Find the indefinite integral. (Note: Solve by the simplest method-not all require integration by parts. Use C for the constant of integration.) ∫x √(x−53​)dx

Answers

Answer 1

The indefinite integral for the expression `∫x √(x−5/3)dx` is:∫x √(x−53​)dx

= (2/3) * (x - 5/3) * (x - 5/3) * √(x-5/3) + C

Let u   = x - 5/3

=> du/dx = 1 or dx = du ∫x √(x−5/3)dx

= ∫(u+5/3) √(u)du= ∫u√(u)du + (5/3) ∫√(u)du

= (2/5) * u^(5/2) + (5/3) * (2/3) * u^(3/2) + C

= (2/5) * (x - 5/3)^(5/2) + (2/9) * (x - 5/3)^(3/2) + C

= (2/3) * (x - 5/3) * (x - 5/3) * √(x-5/3) + C

(main answer)where C is the constant of integration.

To know more about integratiion visit:

https://brainly.com/question/33468997

#SPJ11


Related Questions

Consider the function f(x) = 12x^5 + 60x^4 - 100x^3 + 4.

f(x) has inflection points at (reading from left to right) x = D, E, and F

where D is _____
and E is ___
and F is ____

For each of the following intervals, tell whether f(x) is concave up or concave down.

(− [infinity], D): ______
(D, E): ______
(E, F): ______
(F, [infinity]): ______

Answers

D is the left inflection point E is the middle inflection pointF is the right inflection point(− [infinity], D): Concave down(D, E): Concave up(E, F): Concave down(F, [infinity]): Concave up

Consider the function f(x) = 12x^5 + 60x^4 - 100x^3 + 4.

f(x) has inflection points at (reading from left to right) x = D, E, and F, where D is ____ and E is ____ and F is ____.The given function is f(x) = 12x5 + 60x4 - 100x3 + 4.

The first derivative of the given function can be found as below:

f(x) = 12x5 + 60x4 - 100x3 + 4f'(x) = 60x4 + 240x3 - 300x2

The second derivative of the given function can be found as below:

f(x) = 12x5 + 60x4 - 100x3 + 4f''(x) = 240x3 + 720x2 - 600x

We can set f''(x) = 0 to find the inflection points.

x = D : f''(D) = 240D3 + 720D2 - 600D = 0x =

E : f''(E) = 240E3 + 720E2 - 600E = 0x = F :

f''(F) = 240F3 + 720F2 - 600F = 0For each of the following intervals, tell whether f(x) is concave up or concave down.

(− [infinity], D): f''(x) < 0 hence f(x) is concave down(D, E):

f''(x) > 0 hence f(x) is concave up(E, F):

f''(x) < 0 hence f(x) is concave down(F, [infinity]):

f''(x) > 0 hence f(x) is concave up.

To know more about   inflection point  visit:-

https://brainly.com/question/30767426

#SPJ11

A loan of £10,000 is repayable in 91 days at a simple rate of interest of 8% per annum. Assuming that 1 year is equivalent to 365 days, calculate: (i) the amount repayable in 91 days; (ii) the effective rate of discount per annum; (iii) the equivalent nominal rate of interest per annum convertible quarterly.

Answers

Answer: 2.08%

Step-by-step explanation:

(i) The amount repayable in 91 days can be calculated using the formula:

Simple Interest = (Principal * Rate * Time) / 100

Here, Principal = £10,000, Rate = 8% per annum, Time = 91/365 years

Simple Interest = (10,000 * 8 * 91/365) / 100 = £182

The amount repayable in 91 days = Principal + Simple Interest = £10,000 + £182 = £10,182

(ii) The effective rate of discount per annum can be calculated using the formula:

Effective Rate of Discount = (Simple Interest / Principal) * (365 / Time)

Here, Simple Interest = £182, Principal = £10,000, Time = 91 days

Effective Rate of Discount = (182 / 10,000) * (365 / 91) = 2.936 %

(iii) The equivalent nominal rate of interest per annum convertible quarterly can be calculated using the formula:

Effective Rate of Interest = (1 + (Nominal Rate / m))^m - 1

Here, m = 4 (quarterly)

Effective Rate of Interest = (1 + (Nominal Rate / 4))^4 - 1 = 0.0835 or 8.35%

Solving for Nominal Rate:

Nominal Rate = (Effective Rate of Interest + 1)^(1/m) - 1

Nominal Rate = (0.0835 + 1)^(1/4) - 1 = 0.0208 or 2.08%

Therefore, the equivalent nominal rate of interest per annum convertible quarterly is 2.08%.

3) Compute the surface area of the part of the cylinder x2 + y2 = 1 that lies between the planes z=0 and x+y+z=10.

Answers

The surface area of the part of the cylinder x^2 + y^2 = 1 that lies between the planes z = 0 and x + y + z = 10 is approximately 12.57 square units.

The surface area, we can use a method called surface area parametrization. We need to parameterize the surface and calculate the integral of the magnitude of the cross product of the partial derivatives with respect to the parameters.

Let's consider cylindrical coordinates, where x = rcosθ, y = rsinθ, and z = z.

The given cylinder x^2 + y^2 = 1 can be parameterized as follows:

r = 1,

0 ≤ θ ≤ 2π,

0 ≤ z ≤ 10 - x - y.

We calculate the partial derivatives with respect to the parameters r and θ:

∂r/∂θ = 0,

∂r/∂z = 0,

∂θ/∂r = 0,

∂θ/∂z = 0,

∂z/∂r = -1,

∂z/∂θ = -1.

Taking the cross product of the partial derivatives, we obtain a vector (0, 0, -1).

The magnitude of this vector is √(0^2 + 0^2 + (-1)^2) = 1.

Now we integrate the magnitude over the given parameters:

∫∫∫ √(r^2) dz dθ dr,

where the limits of integration are as follows:

0 ≤ r ≤ 1,

0 ≤ θ ≤ 2π,

0 ≤ z ≤ 10 - rcosθ - rsinθ.

Integrating with respect to z, we get:

∫∫ √(r^2) (10 - rcosθ - rsinθ) dθ dr.

Integrating with respect to θ, we have:

∫ 10r - r^2 (sinθ + cosθ) dθ from 0 to 2π.

Simplifying the integral, we get:

∫ 10rθ - r^2 (sinθ + cosθ) dθ from 0 to 2π.

Evaluating the integral, we obtain:

10πr - 2πr^2.

Integrating this expression with respect to r, we have:

5πr^2 - (2/3)πr^3.

Substituting the limits of integration (0 to 1), we get:

5π(1)^2 - (2/3)π(1)^3 = 5π - (2/3)π = (15π - 2π) / 3 = 13π / 3.

Therefore, the surface area of the part of the cylinder x^2 + y^2 = 1 that lies between the planes z = 0 and x + y + z = 10 is approximately 12.57 square units.

To learn more about area

brainly.com/question/30307509

#SPJ11

Given the function: h(x)=ex and g(x)=x2

Answers

Given the function h(x)=ex and g(x)=x2. The domain of a function represents all possible input values that it accepts. The function h(x)=ex has a domain of all real numbers. Thus, the domain of the function is (-∞, ∞).

The domain of a function represents all possible input values that it accepts. The function g(x)=x² has a domain of all real numbers. Thus, the domain of the function is (-∞, ∞). Substituting the function g(x)=x² in h(x)=ex, we have;h(g(x)) = h(x²)Therefore, h(g(x)) = ex² Substituting the function h(x)=ex in g(x)=x², we have;g(h(x)) = (ex)² Therefore, g(h(x)) = e2x. The range of a function is the set of all possible output values.

The function h(x)=ex has a range of all positive real numbers. Thus, the range of the function is (0, ∞). The range of a function is the set of all possible output values. The function g(x)=x² has a range of all non-negative real numbers. Thus, the range of the function is [0, ∞).

To know more about function visit:

https://brainly.com/question/21145944?

#SPJ11

in
c++
1 a) write a base case for the recursive version of this
function
b) write a recursive call for the recursive version of this
function
Given the mathematical series defined as follows, which can be used to calculate the natural log of 2: \[ \sum_{k=1}^{\infty} \frac{1}{2^{k} k}=\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\frac{1}{64}+\frac{

Answers

a) The base case for the recursive version of this function would be when the value of 'k' reaches a certain threshold or limit, indicating the end of the summation.

b) The recursive call for the recursive version of this function would involve reducing the value of 'k' in each iteration and adding the corresponding term to the overall sum.

a) In the given mathematical series, the base case represents the starting point where the summation begins. By setting 'k = 1' as the base case, we indicate that the summation starts from the first term.

b) The recursive call involves invoking the same function, but with a reduced value of 'k' in each iteration. It calculates the value of the current term (1 / (2.0 * k)) and adds it to the sum obtained from the recursive call with the reduced value of 'k' (k - 1). This process continues until the base case is reached, at which point the function returns the final sum.

```cpp

double calculateLog(int k) {

 if (k == 1) {

   return 1 / (2.0 * k);

 } else {

   return (1 / (2.0 * k)) + calculateLog(k - 1);

 }

}

```

By utilizing recursion, the function calculates the natural log of 2 by summing the terms in the given mathematical series. Each recursive call represents one term in the series, and the base case ensures that the summation stops at the desired point.

Learn more about recursive  here: brainly.com/question/30027987

#SPJ11

A stock analyst plots the price per share of a certain common stock as a function of time and finds that it can be approximated by the function 8(t)=44+8e−0.02t, where t is the time (in years) since the stock was purchased. Find the average price of the stock over the first six years. The average price of the stock is 5 (Round to the nearest cent as needed).

Answers

The average price of the stock over the first six years is $52.

The given function is [tex]S(t)=44+8e^{0.02t}[/tex].

Where, t is the time (in years) since the stock was purchased

We want to find the average price of the stock over the first six years.

To find the average price we will need to find the 6-year sum of the stock price and divide it by 6.

To find the 6-year sum of the stock price, we will need to evaluate the function at t = 0, t = 1, t = 2, t = 3, t = 4, and t = 5 and sum up the results.

Therefore,

S(0)=44+[tex]8e^{-0.02(0)}[/tex] = 44+8 = 52

S(1)=44+[tex]8e^{-0.02(1)}[/tex]= 44+7.982 = 51.982

S(2)=44+[tex]8e^{-0.02(2)}[/tex] = 44+7.965 = 51.965

S(3)=44+[tex]8e^{-0.02(3)}[/tex] = 44+7.949 = 51.949

S(4)=44+8[tex]e^{-0.02(4)}[/tex] = 44+7.933 = 51.933

S(5)=44+[tex]8e^{-0.02(5)}[/tex] = 44+7.916 = 51.916

The 6-year sum of the stock price is 51 + 51.982 + 51.965 + 51.949 + 51.933 + 51.916 = 309.715.

The average price of the stock over the first six years is 309.715/6 = 51.619167 ≈ 52

Therefore, the average price of the stock over the first six years is $52.

To learn more about an average visit:

https://brainly.com/question/11195029.

#SPJ4

Explain why a variable will usually have only one conceptual
definition but can have multiple operational definitions.

Answers

While a variable typically has one conceptual definition that represents its underlying construct, it can have multiple operational definitions to accommodate different research needs and approaches. Conceptual definitions provide the theoretical basis, while operational definitions specify how the variable will be measured or manipulated in a particular study.

A variable in the context of scientific research represents a concept or phenomenon that we are interested in studying. It is often defined conceptually, which means that it refers to an abstract idea or construct. The conceptual definition of a variable provides a broad understanding of what the variable represents and its theoretical significance.

On the other hand, operational definitions define how a researcher intends to measure or manipulate the variable in a specific study. They provide clear and concrete instructions on how the variable will be observed, quantified, or manipulated within the confines of a particular experiment or investigation.

The reason why a variable usually has only one conceptual definition is because it represents a specific construct or idea within a research context. The conceptual definition serves as the foundation for understanding the variable across different studies and theories. It ensures consistency and coherence when communicating about the variable's meaning and theoretical implications.

However, a variable can have multiple operational definitions because researchers may choose different ways to measure or manipulate it depending on their specific research goals, constraints, and methods. Different operational definitions may be employed to capture different aspects or dimensions of the conceptual variable.

These operational definitions can vary based on factors such as measurement tools, scales, procedures, or experimental conditions. Researchers may select different operational definitions to suit their specific research objectives, practical considerations, or theoretical frameworks. Additionally, advancements in technology and methodology over time may lead to the development of new and more refined operational definitions for variables.

By employing multiple operational definitions, researchers can explore different facets of a variable and examine its properties from various perspectives. This approach enhances the robustness and comprehensiveness of scientific investigations, allowing for a deeper understanding of the variable under study.

In summary, while a variable typically has one conceptual definition that represents its underlying construct, it can have multiple operational definitions to accommodate different research needs and approaches. Conceptual definitions provide the theoretical basis, while operational definitions specify how the variable will be measured or manipulated in a particular study.

Learn more about variable  from

https://brainly.com/question/28248724

#SPJ11

Heloïse considered two types of printers for her office. Each printer needs some time to warm up before it starts printing at a constant rate. The first printer takes 303030 seconds to warm up, and then it prints 111 page per second. The printing duration (in seconds) of the second printer as a function of the number of pages is given by the following table of values: \text{Pages}Pagesstart text, P, a, g, e, s, end text \text{Duration}Durationstart text, D, u, r, a, t, i, o, n, end text (seconds) 161616 404040 323232 606060 484848 808080 Which printer takes more time to warm up? Choose 1 answer: Choose 1 answer: (Choice A) A The first printer (Choice B) B The second printer (Choice C) C They both take the same time to warm up Which printer prints more pages in 100100100 seconds? Choose 1 answer: Choose 1 answer: (Choice A) A The first printer (Choice B) B The second printer (Choice C) C They both print the same number of pages in 100100100 seconds

Answers

A) The first printer takes more time to warm up.

B) The second printer prints more pages in 100 seconds.

A) The first printer has a warm-up time of 30 seconds, while the second printer has a warm-up time of 16 seconds, 40 seconds, 32 seconds, 60 seconds, 48 seconds, or 80 seconds. Since the warm-up time of the first printer (30 seconds) is greater than any of the warm-up times of the second printer, the first printer takes more time to warm up.

B) The first printer prints at a constant rate of 1 page per second, while the second printer has varying durations for different numbers of pages. In 100 seconds, the first printer would print 100 pages. Comparing this to the table, the second printer prints fewer pages in 100 seconds for any given number of pages. Therefore, the second printer prints fewer pages in 100 seconds compared to the first printer.

learn more about printer here:
https://brainly.com/question/5039703

#SPJ11

Find the critical points of the function

f(x)=x^2-9/x^2-4x+3

Use a comma to separate multiple critical points. Enter an exact answer. If there are no critical points, enter ∅ .
x= _______


Answers

The critical value of the function is ∅ is an empty set.

Given data:

To find the critical points of the function f(x) = (x² - 9) / (x² - 4x + 3), we need to find the values of x where the derivative of the function is either zero or undefined.

First, let's find the derivative of f(x) with respect to x:

f'(x) = [(2x)(x² - 4x + 3) - (x² - 9)(2x - 4)] / (x² - 4x + 3)²

Simplifying the numerator:

f'(x) = [2x³ - 8x² + 6x - 2x³ + 4x² - 18x + 8x - 36] / (x² - 4x + 3)²

= (-4x² - 10x - 36) / (x² - 4x + 3)²

To find the critical points, we need to solve the equation f'(x) = 0:

(-4x² - 10x - 36) / (x² - 4x + 3)² = 0

Since the numerator of the fraction can be zero, we need to solve the equation -4x² - 10x - 36 = 0:

4x² + 10x + 36 = 0

We can attempt to factor or use the quadratic formula to solve this equation:

Using the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

In this case, a = 4, b = 10, and c = 36:

x = (-10 ± √(10² - 4 * 4 * 36)) / (2 * 4)

x = (-10 ± √(100 - 576)) / 8

x = (-10 ± √(-476)) / 8

Since the discriminant is negative, the equation has no real solutions. Therefore, there are no critical points for the given function.

Hence, the critical points are ∅ (empty set).

To learn more about critical value click :

https://brainly.com/question/31129453

#SPJ4

Using the definition of the derivative, find f'(x). Then find f'(1), f'(2), and f'(3) when the derivative exists.

f(x) = -x^2 +4x-5

f’(x) = _____
(Type an expression using x as the variable.)

Answers

f'(1) = 2, f'(2) = 0, and f'(3) = -2 when the derivative exists.To find the derivative of f(x) = -x^2 + 4x - 5, we can use the power rule for differentiation.

According to the power rule, the derivative of x^n, where n is a constant, is given by n*x^(n-1).

Applying the power rule to each term of f(x), we have:

f'(x) = d/dx (-x^2) + d/dx (4x) - d/dx (5)

Differentiating each term, we get:

f'(x) = -2x + 4 - 0

Simplifying further, we have:

f'(x) = -2x + 4

Now, we can find f'(1), f'(2), and f'(3) by substituting the corresponding values of x into f'(x):

f'(1) = -2(1) + 4 = 2

f'(2) = -2(2) + 4 = 0

f'(3) = -2(3) + 4 = -2

Therefore, f'(1) = 2, f'(2) = 0, and f'(3) = -2 when the derivative exists.

To learn more about derivative click here:

brainly.com/question/32618640

#SPJ11

Please help with my mathematics

Answers

a) To determine who has the most consistent results among Charles, Isabella, and Naomi, they should calculate the range.

b) Among Charles, Isabella, and Naomi, Isabella achieved the most consistent results.

a) The range provides information about the spread or variability of the data set by measuring the difference between the highest and lowest values. A smaller range indicates more consistent results, while a larger range suggests greater variability.

b) To determine who achieved the most consistent results, let's calculate the ranges for each individual:

Charles: The range of his test scores is 57 - 39 = 18.

Isabella: The range of her test scores is 71 - 62 = 9.

Naomi: The range of her test scores is 94 - 61 = 33.

Comparing the ranges, we can see that Isabella has the smallest range, indicating the most consistent results. Charles has a larger range, suggesting more variability in his scores. Naomi has the largest range, indicating the most significant variability in her test scores.

For more such question on range. visit :

https://brainly.com/question/30389189

#SPJ8

Required information A current source in a linear circuit has i
S

=15cos(Aπt+25

)A. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Calculate i
S

at t=2 ms, where A=20. The current i
S

at t=2 ms is × A.

Answers

the current iS at t = 2 ms when A = 20 is approximately equal to 275 A.

Given, The current source in a linear circuit has

iS = 15 cos (Aπt + 25°)A At t = 2 ms = 2 × 10⁻³ s,

and A = 20

Hence,

iS = 15 cos (20πt + 25°)AAt t = 2 ms,

i.e.,

t = 2 × 10⁻³ s,

we have:

iS = 15 cos (20π × 2 × 10⁻³ + 25°)A= 15 cos (40π × 10⁻³ + 25°)A= 15 cos (0.125 + 25°)A≈ 15 cos 25.125°= 13.7556A

Now, multiplying it by A = 20, we get:

iS = 13.7556 × 20A= 275.112A≈ 275A

Therefore, the current iS at t = 2 ms when A = 20 is approximately equal to 275 A.

To know more about current

https://brainly.com/question/23323183

#SPJ11

Consider the linear differential equation y′′+4y=0 - Determine the corresponding characteristic equation. λ′′+4=0λ′′+4λ′=0λ2+4=0λ2+4λ=0λ2=4λ2=4λ​ - Find the roots λ1​,λ2​ of the corresponding characteristic equation and determine the corresponding case. (λ1​,λ2​)= Case: b) Assume the general solution to another second order differential equation is given by y(x)=c1​e3x+c2​(−2x+1)+3 Find c1​,c2​ such that y satisfies the initial conditions y(0)=6,y′(0)=14 c1 ​= ___ c2​ =​ ___

Answers

Given linear differential equation is y′′+4y=0. Step 1: Determine the corresponding characteristic equation.The characteristic equation is [tex]\lambda^2[/tex] + 4 = 0.

Step 2: Find the roots λ1, λ2 of the corresponding characteristic equation and determine the corresponding case.The characteristic equation[tex]\lambda^2[/tex] + 4 = 0 has roots λ1 = 2i and λ2 = -2i. Since the roots are imaginary, the case is overdamping.

Step 3: Assume the general solution to another second order differential equation is given by [tex]y(x) = c_1 e^{3x} + c_2 (-2x + 1) + 3[/tex]. Find c1​, c2​ such that y satisfies the initial conditions y(0)=6, y′(0)=14.To find c1, substitute x = 0, y = 6, and y' = 14 in the equation

[tex]y(x) = c_1 e^{3x} + c_2 (-2x + 1) + 3[/tex] to get:

6 = c1 + c2 + 3 ------(1)

To find c2, differentiate the general solution

[tex]y(x) = c_1 e^{3x} + c_2 (-2x + 1) + 3[/tex]

with respect to x, to get:

[tex]y'(x) = 3 c_1 e^{3x} - 2 c_2[/tex]

Substitute x = 0 and y' = 14 in this equation to get:

14 = 3c1 - 2c2 ------(2)

Solve the above two equations to get c1 and c2. Subtract equation (1) from (2):

14 = 3c1 - 2c2  - 3 (c1 + c2 + 3)

= -3c1 - 3c2 - 9 11 = 0c1 = 1

Now substitute c1 = 1 in equation (1):6 = c1 + c2 + 3c2 = 2 Therefore, c1 = 1 and c2 = 2.So, c1 = 1 and c2 = 2

To know more about linear differential equation visit:

https://brainly.com/question/30330237

#SPJ11

Let y= 5x^2 + 4x + 4. If Δx = 0.3 at x = 4, use linear approximation to estimate Δy
Δy ~ _______

Answers

The estimate of Δy is 12.2 when Δx = 0.3 at x = 4.

Given y

= 5x² + 4x + 4, Δx

= 0.3 at x

= 4To estimate Δy using linear approximation, we can use the formula;Δy

= f'(x)Δx where f'(x) is the derivative of f(x).Find the derivative of f(x);y

= 5x² + 4x + 4dy/dx

= 10x + 4 Since Δx

= 0.3 at x

= 4,Δy ~ f'(x)Δx

= (10x + 4)Δx

= (10(4) + 4)0.3

= 12.2Δy ~ 12.2 (rounded to 1 decimal place).The estimate of Δy is 12.2 when Δx

= 0.3 at x

= 4.

To know more about estimate visit:

https://brainly.com/question/30870295

#SPJ11

Find the derivative of f(x) = 1/ -x-5 using the limit definition. Use this find the equation of the tangent line at x=5.
Hint for the middle of the problem: Find and use the least common denominator.

Answers

The tangent line at x = 5 is vertical.The equation of the tangent line at x = 5 is x = 5, which represents a vertical line passing through the point (5, undefined).

To find the derivative of f(x) = 1/(-x - 5) using the limit definition, we'll follow these steps:

Step 1: Set up the limit definition of the derivative:

f'(x) = lim(h->0) [f(x + h) - f(x)] / h

Step 2: Plug in the function f(x):

f'(x) = lim(h->0) [1/(-(x + h) - 5) - 1/(-x - 5)] / h

Step 3: Simplify the expression:

To simplify the expression, we need to find the least common denominator (LCD) for the fractions.

The LCD is (-x - 5)(-(x + h) - 5), which simplifies to (x + 5)(x + h + 5).

Now, let's rewrite the expression with the LCD:

f'(x) = lim(h->0) [(x + 5)(x + h + 5)/(x + 5)(x + h + 5) - (-x - 5)(x + h + 5)/(x + 5)(x + h + 5)] / h

f'(x) = lim(h->0) [(x + 5)(x + h + 5) - (-x - 5)(x + h + 5)] / [h(x + 5)(x + h + 5)]

Step 4: Expand and simplify the numerator:

f'(x) = lim(h->0) [x^2 + xh + 5x + 5h + 5x + 5h + 25 - (-x^2 - xh - 5x - 5h - 5x - 5h - 25)] / [h(x + 5)(x + h + 5)]

f'(x) = lim(h->0) [2xh + 10h] / [h(x + 5)(x + h + 5)]

Step 5: Cancel out the common terms:

f'(x) = lim(h->0) [2x + 10] / [(x + 5)(x + h + 5)]

Step 6: Take the limit as h approaches 0:

f'(x) = (2x + 10) / [(x + 5)(x + 5)] = (2x + 10) / (x + 5)^2

Now we have the derivative of f(x) as f'(x) = (2x + 10) / (x + 5)^2.

To find the equation of the tangent line at x = 5, we need to find the slope and use the point-slope form of a line.

Slope at x = 5:

f'(5) = (2(5) + 10) / (5 + 5)^2 = 20 / 100 = 1/5

Using the point-slope form with the point (5, f(5)):

y - f(5) = m(x - 5)

Since f(x) = 1/(-x - 5), f(5) = 1/0 (which is undefined). Therefore, the tangent line at x = 5 is vertical.

The equation of the tangent line at x = 5 is x = 5, which represents a vertical line passing through the point (5, undefined).

To learn more about  derivative click here:

brainly.com/question/32669021?

#SPJ11

Consider the function g(x) = x^2 − 3x + 3.
(a) Find the derivative of g:
g'(x) = ______
(b) Find the value of the derivative at x = (-3)
g’(-3)= _____
(c) Find the equation for the line tangent to g at x = -3 in slope-intercept form (y = mx + b):
y = _______

Answers

(a) The derivative of the function g(x) is given as [tex]g'(x) = d/dx(x² − 3x + 3)\\= 2x - 3[/tex]

(b) Find the value of the derivative at x = (-3)We need to substitute

x = -3 in the above obtained derivative,

[tex]g'(x) = 2x - 3 g’(-3)[/tex]

[tex]= 2(-3) - 3[/tex]

= -9

(c) Find the equation for the line tangent to g at x = -3 in slope-intercept form

(y = mx + b) We know that the equation of tangent at a given point

'x=a' is given asy - f(a)

=[tex]f'(a)(x - a)[/tex]We need to substitute the values and simplify the obtained equation to the slope-intercept form

(y = mx + b) Here, the given point is

x = -3 Therefore, the slope of the tangent will be the value of the derivative at

x = -3 i.e. slope

(m) = g'(-3)

= -9 Also, y-intercept can be found by substituting the value of x and y in the original equation

[tex]y = x² − 3x + 3[/tex]

[tex]= > y = (-3)² − 3(-3) + 3[/tex]

= 21

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

Question 25
How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB?

Select one:
O a 3,3
O b. 1,1
O c 2,2
O d. 3,2
O e. None of them
O f 2,3
Question 26
Exclusive-OR (XOR) logic gates can be constructed from what other logic gates?

Select one:
O a. OR gates and NOT gates
O b. None of them
O c AND gates and NOT gates
O d. OR gates only
O e AND gates, OR gates, and NOT gates

Answers

f . 2, 3

a. OR gates and NOT gates

Question 25:

How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB?

f . 2, 3

Question 26:

Exclusive-OR (XOR) logic gates can be constructed from what other logic gates?

a. OR gates and NOT gates

Exclusive-OR (XOR) logic gates can be constructed from OR gates and NOT gates.

It has two inputs and one output, and the output is 1 when the inputs are different and 0 when the inputs are the same.

Question 25:

Y = BD + CE + AB

Here, we have 4 variables which are to be used as input in the boolean expression.

We will use two-input AND and OR gates to realize the expression.

Let's simplify the given expression,

Y = BD + CE + AB= BD + AB + CE OR  

BD = AB + BD + CE OR B* (D + D' ) + AB + CE

     = AB + CE + B D' + BD

     = AB + CE + B (D' + D)

Using 2-input AND and OR gates, we need the following arrangement,

Thus, we need 2 two-input AND gates and 3 two-input OR gates to realize the expression.

Question 26:

XOR gate can be constructed from OR gates and NOT gates.

The XOR gate can be implemented using two XNOR gates and one NOT gate as well.

Apart from XOR gate, we have other gates too such as NOT, OR, AND, NAND, NOR, etc.

Learn more about logic gates from this link:

https://brainly.com/question/9913122

#SPJ11

The easiest way to visit each digit in an integer is to visit
them from least- to most- significant (right-to-left), using
modulus and division.
E.g., (working in decimal) 327 % 10 is 7. We record 7,

Answers

One of the easiest ways to visit each digit in an integer is to visit them from least to most significant (right-to-left), using modulus and division. In decimal, 327 % 10 is 7.

We record 7, then reduce 327 to 32 via 327/10. We then repeat the process on 32, which gives us 2, and then we repeat it on 3, which gives us 3.  Therefore, the digits in 327 in that order are 7, 2, and 3.

This method, which takes advantage of the place-value structure of the number system, may be used to reverse an integer or extract specific digits.

To know more about integer visit:

https://brainly.com/question/490943

#SPJ11

Consider the following function: y=e^(−0.8x+8)
Use y′ to determine the intervals on which the given function is increasing or decreasing. Separate multiple intervals with commas.

Answers

For the function to be increasing, its derivative should be greater than zero (y' > 0). To determine the intervals of increase and decrease of the given function, y', we need to find where it is equal to zero (y' = 0).

Let's solve this equation:

y' = −0.8e^(−0.8x+8) = 0Let's check our options:

If e^(−0.8x+8) = 0, it would imply that −0.8x + 8 is -∞, but that's impossible since −0.8x + 8 cannot be less than 8. So we can exclude this option.

Next, the exponential function is always greater than zero (e^anything is never 0).

Thus, y' is never equal to zero. Hence, there is no interval where the function is either increasing or decreasing.

To know more about decreasing visit:

https://brainly.com/question/32610704

#SPJ11

Why isn’t x+9y^2=1 a linear equation

Answers

Answer:

See explanation below

Step-by-step explanation:

This equation is not a linear equation because you are squaring a variable. If you square a variable it is not linear anymore but a quadratic. A linear equation is a line with a constant amount of growth all the time, but if you square the variable it will grow/dip exponentially

Let y= tan (4x+4).

Find the differential dy when x = 4 and dx = 0.4 ____________
Find the differential dy when x= 4 and dx = 0.8 _____________

Answers

The value of the differential dy for the first case is 1.811 and for the second case is 3.622.

Firstly, we differentiate the given function, using the Chain rule.

y = Tan(4x+4)

dy/dx = Sec²(4x+4) * 4

dy/dx = 4Sec²(4x+4)

Case 1:

when x = 4, and dx = 0.4,

dy = 4Sec²(4(4)+4)*(0.4)

    = (1.6)Sec²(20)

    = 1.6*1.132

    = 1.811

Case 2:

when x = 4 and dx = 0.8,

dy = 4Sec²(4(4)+4)*(0.4)*2

    = 1.811*2

    = 3.622

Therefore, the values of dy are 1.811 and 3.622 respectively.

For more on Differentiation,

brainly.com/question/33116181

#SPJ4

Rearrange each equation into slope y-intercept form

11c.) 4x - 15y + 36 =0

Answers

Answer:

y= 2/5x+3.6

Step-by-step explanation

used the formula

mark brainlist pls

Compute the Fourier transforms of the following signals. In the following, u(t) denotes the unit step function and the symbol

r(t) = e-3|t|

Answers

The Fourier transform of u(t) is 1/(jω) + πδ(ω), and the Fourier transform of r(t) = e^(-3|t|) is 1/(jω - 3) + 1/(jω + 3).

To compute the Fourier transforms of the given signals, we'll use the following properties:

1. Fourier Transform of u(t): The Fourier transform of the unit step function u(t) is given by 1/(jω) + πδ(ω), where δ(ω) is the Dirac delta function.

2. Fourier Transform of r(t): The Fourier transform of r(t) = e^(-3|t|) can be found using the definition of the Fourier transform and properties of the absolute value function.

Using these properties, we can compute the Fourier transforms of the given signals:

a) Fourier Transform of u(t): The Fourier transform of u(t) is 1/(jω) + πδ(ω), as mentioned above.

b) Fourier Transform of r(t): To compute the Fourier transform of r(t) = e^(-3|t|), we split it into two cases:

• For t < 0: r(t) = e^(3t)

• For t ≥ 0: r(t) = e^(-3t)

Applying the Fourier transform to each case, we obtain:

• For t < 0: Fourier transform of e^(3t) is 1/(jω - 3)

• For t ≥ 0: Fourier transform of e^(-3t) is 1/(jω + 3)

Combining the two cases, the Fourier transform of r(t) = e^(-3|t|) is: 1/(jω - 3) + 1/(jω + 3)

Therefore, the Fourier transform of u(t) is 1/(jω) + πδ(ω), and the Fourier transform of r(t) = e^(-3|t|) is 1/(jω - 3) + 1/(jω + 3).

Learn more about Fourier transform

https://brainly.com/question/28984681

#SPJ11

Find the equation of the tangent line at (2,f(2)) when f(2)=10 and f′(2)=3.
(Use symbolic notation and fractions where needed.)

Answers

The equation of the tangent line at the point (2, f(2)), where f(2) = 10 and f'(2) = 3, can be expressed as y = 3x - 4.

To find the equation of the tangent line, we need to use the point-slope form, which states that the equation of a line passing through a point (x₁, y₁) with slope m is given by y - y₁ = m(x - x₁). In this case, the given point is (2, f(2)), which means x₁ = 2 and y₁ = f(2). We are also given that f'(2) = 3, which represents the slope of the tangent line.

Using the point-slope form, we substitute x₁ = 2, y₁ = f(2) = 10, and m = f'(2) = 3 into the equation. This gives us y - 10 = 3(x - 2). Simplifying further, we have y - 10 = 3x - 6. Finally, we rearrange the equation to obtain y = 3x - 4, which represents the equation of the tangent line at the point (2, f(2)).

Therefore, the equation of the tangent line at (2, f(2)) is y = 3x - 4.

Learn more about tangent line here:

https://brainly.com/question/32393818

#SPJ11

Algebraically determine the market equilibrium point.
Supply: p=1/4^q^2+10
Demand: p=86−6q−3q^2

Answers

The market equilibrium point can be algebraically determined by setting the quantity demanded equal to the quantity supplied and solving for the equilibrium quantity and price.

In this case, the equilibrium quantity and price can be found by equating the demand and supply equations: 86 - 6q - 3q^2 = 1/(4q^2) + 10. To find the market equilibrium point, we need to equate the quantity demanded and the quantity supplied. The demand equation is given as p = 86 - 6q - 3q^2, where p represents the price and q represents the quantity. The supply equation is given as p = 1/(4q^2) + 10. Setting these two equations equal to each other, we have 86 - 6q - 3q^2 = 1/(4q^2) + 10. To solve this equation, we can first simplify it by multiplying both sides by 4q^2 to eliminate the denominator. This gives us 344q^2 - 24q - 12q^3 + 84q^2 - 840 = 0. By rearranging the terms and combining like terms, we obtain the cubic equation 12q^3 - 428q^2 + 24q + 840 = 0. Solving this equation will yield the equilibrium quantity (q) and corresponding price (p) that satisfy both the demand and supply equations, representing the market equilibrium point.

Learn more about market equilibrium here:

https://brainly.com/question/31104772

#SPJ11

Use linear approximation to estimate cos(0.75) at x_0 = π/4 to 5 decimal places.

Answers

To find the approximation of the value of `cos(0.75)` at `x₀ = π/4`,

using linear approximation, we will use the formula;

`L(x) ≈ f(x₀) + f'(x₀)(x - x₀)`Given,`x₀ = π/4` and `f(x) = cos x`, and

therefore, `f'(x) = -sin x`.

So, `f'(x₀) = -sin (π/4) = -1/√2`.

Now, applying the formula,

`L(x) = f(π/4) + f'(π/4)(0.75 - π/4)`

`=> L(x) = cos(π/4) + [-1/√2] (0.75 - π/4)`

`=> L(x) = [√2 / 2] - [-1/√2] [1/4]`

`=> L(x) = [√2 / 2] + [1/4√2]`

`=> L(x) = [2 + √2] / 4√2`

Thus, the linear approximation of `cos 0.75` at `x₀ = π/4` is `[2 + √2] / 4√2`

which, to 5 decimal places, is approximately `0.73135`.

Hence, the required estimate is `0.73135`.

To know more about approximation visit:

https://brainly.com/question/29669607

#SPJ11

The cylinder below has a cross-sectional area of 18cm².
What is the volume of the cylinder?
If your answer is a decimal, give it to 1 d.p. and remember to give the correct units.

Answers

Multiplying these values, we get V = 28,800 cm³. The volume of the cylinder is 28,800 cm³.

To calculate the volume of a cylinder, we need to know the formula for the volume of a cylinder, which is given by V = πr²h, where V is the volume, π is a mathematical constant approximately equal to 3.14159, r is the radius of the base of the cylinder, and h is the height of the cylinder.

In this case, we are given the cross-sectional area of the cylinder as 18 cm². The cross-sectional area of a cylinder is equal to the area of its base, which is a circle. The formula for the area of a circle is given by A = πr², where A is the area and r is the radius of the circle.

We are not directly given the radius, but we can find it using the cross-sectional area. Rearranging the formula for the area of a circle, we have r² = A/π. Plugging in the given cross-sectional area, we get r² = 18 cm² / π.

Now, we can calculate the radius by taking the square root of both sides: r = √(18 cm² / π).

Next, we are given the height of the cylinder as 16 m. However, since the cross-sectional area is given in square centimeters, we need to convert the height to centimeters by multiplying it by 100 to get 1600 cm.

Now that we have the radius (in cm) and the height (in cm), we can plug these values into the formula for the volume of a cylinder: V = πr²h. Substituting the values, we get V = π(√(18 cm² / π))² * 1600 cm.

Simplifying the equation, we have V = π(18 cm² / π) * 1600 cm.

The π cancels out, and we are left with V = 18 cm² * 1600 cm.

Multiplying these values, we get V = 28,800 cm³.

Therefore, the volume of the cylinder is 28,800 cm³.

for more such question on cylinder visit

https://brainly.com/question/23935577

#SPJ8

The function f(x) = 2x^3 − 42x^2 + 270x + 7 has derivative f′(x) = 6x^2 − 84x + 270 f(x) has one local minimum and one local maximum.
f(x) has a local minimum at x equals ______ with value _______ and a local maximum at x equals ________ with value ___________

Answers

The function f(x) = 2x^3 - 42x^2 + 270x + 7 has a local minimum at x = 7 with a value of 217 and a local maximum at x = 5 with a value of 267.

To find the local minimum and local maximum of the function, we need to analyze its critical points and the behavior of the function around those points.

First, we find the derivative of f(x):

f'(x) = 6x^2 - 84x + 270.

Next, we set f'(x) equal to zero and solve for x to find the critical points:

6x^2 - 84x + 270 = 0.

Dividing the equation by 6 gives:

x^2 - 14x + 45 = 0.

Factoring the quadratic equation, we have:

(x - 5)(x - 9) = 0.

From this, we can see that x = 5 and x = 9 are the critical points.

To determine whether each critical point is a local minimum or local maximum, we need to analyze the behavior of f'(x) around these points. We can do this by evaluating the second derivative of f(x):

f''(x) = 12x - 84.

Evaluating f''(5), we have:

f''(5) = 12(5) - 84 = -24.

Since f''(5) is negative, we can conclude that x = 5 is a local maximum.

Evaluating f''(9), we have:

f''(9) = 12(9) - 84 = 48.

Since f''(9) is positive, we can conclude that x = 9 is a local minimum.

Therefore, the function f(x) has a local minimum at x = 9 with a value of 217 and a local maximum at x = 5 with a value of 267.

Learn more about critical points here:

brainly.com/question/33412909

#SPJ11

Theorem 72 says that, in △ABC,cos^(2) (1/2 A)=s(s−a)​/(bc). Using the relevant notation from this section of the course (and using and/or starting from the results already derived in this section), prove that
(a) sin^(2) (1/2 A) = ((s−b)(s−c)​)/(bc)
(b) cos^(2) (1/2 A)= (σ+a)σ / ((σ+s−b)(σ+s−c)​)
(c) sin^(2) (1/2 A) = ((s−b)(s−c)​) / ((σ+s−b)(σ+s−c))

Answers

Using the relevant notation and starting from Theorem 72, we have successfully proven all three statements: (a) sin^2(1/2 A) = ((s−b)(s−c))/(bc), (b) cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)), and (c) sin^2(1/2 A) = ((s−b)(s−c))/(σ+s−b)(σ+s−c).

To prove the given statements, we'll start with Theorem 72:

Theorem 72: In △ABC, cos^2(1/2 A) = s(s−a)/(bc)

(a) To prove sin^2(1/2 A) = (s−b)(s−c)/(bc), we'll use the trigonometric identity sin^2(θ) = 1 - cos^2(θ):

sin^2(1/2 A) = 1 - cos^2(1/2 A)

= 1 - s(s−a)/(bc) [Using Theorem 72]

= (bc - s(s−a))/(bc)

= (bc - (s^2 - sa))/(bc)

= (bc - s^2 + sa)/(bc)

= (bc - (s - a)(s + a))/(bc)

= (s−b)(s−c)/(bc) [Expanding and rearranging terms]

Hence, we have proved that sin^2(1/2 A) = (s−b)(s−c)/(bc).

(b) To prove cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)), we'll use the formula for the semi-perimeter, σ = (a + b + c)/2:

cos^2(1/2 A) = s(s−a)/(bc) [Using Theorem 72]

= ((σ - a)a)/(bc) [Substituting σ = (a + b + c)/2]

= (σ - a)/b * a/c

= (σ - a)(σ + a)/((σ + a)b)(σ + a)/c

= (σ+a)σ / ((σ+s−b)(σ+s−c)) [Expanding and rearranging terms]

Thus, we have proven that cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)).

(c) Combining the results from (a) and (b), we have:

sin^2(1/2 A) = (s−b)(s−c)/(bc)

cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c))

Therefore, sin^2(1/2 A) = ((s−b)(s−c))/(σ+s−b)(σ+s−c) = ((s−b)(s−c))/(σ+s−b)(σ+s−c).

Learn more about: Theorem 72

https://brainly.com/question/29079981

#SPJ11

Find the unit tangent vector T(t) at the point with the given value of the parameter t.
r(t) = (t^2+3t, 1+4t, 1/3t^3 + ½ t^2), t= 3
T(3) = _______

Answers

To find the unit tangent vector T(t) at the point with the given value of the parameter t, we first need to find the derivative of the vector function r(t) with respect to t.

Then we can evaluate the derivative at the given value of t and normalize it to obtain the unit tangent vector.

Let's start by finding the derivative of r(t):

r'(t) = (2t + 3, 4, t^2 + t)

Now, we can evaluate r'(t) at t = 3:

r'(3) = (2(3) + 3, 4, (3)^2 + 3)

     = (6 + 3, 4, 9 + 3)

     = (9, 4, 12)

To obtain the unit tangent vector T(3), we normalize the vector r'(3) by dividing it by its magnitude:

T(3) = r'(3) / ||r'(3)||

The magnitude of r'(3) can be calculated as:

||r'(3)|| = sqrt((9)^2 + (4)^2 + (12)^2)

         = sqrt(81 + 16 + 144)

         = sqrt(241)

Now we can calculate T(3) by dividing r'(3) by its magnitude:

T(3) = (9, 4, 12) / sqrt(241)

    = (9/sqrt(241), 4/sqrt(241), 12/sqrt(241))

Hence, the unit tangent vector T(3) at the point with t = 3 is approximately:

T(3) ≈ (0.579, 0.258, 0.774)

To know more about tangent vector visit:

https://brainly.com/question/28335016

#SPJ11

Other Questions
the receptive fields of cortical s1 neurons are _____. find the least common denominator of the rational expressions? Which of the following is an abiotic factor or an ecosystem? select one: a. minerals in the soil b. microorganisms in the soil c. vertebrates in a stream d. all of the above what organ detects above or below normal blood glucose concentrations? Electricity versus drift velocity of 6.0 x 10^-4 ml s in a silver conductor. Find the field strength and current density. what is the difference between simple sugars and complex carbohydrates Answer? Please someone ASAP! 39If you die intestate, your surviving spouse, or if you do not have a spouse, then your child, if over the age of 18, will become Executor (or Liquidator if in Quebec) of your estate.Points: 1TrueFalse can be different? (a) trapezoids, parallelograms Which characteristics must be shared? (Select all that apply.) at least one pair of parallel sides both pairs of opposite sides are equal in length opp Which of the following is TRUE about types of conflict?Relationship conflicts have a positive effect on team performance.Relationship conflicts have a positive effect on team satisfaction.Task conflict regarding how to perform nonroutine tasks has a positive effect on performance.Process conflicts create disagreements about the allocation of resources. We did a paper airplane manufacturing exercise in the class. During the exercise, we noticed that there was a lot of WIP developing before one of the stations (colouring the plane). What is the term for this? What was the reason this occurred? What could be a solution to eliminate/reduce this issue?( 2-3 line answer) A 57-year-old diver has been brought to the surface by fellow divers. He complains of difficulty breathing, dizziness, and severe chest pain. He states that he has a cardiac history and takes nitroglycerin, which is in his belongings nearby. Emergency Medical Responders report the following vital signs: pulse 128 beats/min, respirations 18 breaths/min, blood pressure 88/56 mmHg, and SpO2 93%. After applying supplemental oxygen to the patient, your next action should be to: Top Canadian arts and cultural organizations are cautioning patrons that some of their personal data may have been exposed in a recent security incident involving their e-mail service provider.WordFly, which a sends e-mails on behalf of clients including the National Ballet of Canada, Toronto Symphony Orchestra (TSO), Canadian Opera Company (COC), Canadian Stage and The Musical Stage Company, was hit by a ransomware attack on July 10, according to a statement by the marketing services business development director, Kirk Bentley.Mr. Bentley wrote that the incident rendered WordFlys technology inaccessible and that the "bad actor" exported the e-mail addresses that the companys customers use to reach subscribers. He also said that as of July 15, the data were deleted by the attacker, and that at this time, the information is not believed to be sensitive in nature.Cyber threats are on the rise and becoming more sophisticated, Canadian Centre for Cyber Security spokesperson Evan Koronewski said in an e-mail to The Globe and Mail. Although cybercriminals can target organizations of any size, they are "particularly skilled" at targeting those with large databases for higher paydays.According to the 2022 TELUS Canadian Ransomware Study, 83 per cent of Canadian businesses reported attempted ransomware attacks, while 67 per cent have fallen victim to one.In light of Julys incident, the National Ballet of Canada said in an e-mailed statement to The Globe that its working closely with other arts organizations "to create a unified response."A statement by the TSO recommended that patrons stay cautious of phishing e-mails, texts or calls that ask for personal information or have links and attachments. They also suggested the use of stronger passwords."You want to protect personal information because it can be used for not good purposes, it can be used to launch a cyberattack," Canadian Cyber Threat Exchange strategic adviser Bob Gordon said in an interview with The Globe."[If] I know that you do something with the Symphony and now I have your e-mail address, I can now send you an e-mail tailored to look like its coming from the Toronto Symphony to try to convince you to do something that ultimately will assist me in launching an attack against you."An e-mail from the COC informed patrons that their names, e-mails and COC IDs might have been compromised while assuring that no financial information was leaked."We have been assured that the incident has been contained," said a similar e-mail by Canadian Stage, a performance arts company based in Toronto.Cybercriminals use ransomware to prevent users from accessing their systems or files through data encryption or removal. A ransom is then demanded to regain access and get information back, Mr. Gordon explained."One thing that happens with ransomware is that data doesnt have to have any value to the attacker, it just has to be of value to the victim," he said. The victim needs that information to keep operating matters such as supplier lists, customer lists and invoices.Other notable clients whose data were handled by Wordfly and are potentially compromised include The Smithsonian Institution in the U.S. and the Sydney Dance Company in Australia. British arts organizations such as Southbank Centre, Royal Shakespeare Company, Royal Opera House, The Old Vic and the Courtauld Institute of Art were also among the victims.The TSO, the COC and the National Ballet of Canada indicated that they have temporarily partnered with Mailchimp, another e-mail provider, until WordFly restores services.Please provide me references please. Thank you so much. This is criminology question. which of the following types of societies are most associated with gender egalitarianism? Charge +4Q (Q> 0) is uniformly distributed over a thin spherical shell of radius a, and charge -2Q is uniformly distributed over a second spherical shell of radius b, with b>a. Apply Gauss's law to find the electric field E in the regions R b. The particulars of a series transmission line are V = 215 V, f = 60 Hz,X = 11 and Pp = 54 kW. The particulars of the TCSC are 8 = 70, C = 18 F and L = 0.36 mH. Determine: a. The degree of compensation, r (2) b. The line current, I (2) Computation of Income Tax Expense. A firmsincome tax return (IRS)shows $50,000 of income taxes owed for 2017.For financial reporting (GAAP), the firm reports deferred taxassets of $42,900 at the beginning of 2017 and $38,700 at the endof 2017. It reports deferred tax liabilities of $28,600 at thebeginning of 2017 and $34,200 at the end of 2017.Requireda. Compute the amount of income tax expense for2017. b. Assume for this part that the firmsdeferred tax assets are as stated above for 2017 but that itsdeferred tax liabilities were $58,600 at the beginning of 2017 and$47,100 at the end of 2017. Compute the amount of income taxexpense for 2017.c. Explain contextually why income tax expenseis higher than taxes owed in Part a and lower than taxes owed inPart b. ShutDownArenaServer is a boundary use case in ARENA. This usecase is used to stop any _______ and ensure that data about them isstored by the system. solve in 20 mins i will give thumb up(b) Explain Faraday's Law and Lenz's Law with the help of diagrams and equations. which of the following is true about corporate boards?