find the fraction if a circle subtended by the following angle
324°
An angle of 324° subtends of a circle (Simplify your answer.)

Answers

Answer 1

The fraction of the circle subtended by the given angle is 8.1/9.

Given angle of 324° subtends a circle.

We know that the angle subtended at the center of a circle is proportional to the length of the arc it intercepts.

A full circle is of 360°.

Thus,

Angle subtended by the full circle = 360°

Given angle subtended = 324°

So, fraction of the circle subtended by the given angle is;`

"fraction" = "angle subtended"/"angle of full circle"` `= 324°/360°`

Multiplying numerator and denominator by 5, we get;

"fraction" = 324°/360° = 5×64.8°/5×72°` `

                = 64.8°/72°`

Now,

64.8 and 72 are divisible by 8.

So we can divide both numerator and denominator by 8 to simplify the fraction.

`"fraction" = 64.8°/72° = 8.1/9`

Hence, the fraction of the circle subtended by the given angle is 8.1/9.

Learn more about  fraction form this link:

https://brainly.com/question/28372533

#SPJ11


Related Questions

For National High Five Day, Ronnie’s class decides that everyone in the class should exchange one high five with each other person in the class. If there are 20 people in Ronnie’s class, how many high fives will be exchanged?

Answers

The number of high fives exchanged in Ronnie's class is 190, using the basics of Permutation and combination.

To calculate the number of high fives exchanged, we can use the formula n(n-1)/2, where n represents the number of people. In this case, there are 20 people in Ronnie's class.

Number of high fives exchanged = 20(20-1)/2 = 190

Therefore, there will be 190 high fives exchanged in Ronnie's class. To determine the number of high-fives exchanged, we need to calculate the total number of handshakes among 20 people.

The formula to calculate the number of handshakes is n(n-1)/2, where n represents the number of people.

In this case, n = 20.

Number of high fives exchanged = 20(20-1)/2

                              = 20(19)/2

                              = 380/2

                              = 190

Therefore, there will be 190 high fives exchanged in Ronnie's class.

learn more about permutation here:
https://brainly.com/question/32683496

#SPJ11

Blake knows that one of the solutions to x2 - 6x + 8 = 0 is x = 2. What is the other solution?

Answers

The answer would be 4 and 2

Find all critical numbers of the function. f(x)=x2/3(x−1)2 0.25 0.5 0.75 Find the value of c that satisfies the Mean Value Theorem for the function f(x)=x4−x on the interval [0,2]. c=3√2​ The Mean Value Theorem doesn't apply because f(x)=x4−x is not differentiable on the interval's interior. c=7c=2​

Answers

Therefore, the value of c that satisfies the Mean Value Theorem for the function [tex]f(x) = x^4 - x[/tex] on the interval [0, 2] is c = ∛2.

To find the critical numbers of the function [tex]f(x) = x^(2/3)(x-1)^2[/tex], we need to determine the values of x where the derivative of f(x) is equal to zero or undefined.

First, let's find the derivative of f(x):

[tex]f'(x) = (2/3)x^(-1/3)(x-1)^2 + 2x^(2/3)(x-1)[/tex]

To find the critical numbers, we set f'(x) equal to zero and solve for x:

[tex](2/3)x^(-1/3)(x-1)^2 + 2x^(2/3)(x-1) = 0[/tex]

Simplifying the equation and factoring out common terms:

[tex](2/3)x^(-1/3)(x-1)(x-1) + 2x^(2/3)(x-1) = 0\\(2/3)x^(-1/3)(x-1)[(x-1) + 3x^(2/3)] = 0[/tex]

Now we have two factors: (x-1) = 0 and [tex][(x-1) + 3x^(2/3)] = 0[/tex]

From the first factor, we find x = 1.

For the second factor, we solve:

[tex](x-1) + 3x^(2/3) = 0\\x - 1 + 3x^(2/3) = 0[/tex]

Unfortunately, there is no algebraic solution for this equation. We can approximate the value of x using numerical methods or calculators. One possible solution is x ≈ 0.25.

So the critical numbers of the function [tex]f(x) = x^(2/3)(x-1)^2[/tex] are x = 1 and x ≈ 0.25.

As for the Mean Value Theorem, to find the value of c that satisfies the theorem for the function [tex]f(x) = x^4 - x[/tex] on the interval [0, 2], we need to verify two conditions:

f(x) is continuous on the closed interval [0, 2]: The function [tex]f(x) = x^4 - x[/tex] is a polynomial function, and polynomials are continuous for all real numbers.

f(x) is differentiable on the open interval (0, 2): The function [tex]f(x) = x^4 - x[/tex] is a polynomial, and polynomials are differentiable for all real numbers.

Since both conditions are satisfied, the Mean Value Theorem applies to the function f(x) on the interval [0, 2]. According to the Mean Value Theorem, there exists at least one value c in the open interval (0, 2) such that:

f'(c) = (f(2) - f(0))/(2 - 0)

To find c, we calculate the derivative of f(x):

[tex]f'(x) = 4x^3 - 1[/tex]

Substituting [tex]f(2) = 2^4 - 2 = 14[/tex] and f(0) = 0 into the equation, we have:

f'(c) = (14 - 0)/(2 - 0)

[tex]4c^3 - 1 = 14/2\\4c^3 - 1 = 7\\4c^3 = 8\\c^3 = 2[/tex]

c = ∛2

To know more about Mean Value Theorem,

https://brainly.com/question/32778820

#SPJ11

Find f such that f′(x)=x2+8 and f(0)=2 f(x)=___

Answers

In mathematics, a function is a relationship that assigns each input value from a set (domain) to a unique output value from another set (codomain), following certain rules or operations.

The given function is  f′(x) = [tex]x^2[/tex] + 8. Let's solve for f(x) by integrating f′(x) with respect to x i.e,

[tex]\int f'(x) \, dx &= \int (x^2 + 8) \, dx \\[/tex]

Integrating both sides,

[tex]f(x) = \frac{x^3}{3} + 8x + C[/tex]

where C is an arbitrary constant.To find the value of `C`, we use the given initial condition `f(0) = 2 Since

[tex]f(0) = \frac{0^3}{3} + 8(0) + C = C[/tex],

we get C = 2 Substitute C = 2 in the equation for f(x), we get: [tex]f(x) = {\frac{x^3}{3} + 8x + 2}_{\text}[/tex] Therefore, the function is

[tex]f(x) = \frac{x^3}{3} + 8x + 2[/tex]`.

To know more about function this:

https://brainly.com/question/30721594

#SPJ11

Find the first five non-zero terms of power series representation centered at x=0 for the function below.
f(x)=x²/1+5x
F(x) =

Answers

The power series representation centered at x=0 for the function f(x) = x^2 / (1+5x) is given by f(x) = x^2 / (1+5x) are x^2, -5x^3, 25x^4, -125x^5, and so on.

To find the power series representation of the function f(x), we can use the geometric series expansion formula:

1 / (1 - r) = 1 + r + r^2 + r^3 + ...

In this case, our function is f(x) = x^2 / (1+5x). We can rewrite it as f(x) = x^2 * (1/(1+5x)).

Now we can apply the geometric series expansion to the term (1/(1+5x)):

(1 / (1+5x)) = 1 - 5x + 25x^2 - 125x^3 + ...

To find the power series representation of f(x), we multiply each term in the expansion of (1/(1+5x)) by x^2:

f(x) = x^2 * (1 - 5x + 25x^2 - 125x^3 + ...)

Expanding this further, we get:

F(x) = x^2 - 5x^3 + 25x^4 - 125x^5 + ...

Therefore, the first five non-zero terms of the power series representation centered at x=0 for the function f(x) = x^2 / (1+5x) are x^2, -5x^3, 25x^4, -125x^5, and so on.

Learn more about power series here:

https://brainly.com/question/29896893

#SPJ11

Find the position function r(t) given that the velocity is v(t)= e^11t, tsin(5t^2), tsqrt t^2+4 and the initial position is r(0)=7i+4j+k.

Answers

The position function for the given velocity and initial position is r(t) = (1/11)e^11t i - (1/25)cos(5t^2) j + (1/6)(t^2√(t^2+4) - 4) k + 7i + 4j + k.

The position function r(t) can be found by integrating the given velocity function v(t) with respect to time.

In two lines, the final answer for the position function r(t) is:

r(t) = (1/11)e^11t i - (1/25)cos(5t^2) j + (1/6)(t^2√(t^2+4) - 4) k + 7i + 4j + k.

Now let's explain the answer:

To find r(t), we integrate each component of the velocity function v(t) separately with respect to t. For the x-component, the integral of e^11t with respect to t is (1/11)e^11t. Therefore, the x-component of r(t) is (1/11)e^11t.

For the y-component, the integral of tsin(5t^2) with respect to t is obtained using a substitution. Let u = 5t^2, then du/dt = 10t. Rearranging gives dt = du / (10t). Substituting into the integral, we have ∫ sin(u) * (1/10t) * du = (1/10) ∫ sin(u) / t du = (1/10) ∫ sin(u) * (1/u) du. This integral is a well-known function called the sine integral, which cannot be expressed in terms of elementary functions.

For the z-component, we integrate tsqrt(t^2+4) with respect to t. Using a substitution u = t^2+4, we have du/dt = 2t, which gives dt = du / (2t). Substituting into the integral, we get ∫ u^(1/2) * (1/2t) * du = (1/2) ∫ (u^(1/2)) / t du = (1/2) ∫ (u^(1/2)) * (1/u) du = (1/2) ∫ u^(-1/2) du = (1/2) * 2u^(1/2) = u^(1/2) = sqrt(t^2+4).

Adding up the components, we obtain the position function r(t) = (1/11)e^11t i - (1/25)cos(5t^2) j + (1/6)(t^2√(t^2+4) - 4) k + C, where C is the constant of integration. Given the initial position r(0) = 7i + 4j + k, we can find the value of C by plugging in t = 0. Thus, C = 7i + 4j + k.

Hence, the complete position function is r(t) = (1/11)e^11t i - (1/25)cos(5t^2) j + (1/6)(t^2√(t^2+4) - 4) k + 7i + 4j + k.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

Give the Taylor series for h(t) = e^−3t−1/t about t_0 = 0

Answers

The Taylor series expansion for the function h(t) = e^(-3t) - 1/t about t_0 = 0 can be found by calculating the derivatives of the function at t_0 and plugging them into the general form of the Taylor series.

The derivatives of h(t) are as follows:

h'(t) = -3e^(-3t) + 1/t^2

h''(t) = 9e^(-3t) - 2/t^3

h'''(t) = -27e^(-3t) + 6/t^4

Evaluating these derivatives at t_0 = 0, we have:

h(0) = 1 - 1/0 = undefined

h'(0) = -3 + 1/0 = undefined

h''(0) = 9 - 2/0 = undefined

h'''(0) = -27 + 6/0 = undefined

Since the derivatives at t_0 = 0 are undefined, we cannot directly use the Taylor series expansion for this function.

To know more about  Taylor series click here: brainly.com/question/32235538

#SPJ11

Find the volume of the pyramid below.
4 cm
3 cm
3 cm

Answers

Answer:

Step-by-step explanation:

4x3x3=36

. In a common base connection, the current amplification
factor is 0.8. If the emitter current is 2mA, determine the value
of
1) Collector current
2) Base current

Answers

If the emitter current is 2mA, the value of the collector current is 1.11 mA and that of the base current is 1.38 mA

Emitter current = Ie = 2mA

Amplification factor = A = 0.8

Using the formula for common base configuration -

Ie = Ic + Ib

Substituting the values -

2mA = Ic + Ib

2mA = Ic + (Ic / A)

2mA = Ic x (1 + 1/A )

2mA = Ic x (1 + 1/0.8)

Solving for the emitter current -

Ic = (2mA) / (1 + 1/0.8)

= (2mA) / (1.08 /0.8)

= 1.11

Calculating the base current -

= Ib = Ic / A

Substituting the values -

Ib = (1.11) / 0.8

= 1.38

Read more about current on:

https://brainly.com/question/24858512

#SPJ4

In the game of roulette, a player can place a $8 bet on the number 1 and have a 1/38 probability of winning. If the metal ball lands on 1, the player gets to keep the $8 paid to play the game and the player is awarded an additional $280. Otherwise, the player is awarded nothing and the casino takes the player's $8. Find the expected value E(x) to the player for one play of the game. If x is the gain to a player in a game of chance, then E(x) is usually negative. This value gives the average amount per game the player can expect to lose.
The expected value is $ ______
(Round to the nearest cent as needed.)

Answers

The expected value for one play of the game is approximately -$0.42.To find the expected value (E(x)) for one play of the game, we need to calculate the weighted average of all possible outcomes, where the weights are the probabilities of each outcome.

Let's break down the possible outcomes and their corresponding values:

Outcome 1: Winning

Probability: 1/38

Value: $280 (additional winnings)

Outcome 2: Losing

Probability: 37/38

Value: -$8 (loss of initial bet)

To calculate the expected value, we multiply each outcome's value by its corresponding probability and sum them up:

E(x) = (1/38) * $280 + (37/38) * (-$8)

E(x) = ($280/38) - ($296/38)

E(x) = ($-16/38)

E(x) ≈ -$0.4211 (rounded to the nearest cent)

Therefore, the expected value for one play of the game is approximately -$0.42.

To learn more about  probability click here:

/brainly.com/question/15562892?

#SPJ11

You bought a book for R300 and sold it a year later for R240. What is the loss

Answers

Answer:

R60 is the answer to your question

Use the Chain Rule to find dQ​/dt, where Q=√(4x2+4y2+z2)​,x=sint,y=cost, and z=cost. dQ​/dt= (Type an expression using t as the variable.)

Answers

Thus, the final answer of this differentiation  is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t), by using chain rule.

Q = √(4x² + 4y² + z²);

x = sin t;

y = cos t;

z = cos t

We have to find dQ/dt by applying the Chain Rule.

Step-by-step explanation:

Using the Chain Rule, we get:

Q' = dQ/dt = ∂Q/∂x * dx/dt + ∂Q/∂y * dy/dt + ∂Q/∂z * dz/dt

∂Q/∂x = 1/2 (4x² + 4y² + z²)^(-1/2) * (8x) = 4x / Q

∂Q/∂y = 1/2 (4x² + 4y² + z²)^(-1/2) * (8y) = 4y / Q

∂Q/∂z = 1/2 (4x² + 4y² + z²)^(-1/2) * (2z)

= z / Q

dx/dt = cos t

dy/dt = -sin t

dz/dt = -sin t

Substituting these values in the expression of dQ/dt, we get:

dQ/dt = 4x/Q * cos t + 4y/Q * (-sin t) + z/Q * (-sin t)dQ/dt

= [4sin t/√(4sin²t + 4cos²t + cos²t)] * cos t + [4cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t) + [cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t)

(Substituting values of x, y, and z)

dQ/dt = (4sin t * cos t - 4cos t * sin t - cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

Thus, the final answer is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t).

To know more about  chain rule, visit:

https://brainly.in/question/54093477

#SPJ11

froen 1oday 2 t nccording to the uriblaspd expectintions theory? (Do not round intermediate calculations. Rtound yout percentage answer to 2 decimal places: (ee−32.16) ) from today, a fa eccording to the unblased expectations theory? (Do rot round intermediate calculations. Rourd your percentage answer to 2 decimal ploces. (e.9. 32.16))

Answers

According to the unbiased expectations theory, the forward rate from today to a future date can be estimated by taking the exponential of the difference between the interest rates. The percentage answer, rounded to two decimal places is 3.08 x [tex]10^{-13}[/tex] percent.

The unbiased expectations theory is a financial theory that suggests the forward rate for a future date can be determined by considering the difference in interest rates. In this case, we need to calculate the forward rate from today to a future date. The formula for this calculation is [tex]e^{(-r*t)}[/tex], where "r" represents the interest rate and "t" represents the time period.

In the given question, the interest rate is -32.16. To calculate the forward rate, we need to take the exponential of the negative interest rate. The exponential function is denoted by "e" in mathematical notation. Therefore, the calculation would be [tex]e^{-32.16}[/tex].

To arrive at the final answer, we can use a calculator or computer software to evaluate the exponential function. The result is approximately 3.0797 x [tex]10^{-15}[/tex].

To convert this to a percentage, we multiply the result by 100. So, the forward rate from today to the future date, according to the unbiased expectations theory, is approximately 3.08 x [tex]10^{-13}[/tex] percent.

Please note that the specific date for the future period is not mentioned in the question, so the calculation assumes a generic forward rate calculation from today to any future date.

Learn more about unbiased expectations theory here:https://brainly.com/question/30478946

#SPJ11

Assume that x and y are both differentiable functions of t and are related by the equation
y=cos(3x)
Find dy/dt when x=π/6, given dx/dt=−3 when x=π/6.
Enter the exact answer.
dy/dt=

Answers

To find dy/dt when x = π/6, we differentiate the equation y = cos(3x) with respect to t using the chain rule. the exact value of dy/dt when x = π/6 is 9.

We start by differentiating the equation y = cos(3x) with respect to x:

dy/dx = -3sin(3x).

Next, we substitute the given values dx/dt = -3 and x = π/6 into the derivative expression:

dy/dt = dy/dx * dx/dt

      = (-3sin(3x)) * (-3)

      = 9sin(3x).

Finally, we substitute x = π/6 into the expression to obtain the exact value of dy/dt:

dy/dt = 9sin(3(π/6))

      = 9sin(π/2)

      = 9.

Therefore, the exact value of dy/dt when x = π/6 is 9.

Learn more about chain rule here:

https://brainly.com/question/30764359

#SPJ11

Find the absolute maximum value and the absolute minimum value, If any, of the function. (If an answer f(x)=−x2+10x+5 on [7,10] maximum ____ minimum _____

Answers

the absolute maximum value of the function f(x) on the interval [7, 10] is 55 and the absolute minimum value of the function f(x) on the interval [7, 10] is 19.

The given function is f(x) = -x² + 10x + 5. It is required to find the absolute maximum value and the absolute minimum value of this function on the interval [7, 10].We can find the absolute maximum and minimum values of a function on a closed interval by evaluating the function at the critical points and the endpoints of the interval. Therefore, let's start by finding the critical points of the function.f(x) = -x² + 10x + 5f'(x) = -2x + 10 Setting f'(x) = 0,-2x + 10 = 0

⇒ -2x = -10

⇒ x = 5

Thus, x = 5 is the critical point of the function.

Now, let's find the function values at the critical point and the endpoints of the interval.[7, 10] → endpoints are 7 and 10f(7)

= -(7)² + 10(7) + 5

= 19f(10)

= -(10)² + 10(10) + 5

= 55f(5)

= -(5)² + 10(5) + 5

= 30

To know more about absolute maximum and minimum value Visit:

https://brainly.com/question/31402315

#SPJ11

Lance has $5 to spend on hamburgers ($3 each) and french fries ($1 per order). Lance's satisfaction from eating a hamburgers and y orders of french fries is measured by a function S(x, y) = √(xy). Use the method of Lagrange Multipliers to find how much of each type of food should Lance purchase to maximize their sat- isfaction? (Assume that the restaurant is very accommodating and allow fractional amounts of food to be purchased.)

Answers

Lance should purchase 3/2 hamburgers and 1/2 orders of fries to maximize their satisfaction.

We are given that:

Lance has $5 to spend on hamburgers ($3 each) and french fries ($1 per order).Lance's satisfaction from eating a hamburgers and y orders of french fries is measured by a function

S(x, y) = √(xy).

Use the method of Lagrange Multipliers to find how much of each type of food should Lance purchase to maximize their satisfaction. (Assume that the restaurant is very accommodating and allow fractional amounts of food to be purchased.)

We are supposed to maximize the satisfaction of Lance i.e., we need to maximize the function given by

S(x, y) = √(xy).

Let x and y be the number of hamburgers and orders of fries purchased by Lance, respectively.

Let P be the amount Lance spends on the food.

P = 3x + y -----------(1)

Since Lance has only $5 to spend, therefore

P = 3x + y = 5. --------- (2)

Therefore, we have to maximize the function S(x, y) = √(xy) subject to the constraint

3x + y = 5

Using the method of Lagrange Multipliers, we have:

L(x, y, λ) = √(xy) + λ (3x + y - 5)

For stationary points, we must have:

Lx = λ 3/2√(y/x)

= λ 3 ... (3)

Ly = λ 1/2√(x/y)

= λ ... (4)

Lλ = 3x + y - 5

= 0 ... (5)

Squaring equations (3) and (4), we have:

3y = x ... (6)

Again, substituting 3y = x in equation (5), we have:

9y + y - 5 = 0

=> y = 5/10

= 1/2

Substituting y = 1/2 in equation (6), we have:

x = 3

y = 3/2

Therefore, Lance should purchase 3/2 hamburgers and 1/2 orders of fries to maximize their satisfaction.

To know more about maximize visit

https://brainly.com/question/30072001

#SPJ11

In a survey of 400 likely voters, 214 responded that they would vote for the incumbent and 186 responded that they would vote for the challenger. Let p denote the fraction of all likely voters who preferred the incumbent at the time of the survey.
and let p be the fraction of survey respondents who preferred the incumbent.
Using the survey results, the estimated value of p is

Answers

Answer:

[tex]p = \frac{214}{400} = .535 = 53.5\%[/tex]

b) Calculate DA231 \( 1_{16}- \) CAD1 \( _{16} \). Show all your working.

Answers

The result of the subtraction DA231₁₆ - CAD1₁₆ is 1113₁₆.

To calculate the subtraction DA231₁₆ - CAD1₁₆, we need to perform the subtraction digit by digit.

```

  DA231₁₆

-  CAD1₁₆

---------

```

Starting from the rightmost digit, we subtract C from 1. Since C represents the value 12 in hexadecimal, we can rewrite it as 12₁₀.

```

  DA231₁₆

- CAD1₁₆

---------

          1

```

1 - 12 results in a negative value. To handle this, we borrow 16 from the next higher digit.

```

  DA231₁₆

- CAD1₁₆

---------

        11

```

Next, we subtract A from 3. A represents the value 10 in hexadecimal.

```

  DA231₁₆

- CAD1₁₆

---------

       11

```

3 - 10 results in a negative value, so we borrow again.

```

  DA231₁₆

- CAD1₁₆

---------

      111

```

Moving on, we subtract D from 2.

```

  DA231₁₆

- CAD1₁₆

---------

     111

```

2 - D results in a negative value, so we borrow once again.

```

  DA231₁₆

- CAD1₁₆

---------

    1111

```

Finally, we subtract C from D.

```

  DA231₁₆

- CAD1₁₆

---------

   1111

```

D - C results in the value 3.

Therefore, the result of the subtraction DA231₁₆ - CAD1₁₆ is 1113₁₆.

Visit here to learn more about subtraction brainly.com/question/29149893

#SPJ11

solve pleaseee
Q9)find the Fourier transform of \( x(t)=16 \operatorname{sinc}^{2}(3 t) \)

Answers

Simplifying the expression inside the integral: [ X(omega) = frac{16}{(3pi)^2} left(frac{1}{2} delta(omega) - \frac{1}{4}

To find the Fourier transform of ( x(t) = 16 operator name{sinc}^{2}(3t)), we can use the definition of the Fourier transform. The Fourier transform of a function ( x(t) ) is given by:

[ X(omega) = int_{-infty}^{infty} x(t) e^{-j omega t} , dt ]

where ( X(omega) ) is the Fourier transform of ( x(t) ), (omega ) is the angular frequency, and ( j ) is the imaginary unit.

In this case, we have ( x(t) = 16 operatorbname{sinc}^{2}(3t)). The ( operator name {sinc}(x) ) function is defined as (operatornname{sinc}(x) = frac{sin(pi x)}{pi x} ).

Let's substitute this into the Fourier transform integral:

[ X(omega) = int_{-infty}^{infty} 16 left(frac{sin(3pi t)}{3pi t}right)^2 e^{-j \omega t} , dt ]

We can simplify this expression further. Let's break it down step by step:

[ X(omega) = frac{16}{(3pi)^2} int_{-infty}^{infty} \sin^2(3pi t) e^{-j omega t} , dt ]

Using the trigonometric identity ( sin^2(x) = \frac{1}{2} - \frac{1}{2} cos(2x) ), we can rewrite the integral as:

[ X(omega) = frac{16}{(3pi)^2} int_{-infty}^{infty} left(frac{1}{2} - frac{1}{2} cos(6\pi t)right) e^{-j omega t} , dt ]

Expanding the integral, we get:

[ X(\omega) = frac{16}{(3pi)^2} left(frac{1}{2} int_{-infty}^{infty} e^{-j omega t} , dt - frac{1}{2} int_{-infty}^{infty} cos(6pi t) e^{-j omega t} , dtright) ]

The first integral on the right-hand side is the Fourier transform of a constant, which is given by the Dirac delta function. Therefore, it becomes ( delta(omega) ).

The second integral involves the product of a sinusoidal function and a complex exponential function. This can be computed using the identity (cos(a) = frac{e^{ja} + e^{-ja}}{2} ). Let's substitute this identity:

[ X(omega) = frac{16}{(3\pi)^2} left(frac{1}{2} delta(omega) - frac{1}{2} \int_{-infty}^{infty} frac{e^{j6\pi t} + e^{-j6pi t}}{2} e^{-j omega t} , dt\right) \]

Simplifying the expression inside the integral:

[ X(omega) = frac{16}{(3pi)^2} left(frac{1}{2} delta(omega) - frac{1}{4}

to learn more about integral.

https://brainly.com/question/31059545

#SPJ11

If k(4x+12)(x+2)=0 and x > -1 what is the value of k?

Answers

The value of k is 0. When a product of factors is equal to zero, at least one of the factors must be zero. In this case, (4x+12)(x+2) equals zero, so k must be zero for the equation to hold.

To solve the equation, we use the zero product property, which states that if a product of factors is equal to zero, then at least one of the factors must be zero. In this case, we have the expression (4x+12)(x+2) equal to zero.

We set each factor equal to zero and solve for x:

4x + 12 = 0 --> 4x = -12 --> x = -3

x + 2 = 0 --> x = -2

Since the given condition states that x > -1, the only valid solution is x = -2. Plugging this value back into the original equation, we find that k can be any real number because when x = -2, the equation simplifies to 0 = 0 for all values of k.

Therefore, there is no specific value of k that satisfies the given equation; k can be any real number.

learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Use the First Principle Method to determine the derivative of f(x)=7−x2. What slope of the tangent at x=6 ? Write the equation of the line for the tangent. 3a. Use the First Principle Method to determine the derivative of f(x)=(2x−1)2. Hint: expand the binomial first. What slope of the tangent at x=6 ? Write the equation of the line for the tangent. 4.  Use the First Principle Method to determine the derivative of f(x)=3/x2​.

Answers

1. Derivative of f(x)=7−x2 using the First Principle Method Given f(x) = 7 - x2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [7 - (x+Δx)2 - (7 - x2)]/Δxf'(x)

= lim Δx→0 [-x2 - 2xΔx - Δx2]/Δxf'(x)

= lim Δx→0 [-(x2 + 2xΔx + Δx2) + x2]/Δxf'(x)

= lim Δx→0 [-x2 - 2xΔx - Δx2 + x2]/Δxf'(x)

= lim Δx→0 [-2xΔx - Δx2]/Δxf'(x)

= lim Δx→0 [-Δx(2x + Δx)]/Δxf'(x)

= lim Δx→0 -[2x + Δx] = -2xAt x

= 6,

slope of the tangent is f'(6) = -2*6 = -12 The equation of the line of the tangent is given by

y - f(6) = f'(6) (x - 6)

where f(6) = 7 - 6² = -23y - (-23)

= -12 (x - 6)y + 23

= -12x + 72y = -12x + 49 3a.

Derivative of f(x) = (2x - 1)2 using the First Principle Method Given f(x) = (2x - 1)2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [(2(x+Δx) - 1)2 - (2x - 1)2]/Δxf'(x)

= lim Δx→0 [4xΔx + 4Δx2]/Δxf'(x)

= lim Δx→0 4(x+Δx) = 4xAt x = 6,

slope of the tangent is f'(6) = 4*6 = 24 The equation of the line of the tangent is given by y - f(6) = f'(6) (x - 6)

where f(6) = (2*6 - 1)2

= 25y - 25

= 24 (x - 6)y

= 24x - 1194.

Derivative of f(x) = 3/x2 using the First Principle Method Given f(x) = 3/x2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [3/(x+Δx)2 - 3/x2]/Δxf'(x)

= lim Δx→0 [3x2 - 3(x+Δx)2]/[Δx(x+Δx)x2(x+Δx)2]f'(x)

= lim Δx→0 [3x2 - 3(x2 + 2xΔx + Δx2)]/[Δx(x2+2xΔx+Δx2)x2(x2 + 2xΔx + Δx2)]f'(x)

= lim Δx→0 [-6xΔx - 3Δx2]/[Δxx4 + 4x3Δx + 6x2Δx2 + 4xΔx3 + Δx4]f'(x) = lim Δx→0 [-6x - 3Δx]/[x4 + 4x3Δx + 6x2Δx2 + 4xΔx3 + Δx4]f'(x) = -6/x3At

x = 6, slope of the tangent is f'(6) = -6/6³ = -1/36The equation of the line of the tangent is given by y - f(6) = f'(6) (x - 6) where f(6) = 3/6² = 1/12y - 1/12 = -1/36 (x - 6)36y - 3 = -x + 6y = -x/36 + 1/12

To know more about First Principle Method visit:

https://brainly.com/question/28553327

#SPJ11

Consider the Z transform below. Determine all possible sequences that lead to this transform, depending on the convergence domain. Determine which of them (if any) has a Discrete Time Fourier Transform, and, if there is one, write down its expression.X( z)= 1/ (z+a)² (z+b)(z+c) a=18; b= -17; c=2

Answers

Any sequence of the form x(n) = An₊¹r⁻ⁿ, where 0 < r < 18, has a Discrete Time Fourier Transform of the form  X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω).

The Z-transform of a sequence x(n) is defined as

X(z) = ∑ₙ x(n)z⁻ⁿ

Our given z-transform is:

X(z) = 1/(z+a)² (z+b)(z+c)

where a=18; b=-17; c=2

We can rewrite our transform as:

X(z) = 1/ z² (1-a/z) (1+b/z) (1+c/z)

Let's consider the convergence domain of our transform, which represents all of the z-values in the complex plane for which x(n) and X(z) are analytically related. Since our transform is a rational function, the domain is the region in the complex plane for which all poles (roots of denominator) lie outside the circle.

Thus, our convergence domain is |z| > max{18, -17, 2} = |z| > 18

Let's now consider all of the possible sequences that lead to this transform, depending on the convergence domain. Since our domain is |z| > 18, the possible sequences are those with values that approach zero for x(n) > 18. Thus, any sequence with the form of x(n) = An+¹r⁻ⁿ, where An is a constant and 0 < r < 18, is a possible sequence for our transform.

To determine which of these sequences have a Discrete Time Fourier Transform, we need to take the Fourier Transform of the sequence. To do so, we can use the formula:

X(ω) = ∫x(t)e⁻ⁱωt  dt

To calculate the Discrete Time Fourier Transform of a sequence with the form of x(n)= An+¹r⁻ⁿ, we can use the formula:

X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω)

Therefore, any sequence of the form x(n) = An+¹r⁻ⁿ, where 0 < r < 18, has a Discrete Time Fourier Transform of the form  X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω).

Learn more about the Discrete Time Fourier Transform here:

https://brainly.com/question/33278832.

#SPJ4

make steps so clear So I could Understand

find Y(t) = x(t)•h(t)
find \( y(t)=x(t) * h(t) \cdots \) ? \[ y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \| \]

Answers

To find the convolution \( y(t) = x(t) * h(t) \), we reverse and shift the impulse response, multiply it with the input signal, and integrate the product over the range of integration.

To find \( y(t) = x(t) * h(t) \), we need to perform a convolution integral between the input signal \( x(t) \) and the impulse response \( h(t) \).

The convolution integral is given by the equation:

\[ y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau \]

Here are the steps to find the convolution \( y(t) \):

1. Reverse the time axis of the impulse response \( h(t) \) to obtain \( h(-t) \).

2. Shift \( h(-t) \) by \( t \) units to the right to obtain \( h(t-\tau) \).

3. Multiply \( x(\tau) \) with \( h(t-\tau) \).

4. Integrate the product over the entire range of \( \tau \) by taking the integral \( \int_{-\infty}^{\infty} \) of the product \( x(\tau) \cdot h(t-\tau) \) with respect to \( \tau \).

5. The result of the convolution integral is \( y(t) \).

The convolution integral represents the output of the system when the input signal \( x(t) \) is passed through the system with impulse response \( h(t) \).

Learn more about Integrate here:
brainly.com/question/31954835

#SPJ11


solve this asap
In order to transform a system from time domain to frequency domain, what type of transform do you need?

Answers

To transform a system from the time domain to the frequency domain, you need to perform a Fourier transform.

The process of transforming a system from the time domain to the frequency domain involves the use of a mathematical operation called the Fourier transform. The Fourier transform allows us to represent a signal or a system in terms of its frequency components. Here are the steps involved:

Start with a signal or system that is represented in the time domain. In the time domain, the signal is described as a function of time.

Apply the Fourier transform to the time-domain signal. The Fourier transform mathematically converts the signal from the time domain to the frequency domain.

The result of the Fourier transform is a complex function called the frequency spectrum. This spectrum represents the signal in terms of its frequency components.

The frequency spectrum provides information about the amplitudes and phases of different frequency components present in the original time-domain signal.

The inverse Fourier transform can be used to convert the frequency spectrum back to the time domain if desired.

By performing the Fourier transform, we can analyze signals or systems in the frequency domain, which is particularly useful for tasks such as filtering, noise removal, and modulation analysis.

For more questions like Frequency click the link below:

https://brainly.com/question/5102661

#SPJ11

Find the number "c" that satisfy the Mean Value Theorem (M.V.T.) on the given intervals. (a) f(x)=e−x,[0,2] (5) (b) f(x)=x/x+2​,[1,π] (5)

Answers

There is no number "c" that satisfies the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

To apply the Mean Value Theorem (M.V.T.), we need to check if the function is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If these conditions are met, then there exists a number "c" in (a, b) such that the derivative of the function at "c" is equal to the average rate of change of the function over the interval [a, b].

Let's calculate the number "c" for each given function:

(a) f(x) = e^(-x), [0, 2]

First, let's check if the function is continuous on [0, 2] and differentiable on (0, 2).

1. Continuity: The function f(x) = e^(-x) is continuous everywhere since it is composed of exponential and constant functions.

2. Differentiability: The function f(x) = e^(-x) is differentiable everywhere since the exponential function is differentiable.

Since the function is both continuous on [0, 2] and differentiable on (0, 2), we can apply the M.V.T. to find the value of "c."

The M.V.T. states that there exists a number "c" in (0, 2) such that:

f'(c) = (f(2) - f(0))/(2 - 0)

To find "c," we need to calculate the derivative of f(x):

f'(x) = d/dx(e^(-x)) = -e^(-x)

Now we can solve for "c":

-c*e^(-c) = (e^(-2) - e^0)/2

We can simplify the equation further:

-c*e^(-c) = (1/e^2 - 1)/2

-c*e^(-c) = (1 - e^2)/(2e^2)

Since this equation does not have an analytical solution, we can use numerical methods or a calculator to approximate the value of "c." Solving this equation numerically, we find that "c" ≈ 1.1306.

Therefore, the number "c" that satisfies the M.V.T. for f(x) = e^(-x) on the interval [0, 2] is approximately 1.1306.

(b) f(x) = x/(x + 2), [1, π]

Similarly, let's check if the function is continuous on [1, π] and differentiable on (1, π).

1. Continuity: The function f(x) = x/(x + 2) is continuous everywhere except at x = -2, where it is undefined.

2. Differentiability: The function f(x) = x/(x + 2) is differentiable on the open interval (1, π) since it is a rational function.

Since the function is continuous on [1, π] and differentiable on (1, π), we can apply the M.V.T. to find the value of "c."

The M.V.T. states that there exists a number "c" in (1, π) such that:

f'(c) = (f(π) - f(1))/(π - 1)

To find "c," we need to calculate the derivative of f(x):

f'(x) = d/dx(x/(x + 2)) = 2/(x + 2)^2

Now we can solve for "c":

2/(c + 2)^2 = (π/(π + 2) - 1)/(π - 1)

Simplifying the equation:

2/(c + 2)^2 = (

π - (π + 2))/(π + 2)(π - 1)

2/(c + 2)^2 = (-2)/(π + 2)(π - 1)

Simplifying further:

1/(c + 2)^2 = -1/((π + 2)(π - 1))

Now, solving for "c," we can take the reciprocal of both sides and then the square root:

(c + 2)^2 = -((π + 2)(π - 1))

Taking the square root of both sides:

c + 2 = ±sqrt(-((π + 2)(π - 1)))

Since the right-hand side of the equation is negative, there are no real solutions for "c" that satisfy the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

Therefore, there is no number "c" that satisfies the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

To know more about number click-

http://brainly.com/question/24644930

#SPJ11

Find the area of the region enclosed between y = 2 sin(x) and y = 4 cos(z) from x = 0 to x = 0.6π. Hint: Notice that this region consists of two parts.

Answers

The area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is 2√(3) + 5.

Finding the intersection points of these two curves. [tex]2 sin x = 4 cos xx = cos^-1(2)[/tex]. From the above equation, the two curves intersect at [tex]x = cos^-1(2)[/tex]. So, the integral will be [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗+ ∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗[/tex].

1: [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗[/tex]. [tex]∫cosx dx = sinx[/tex] and [tex]∫sinx dx = -cosx[/tex]. So, the integral becomes: [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗= 4∫_0^(cos^(-1)(2))▒〖cosx dx 〗-2∫_0^(cos^(-1)(2))▒〖sinx dx 〗= 4 sin(cos^-1(2)) - 2 cos(cos^-1(2))= 4√(3)/2 - 2(1/2)= 2√(3) - 1[/tex]

2: [tex]∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗[/tex] Again, using the same formula, the integral becomes: [tex]∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗= -2∫_(cos^(-1)(2))^(0.6π)▒〖(-sinx) dx 〗- 4∫_(cos^(-1)(2))^(0.6π)▒〖cosx dx 〗= 2cos(cos^-1(2)) + 4(1/2) = 2(2) + 2= 6[/tex].

Therefore, the area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is given by the sum of the two parts: [tex]2√(3) - 1 + 6 = 2√(3) + 5[/tex] The area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is 2√(3) + 5.

learn more about area

https://brainly.com/question/30307509

#SPJ11

Prove that 3 is a factor of 4ⁿ−1 for all positive integers.

Answers

To prove that 3 is a factor of 4ⁿ - 1 for all positive integers, we can use mathematical induction to demonstrate that the statement holds true for any arbitrary positive integer n.

We will prove this statement using mathematical induction. Firstly, we establish the base case, which is n = 1. In this case, 4ⁿ - 1 equals 4 - 1, which is 3, and 3 is divisible by 3. Hence, the statement is true for n = 1.

Next, we assume that the statement holds true for some arbitrary positive integer k. That is, 4ᵏ - 1 is divisible by 3. Now, we need to prove that the statement also holds true for k + 1.

To do so, we consider 4^(k+1) - 1. By using the laws of exponents, this expression can be rewritten as (4^k * 4) - 1. We can further simplify it to (4^k - 1) * 4 + 3.

Since we assumed that 4^k - 1 is divisible by 3, let's denote it as m, where m is an integer. Therefore, we can express 4^(k+1) - 1 as m * 4 + 3.

Now, observe that m * 4 is divisible by 3 since 3 divides m and 3 divides 4. Additionally, 3 is divisible by 3. Therefore, m * 4 + 3 is also divisible by 3.

Hence, by the principle of mathematical induction, we have proven that 3 is a factor of 4ⁿ - 1 for all positive integers.

Learn more about exponents here:

https://brainly.com/question/5497425

#SPJ11

0.0154 as a percentage

Answers

Answer:

Step-by-step explanation:

0.0154 as a percentage is 1.54%

:)

The coefficient of x2 in the Maclaurin series for f(x)=exp(x2) is: A. −1  B. -1/4​ C. 1/4​ D. 1​/2 E. 1

Answers

Therefore, the coefficient of x² in the Maclaurin series for f(x) = exp(x²) is 1/4.

The coefficient of x² in the Maclaurin series for f(x) = exp(x²) is given by: C. 1/4.

In order to determine the coefficient of x² in the Maclaurin series for f(x) = exp(x²), we need to use the formula for the Maclaurin series expansion, which is given as:

[tex]$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$[/tex]

Therefore, we can find the coefficient of x² by calculating the second derivative of f(x) and evaluating it at x = 0, and then dividing it by 2!.

So, first we take the derivative of f(x) with respect to x:

[tex]$$f'(x) = 2xe^{x^2}$$[/tex]

Then we take the derivative again:

[tex]$$f''(x) = (2x)^2 e^{x^2} + 2e^{x^2}$$[/tex]

Now, we evaluate this expression at x = 0:

[tex]$$f''(0) = 2 \cdot 0^2 e^{0^2} + 2e^{0^2} = 2$$[/tex]

Finally, we divide by 2! to get the coefficient of x²:

[tex]$$\frac{f''(0)}{2!} = \frac{2}{2!} = \boxed{\frac{1}{4}}$$[/tex]

Therefore, the coefficient of x² in the Maclaurin series for f(x) = exp(x²) is 1/4.

To know more about Maclaurin series , visit:

https://brainly.in/question/36050112

#SPJ11

A cylindrical water tank has a height of 5m and a diameter of
3,5m
Calculate the volume of the tank. (Use =3,14)
Determine the capacity in litres.

Answers

Answer:

48110 L ≅

Step-by-step explanation:

as we know volume of a cylinder is

pie x r² x h

h = 5m

d= 3.5m          so r=d/2   r =1.75

as π value given 3.14

so  

    3.14  x  (1.75)²   x   5

the answer would be approx. 48.11 m^3

as 1 m³   =    1000 L

So 48.11  x   1000

therefore volume in Liters is 48110.

Other Questions
Which of the following accurately describe a data structure that follows stack behavior? Select all that apply. O The structure must support random access of items stored in it. O The structure can be implemented either as an array or linked list. O The structure must be able to remove multiple items in one function. O The structure's data behaves according to the FILO principle. In a parallel circuit, Determine the value of R2 in ohms suchthat the current is 5 times the current flowing through R1, whereI=89 A and R1=1,356 Ohms. If the measure of angle A = (4x + 20) degrees and the measure of angle D = (5x - 65) degrees, what is the measure of angle A? Why didn't Ben's father sendhim to college?A. He didn't see a need for formaleducation.B. He didn't see Ben's potential like theneighbors did.C. He couldn't afford to send him. D) Declare an array list and assign objects from the array in (a) that have more than or equal to 4000 votes per candidate to it. cross-references should be prepared for foreign business names by Laine and Maddie are practicing Free throws Laine makes 5 baskets for every 9 shots. Maddie makes 4 for baskets for every 6 shots. If each girl attempts 36 shots, which girl makes more baskets? Through the use of tables & t-accounts, explain the relativeimportance of the tools of monetary policy. what term is used to describe the quality or state of ownership or control of information? for the most part, race and skin color are not related to social status in middle and south america. (True or False) Find the inverse z-transform (r[n]) for the following signals (a) X(2)=, |2|>8 (b) X(2) = 7+32+2 ||>2 2-5 (c) X(2) = 22-0.75=+0.125 Reading: Read the text about mobile phone and answer the questions. Are teenagers safer with a mobile phone or without? Parents want their kids to be safe. Many parents want their children to have a phone so that they can be in contact at any time or in any place. On the other hand, for lots of parents a phone is a source of possible danger. Parents worry that their child may meet the wrong kind of 'friends' on social networking. Mobile phones are permitted at school in many countries but pupils are not allowed to use them in class and they must be on silent during lessons. Teachers can take away phones if these rules are broken. School students can use their phones at break time and at lunchtime. Some teachers complain that pupils don't always follow the rules and that lessons are disrupted by people texting, making and receiving calls, looking at social networking sites, watching videos and even making videos in the class. 1. Why do many parents want their children to have a phone? 2. What do parents worry about? 3. When can teachers take away phones from pupils? 4. When can school students use their phones? 5. How are lessons disrupted by pupils don't follow the rules? capacity costs depend primarily on annual operating and maintenance costs. The common-source stage has an infinite input impedance Select one O True O False An NPN transistor having a current gain B-80, is biased to get a collector current le 2 mA, if Va 150 V, and V, 26 mV, then its transconductance g and ro Aimi took out a RM200,000, 25-year mortgage with an annual interest rate of 8%. She pays RM1 800 per month for this mortgage loan. Aimi has made 15 years' worth of payments. How much does Aimi still owe on her mortgage? (4 marks) a car is moving 5.82 m/s when it accelerates at 2.35 m/s2 for 3.25, what is its final velocity Assume a stock has an expected return of 15% and a volatility of 30%. What is the probability distribution for the rate of return in 5 years? Please show all work. Please use four decimal places for all calculations. 1. Determine the discrete fourier transform. Square your FinalAnswer.a. x(n) = 2n u(-n)b. x(n) = 0.25n u(n+4)c. x(n) = (0.5)n u(n)d. x(n) = u(n) - u(n-6) A relative frequency table is made from data in a frequency table. Relative Frequency Table: A 4-column table with 3 rows. The first column has no label with entries likes S, T, total. The second column is labeled U with entries 26%, 21%, 47%. The third column is labeled V with entries 42%, k, 53%. The fourth column is labeled total with entries 68%, 32%, 100%. What is the value of k in the relative frequency table? Round the answer to the nearest percent. 2% 11% 20% 33% Mark this and return Which of the following statements is true?a) In order to estimate k and n from raw data, we must have at least one "doubled pair".b) Positive values for n indicate that we are experiencing "unlearning" (we are getting worse over time).c) Exponential decay means that the improvement from the 10thunit to the 11th unit is less than the improvement from the 20thunit to the 21st unit.d) All of the above statements are true.e) All of the above statements are false.