4y, z^3yx+3x, z^4x^2), compute ∬M(∇×F)⋅dS in any way you like.
Answer:
Ok... I hope this is correct
Step-by-step explanation:
Let M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x^(2)+y^(2)=16
Center: ( 0 , 0 )
Vertices: ( 4 , 0 ) , ( − 4 , 0 )
Foci: ( 4 √ 2 , 0 ) , ( − 4 √ 2 , 0 )
Eccentricity: √ 2
Focal Parameter: 2 √ 2
Asymptotes: y = x , y = − x
Then 0≤z≤1, and a hemispherical cap defined by x^2+y^2+(z−1)^2=16, z≥1.
Simplified
0 ≤ z ≤ 1 , x ^2 + y ^2 + z ^2 − 2 ^z + 1 = 16 , z ≥ 1
For the vector field F=(zx+z^2y+4y, z^3yx+3x, z^4x^2), compute ∬M(∇×F)⋅dS in any way you like.
Vector:
csc ( x ) , x = π
cot ( 3 x ) , x = 2 π 3
cos ( x 2 ) , x = 2 π
Since
( z x + z ^2 y + 4 y , z ^3 y x + 3 x , z ^4 x ^2 ) is constant with respect to F , the derivative of ( z x + z ^2 y + 4 y , z ^3 y x + 3 x , z ^4 x 2 ) with respect to F is 0 .
write the equation of the line shown in the graph above in slope-intercept form
Help me pls I am bad at math
Answer:
D is the correct answer.
Step-by-step explanation:
You can get every y value by multiplying the x value by 3/2. This value never changes and there are no extra limitations.
Can someone please help?
Step-by-step explanation:
So, so, to attempt this, we need to use the formula :-
2 (l + b) × h ---> For Lateral surface area
2(30+30) h = 7200
2×60×h = 7200
120 × h = 7200
h = 7200/120
h = 60 cm
Now, volume = l×b×h
= 30×30×60
= 54000 cm³ is the required answer.
Hope it helps! :D
Use cross products to identify the equation needed to solve this proportion:
5
x
=
2
9
Answer:
x=22.5
Step-by-step explanation:
We are given the proportion:
5/x=2/9
Cross multiply. Multiply the numerator (top number) of the first fraction by the denominator (bottom number) of the second. Then multiply the denominator of the first by the numerator of the second.
5*9=2*x
45=2x
2 and x are being multiplied. The opposite of multiplication is division. Divide both sides by 2. This will cancel out the 2 being multiplied by x, and leave x by itself.
45/2=2x/2
45/2=x
22.5=x
If we substitute 22.5 in for x, the final proportion will be:
5/22.5=2/9
A car originally costs $20,000. Its price went up by 20% and then by another $8,000. How much did the price go up as a percentage of the original price?
Answer:
60%
Step-by-step explanation:
20,000
we can move the decimal place one to the left to find 10 percent
2,000
multiply 10 x 2 to find twenty percent or 4,000
we add this to the original total. 24,000
then add the 8,000
32,000
we know find one percent of the original total
200
and find the difference between the two totals
32000-20000 = 12,000
12000 divided by 200 which is 6
multiply six by ten to get
60 percent
. a) In a group of 75 students, 20 liked football only, 30 liked cricket only and 18 did not like any of two games? (i) How many of them liked at least one game? (ii) Find the number of students who liked both the games. (iii) How many of them liked football? (iv) How many of them liked cricket? (v) Represent the result in a Venn diagram.
i)50
Steps
30+20=50
ii)7
Steps
75-(30+20)-18
=75-(50)-18
=7
iii)20
Steps
From the available data from the question
iv)30
Steps
From the available data from the questionl
v)From the attcged image file
al of
10. A square field has four sprinklers that spray
in the areas represented by the circles below. If
the shaded portion represents area that is not
reached by the sprinklers, find the total area that
is not reached by the sprinklers.
Using the areas of the sqaure and of the circle, it is found that the total area that is not reached by the sprinklers is of 343.36 ft².
What is the area of a square?The area of a square of side length l is given by:
A = l²
In this problem, we have that l = 40 ft, hence:
A = (40 ft)² = 1600 ft².
What is the area of a circle?The area of a circle of radius r is given by:
[tex]A = \pi r^2[/tex]
In this problem, we have four circles of radius r = 10 ft, hence it's combined area, in square feet, is given by:
[tex]A_c = 4\pi (10)^2 = 400\pi = 1256.64 \text{ft}^2[/tex]
The area not reached by the sprinklers is the subtraction of the area of the square by the area of the circle, hence:
1600 - 1256.64 = 343.36 ft².
More can be learned about the area of a rectangle at https://brainly.com/question/10489198
30 POINTS
Help on Part B pleaseeee
In verse of B.g(x)=[tex]\frac{x+5}{4}[/tex] is:
4x-5
Answer:
Solution given:
B.g(x)=[tex]\frac{x+5}{4}[/tex]
let
g(x)=y
y=[tex]\frac{x+5}{4}[/tex]
Interchanging role of x and y
we get:
x=[tex]\frac{y+5}{4}[/tex]
doing crisscrossed multiplication
4x=y+5
y=4x-5
So
g-¹(x)=4x-5
Given that,
→ g(x) = x+5/4
Then g(x)=y,
→ y = x+5/4
Now we can interchange role of x and y,
→ x = y+5/4
Then use the cross multiplication,
→ 4x = y+5
→ y = 4x-5
Hence, g-¹(x) = 4x-5 is the solution.
Can you tell me the procedure of these
x-7 = -2
x-1 = 7
9-x = -10
After x hours, the distance between two trains traveling in opposite directions from the same station is 704 km. If one train travels 96 km/h and the other travels 80 km/h, find the number of hours they traveled if they left at the same time.
Answer:
4 hr
Step-by-step explanation:
96 x 4= 384
80 x 4=320
384+320=704
f(x,y)=x10-3xy2then fz=
A. 10 x9 - 3y2
B. 20 x9 - 3y2
C. 2y2
D. 10x10 + xy2
which option is correct please
Given:
The function is:
[tex]f(x,y)=x^{10}-3xy^2[/tex]
To find:
The value of [tex]f_x[/tex].
Solution:
We need to find the value of [tex]f_x[/tex]. So, we have to find the first order partial derivative of the given function with respect to x.
We have,
[tex]f(x,y)=x^{10}-3xy^2[/tex]
Differentiate partially with respect to x.
[tex]f(x,y)=\dfrac{\partial}{\partial x}x^{10}-3y^2\dfrac{\partial}{\partial x}x[/tex]
[tex]f_x=10x^{10-1}-3y^2(1)[/tex]
[tex]f_x=10x^{9}-3y^2[/tex]
Therefore, the correct option is A.
A shopkeeper supplies 42 kg of vegetables to a school canteen in the morning and 58 kg of vegetables in the evening if cost of 1kg vegetable is 16 rupees how much money is due to the canteen per day?
Mis directly proportional to r?
When r= 2, M= 14
a) Work out the value of M when r= 12.
b) Work out the value of r when M = 224.
Answer:
M = 84 , r = 32
Step-by-step explanation:
Given M is directly proportional to r then the equation relating them is
M = kr ← k is the constant of proportion
To find k use the condition when r = 2, M = 14 , then
14 = 2k ( divide both sides by 2 )
7 = k
M = 7r ← equation of proportion
(a)
When r = 12
M = 7 × 12 = 84
(b)
When M = 224 , then
224 = 7r ( divide both sides by 7 )
32 = r
Multiply m and 6. Then, add 8.
Answer:
6m + 8 is the answer.
Step-by-step explanation:
( m x 6 ) + 8
= 6m + 8
Given the functions below, find f(x)+g(x)
CHECK MY ANSWERS PLEASE
Answer:
It's the last one
Step-by-step explanation:
(3x-1)-(x²+4)
3x-1-x²-4
-x²+3x-5
Suppose you choose a marble from a bag containing 3 red marbles, 5 white marbles, and 4 blue
marbles. You return the first marble to the bag and then choose again. Find P (red and blue).
Answer:
P(red and blue) = 1/12
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Probability of independent events:
If two events, A and B, are independent, the probability of both happening is the multiplication of the probabilities of each event happening, that is:
[tex]P(A \cap B) = P(A)P(B)[/tex]
P (red and blue).
Probability of choosing a red marble, then a blue marble. The marbles are replaced, so the trials are independent.
Probability of a red marble:
3 out of 3 + 5 + 4 = 12. So
[tex]P(A) = \frac{3}{12} = \frac{1}{4}[/tex]
Probability of a blue marble:
4 out of 12, so:
[tex]P(B) = \frac{4}{12} = \frac{1}{3}[/tex]
P (red and blue).
[tex]P(A \cap B) = P(A)P(B) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{4*3} = \frac{1}{12}[/tex]
So
P(red and blue) = 1/12
The standard form of an absolute value function is R(x) = a|x-h|+k Which of the following represents the vertex?
o (-k,h)
o (-1,K)
o (k,h)
o (h,k)
Answer:
o (h,k)
Step-by-step explanation:
Is the collection og rall " student in set ? why ? class7
Answer:
in secret
Step-by-step explanation:
correct answer is in a secret
I need help with this, please.
Answer:
it can not cleared clear but it can not cleared
evaluate the expression when b= -6 and c=3
-4c+b
Answer:
-18
Step-by-step explanation:
b = -6
c = 3
-4c + b = ?
Plug in the value of each variable into the equation
-4c + b = ?
= -4(3) + (-6)
= -12 - 6
= -18