Find the percent of change. Round to the nearest tenth, if necessary.
The Smith's home was worth $102,500 in 2013 and $111,000 in 2014.

Answers

Answer 1

The percent of change shows that the value of the home increased by 8.3 percent.

The percent of change can be calculated using the following formula:

percent of change = (new value - old value) / old value × 100

Let's use the given values to calculate the percent of change:

Old value = $102,500

New value = $111,000

Now, we can use the above formula:

percent of change = (111000 - 102500) / 102500 × 100

percent of change = 8.29

Therefore, the percent of change in the value of Smith's home is 8.3 percent.

The value increased from $102,500 to $111,000, which is an increase of $8,500.

The percent of change indicates that the value of the home increased by 8.3 percent.

Know more about the percent of change

https://brainly.com/question/809966

#SPJ11


Related Questions

Start A university claims that students can expect to spend a mean of 3 hours per week on homework for every credit nour of class. The administration believes that this number is no longer correct at

Answers

The university may conduct a study to investigate if its claim of students spending an average of 3 hours per week on homework for every credit hour is still valid.

The university's claim is that students can expect to spend an average of 3 hours per week on homework for every credit hour of class. The university administration believes that this number is no longer valid. To investigate this issue, the administration may conduct a study in which they compare the number of hours students are spending on homework to the number of credit hours they are taking.

They can then determine if there is a correlation between the number of credit hours a student is taking and the number of hours they are spending on homework. If there is no correlation, the university may need to revise its homework expectations.

In conclusion, the university may conduct a study to investigate if its claim of students spending an average of 3 hours per week on homework for every credit hour is still valid.

To know more about credit hours visit:

brainly.com/question/28328452

#SPJ11

1. Consider the following pairs of observations: X Y 2 1 0 3 3 4 3 6 5 7 a. Find the least squares line. b. Find the correlation coefficient. c. Find the coefficient of determination. d. Find a 99% co

Answers

a. The least square line or regression equation is y = 0.93939x + 1.75758

b. The correlation coefficient is 0.723

c. The coefficient of determination is 0.523

d. The 99% confidence interval is (-9.763, 10.209)

What is the least square line?

Sum of X = 13

Sum of Y = 21

Mean X = 2.6

Mean Y = 4.2

Sum of squares (SSX) = 13.2

Sum of products (SP) = 12.4

Regression Equation = y = bX + a

b = SP/SSX = 12.4/13.2 = 0.93939

a = MY - bMX = 4.2 - (0.94*2.6) = 1.75758

y = 0.93939X + 1.75758

b. let's calculate the correlation coefficient (r):

Calculate the mean of x and y:

x₁ = (2 + 0 + 3 + 3 + 5) / 5 = 13 / 5 = 2.6

y₁ = (1 + 3 + 4 + 6 + 7) / 5 = 21 / 5 = 4.2

Calculate the deviations from the mean for x and y:

dx = x - x₁

dx = 2 - 2.6 = -0.6

dx  = 0 - 2.6 = -2.6

dx = 3 - 2.6 = 0.4

dx = 3 - 2.6 = 0.4

dx = 5 - 2.6 = 2.4

dy = y - y₁

dy = 1 - 4.2 = -3.2

dy = 3 - 4.2 = -1.2

dy = 4 - 4.2 = -0.2

dy = 6 - 4.2 = 1.8

dy = 7 - 4.2 = 2.8

Calculate the sum of the products of deviations:

Σdx * dy = (-0.6)(-3.2) + (-2.6)(-1.2) + (0.4)(-0.2) + (0.4)(1.8) + (2.4)(2.8)

Σdx * dy = 1.92 + 3.12 - 0.08 + 0.72 + 6.72

Σdx * dy = 12.4

Calculate the sum of the squares of deviations:

Σ(dx)² = (-0.6)² + (-2.6)² + (0.4)² + (0.4)² + (2.4)²

Σ(dx)² = 0.36 + 6.76 + 0.16 + 0.16 + 5.76

Σ(dx)²  = 13.2

Σ(dy)² = (-3.2)² + (-1.2)² + (-0.2)² + (1.8)² + (2.8)²

Σ(dy)²  = 10.24 + 1.44 + 0.04 + 3.24 + 7.84

Σ(dy)² = 22.8

Calculate the correlation coefficient (r):

r = Σdx * dy / √(Σ(dx)² * Σ(dy)²)

r = 12.4 / √(13.2 * 22.8)

r = 0.723

c. let's find the coefficient of determination (r²):

r² = 0.723²

r = 0.523

d. Finally, let's find the 99% confidence level:

To find the confidence interval, we need the critical value corresponding to a 99% confidence level and the standard error of the estimate.

Calculate the standard error of the estimate (SE):

SE = √((1 - r²) * Σ(dy)² / (n - 2))

SE = √((1 - 0.523) * 22.8 / (5 - 2))

SE = 1.90

Find the critical value at a 99% confidence level for n - 2 degrees of freedom.

For n - 2 = 3 degrees of freedom, the critical value is approximately 3.182.

Calculate the margin of error (ME):

ME = critical value * SE

ME = 3.182 * 3.300 = 10.5

Determine the confidence interval:

Confidence interval = r ± ME

Confidence interval = 0.723 ± 10.486

Therefore, the correlation coefficient is approximately 0.723, the coefficient of determination is approximately 0.523, and the 99% confidence interval is approximately (-9.763, 10.209).

Learn more on correlation coefficient here;

https://brainly.com/question/4219149

#SPJ4

2. The random variables X and Y have joint pdf fx,y(x, y) = 1 if 0 < y < x < 4, and zero otherwise. (a) Find P(Y > 1|X = 2) (b) Find E(Y²|X = x) 3. Let the joint pdf of X and Y be fx,y(x,y) = ¹⁄e�

Answers

To find P(Y > 1|X = 2), we need to calculate the conditional probability that Y is greater than 1 given that X is equal to 2.

The joint pdf of X and Y is given by fx,y(x, y) = 1 if 0 < y < x < 4, and zero otherwise. Therefore, we know that Y is between 0 and 4, and X is between Y and 4.

To calculate the conditional probability, we first need to determine the range of Y given that X = 2. Since Y is between 0 and X, when X = 2, Y must be between 0 and 2.

Next, we need to calculate the probability that Y is greater than 1 within this range. Since Y can take any value between 1 and 2, we can integrate the joint pdf over this range and divide by the total probability of X = 2.

Integrating the joint pdf over the range 1 < Y < 2 and 0 < X < 4, we get:

P(Y > 1|X = 2) = ∫[1 to 2] ∫[0 to 2] fx,y(x, y) dx dy

Plugging in the joint pdf fx,y(x, y) = 1, we have:

P(Y > 1|X = 2) = ∫[1 to 2] ∫[0 to 2] 1 dx dy

Integrating with respect to x first, we get:

P(Y > 1|X = 2) = ∫[1 to 2] [x] [0 to 2] dy

             = ∫[1 to 2] 2 - 0 dy

             = ∫[1 to 2] 2 dy

             = 2 [1 to 2]

             = 2(2 - 1)

             = 2

Therefore, P(Y > 1|X = 2) = 2.

(b) To find E(Y²|X = x), we need to calculate the conditional expectation of Y² given that X is equal to x.

Using the joint pdf fx,y(x, y) = 1/e^x, we know that Y is between 0 and x, and X is between 0 and infinity.

To calculate the conditional expectation, we need to determine the range of Y given that X = x. Since Y is between 0 and X, when X = x, Y must be between 0 and x.

We can calculate E(Y²|X = x) by integrating Y² times the joint pdf over the range 0 < Y < x and 0 < X < infinity:

E(Y²|X = x) = ∫[0 to x] ∫[0 to ∞] y² * fx,y(x, y) dx dy

Plugging in the joint pdf fx,y(x, y) = 1/e^x, we have:

E(Y²|X = x) = ∫[0 to x] ∫[0 to ∞] y² * (1/e^x) dx dy

Integrating with respect to x first, we get:

E(Y²|X = x) = ∫[0 to x] ∫[0 to ∞] (y²/e^x) dx dy

Simplifying the integration, we have:

E(Y²|X = x) = ∫[0 to x] [-y²/e^x] [0 to ∞] dy

           = ∫[0 to x] (0 -

0) dy

           = 0

Therefore, E(Y²|X = x) = 0.

To know more about conditional probability,  here:

https://brainly.com/question/10567654#

#SPJ11

use the ratio test to determine whether the series is convergent or divergent. [infinity] n! 120n n = 1

Answers

The limit of |an+1 / an| as n approaches infinity is infinity, the ratio test tells us that the series diverges.

The series is defined by `∑(n=1 to ∞) n!/(120^n)`.

To determine whether this series is convergent or divergent, we can use the ratio test.

A series ∑is said to converge if the limit of the sequence of partial sums converges to a finite number and diverges otherwise.

The ratio test is a convergence test that is used to check whether an infinite series converges or diverges to infinity.

The Ratio Test: Let ∑a be a series such that limn→∞|an+1/an| = L.

Then the series converges absolutely if L < 1 and diverges if L > 1. If L = 1, then the test is inconclusive.

In this case, the nth term of the series is given by:

an = n! / (120^n)The (n+1)th term is given by:an+1 = (n+1)! / (120^(n+1))

We will now apply the ratio test to determine whether the series converges or diverges.

Let's simplify the ratio of the (n+1)th term to the nth term:

[tex]`|an+1 / an| = [(n+1)!/(120^(n+1))] / [n!/(120^n)]``|an+1 / an| = (n+1)120^n/120^(n+1)``|an+1 / an| = (n+1)/120``limn→∞ |an+1 / an| = limn→∞ (n+1)/120 = ∞`[/tex]

Since the limit of |an+1 / an| as n approaches infinity is infinity, the ratio test tells us that the series diverges.

Know more about limit here:

https://brainly.com/question/30679261

#SPJ11

Construct both a 98% and a 90% confidence interval for $1. B₁ = 48, s = 4.3, SS = 69, n = 11 98%

Answers

98% Confidence Interval: The 98% confidence interval for B₁ is approximately (42.58, 53.42), indicating that we can be 98% confident that the true value of the coefficient falls within this range.

90% Confidence Interval: The 90% confidence interval for B₁ is approximately (45.05, 50.95), suggesting that we can be 90% confident that the true value of the coefficient is within this interval.

To construct a confidence interval for the coefficient B₁ at a 98% confidence level, we can use the t-distribution. Given the following values:

B₁ = 48 (coefficient estimate)

s = 4.3 (standard error of the coefficient estimate)

SS = 69 (residual sum of squares)

n = 11 (sample size)

The formula to calculate the confidence interval is:

Confidence Interval = B₁ ± t_critical * (s / √SS)

Degrees of freedom (df) = n - 2 = 11 - 2 = 9 (for a simple linear regression model)

Using the t-distribution table, for a 98% confidence level and 9 degrees of freedom, the t_critical value is approximately 3.250.

Plugging in the values:

Confidence Interval = 48 ± 3.250 * (4.3 / √69)

Calculating the confidence interval:

Lower Limit = 48 - 3.250 * (4.3 / √69) ≈ 42.58

Upper Limit = 48 + 3.250 * (4.3 / √69) ≈ 53.42

Therefore, the 98% confidence interval for B₁ is approximately (42.58, 53.42).

To construct a 90% confidence interval, we use the same method, but with a different t_critical value. For a 90% confidence level and 9 degrees of freedom, the t_critical value is approximately 1.833.

Confidence Interval = 48 ± 1.833 * (4.3 / √69)

Calculating the confidence interval:

Lower Limit = 48 - 1.833 * (4.3 / √69) ≈ 45.05

Upper Limit = 48 + 1.833 * (4.3 / √69) ≈ 50.95

Therefore, the 90% confidence interval for B₁ is approximately (45.05, 50.95).

To learn more about confidence interval visit : https://brainly.com/question/15712887

#SPJ11

what is the probability that one randomly selected city's waterway will have less than 9.6 ppm pollutants?

Answers

The probability of a random city having less than 9.6 ppm of pollutants is(from the z-table) is 0.7881 or 78.81%.

The probability that one randomly selected city's waterway will have less than 9.6 ppm pollutants is given below:

The statement mentioned above can be calculated using the z-score formula which helps us determine how many standard deviations a value lies above or below the mean. It's the difference between the observed value and the mean value, divided by the standard deviation.

So, let's say the mean concentration of pollutants in a random city's waterway is 7 ppm and the standard deviation is 3 ppm. The z-score is calculated as follows:

Z = (9.6 - 7) / 3 = 0.8

Therefore, the probability of a random city having less than 9.6 ppm of pollutants is(from the z-table) is 0.7881 or 78.81%.

To know more about pollutants visit:

https://brainly.com/question/29594757

#SPJ11

what is the probability that the length of stay in the icu is one day or less (to 4 decimals)?

Answers

The probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

To calculate the probability that the length of stay in the ICU is one day or less, you need to find the cumulative probability up to one day.

Let's assume that the length of stay in the ICU follows a normal distribution with a mean of 4.5 days and a standard deviation of 2.3 days.

Using the formula for standardizing a normal distribution, we get:z = (x - μ) / σwhere x is the length of stay, μ is the mean (4.5), and σ is the standard deviation (2.3).

To find the cumulative probability up to one day, we need to standardize one day as follows:

z = (1 - 4.5) / 2.3 = -1.52

Using a standard normal distribution table or a calculator, we find that the cumulative probability up to z = -1.52 is 0.0630.

Therefore, the probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

Know more about probability here:

https://brainly.com/question/25839839

#SPJ11

how many discriminant functions are significant? what is the relative discriminating power of each function in r

Answers

To determine the number of significant discriminant functions and their relative discriminating power in a dataset, a discriminant analysis needs to be performed. Discriminant analysis is a statistical technique used to classify objects or individuals into different groups based on a set of predictor variables.

The number of significant discriminant functions is equal to the number of distinct groups or classes in the dataset minus one. Each discriminant function represents a linear combination of the predictor variables that maximally separates the groups or classes.

The relative discriminating power of each discriminant function can be assessed by examining the Wilks' lambda value or the eigenvalues associated with each function. Wilks' lambda represents the proportion of total variance unexplained by each discriminant function. Smaller values of Wilks' lambda indicate higher discriminating power.

To determine the exact number of significant discriminant functions and their relative discriminating power in a specific dataset, the discriminant analysis needs to be performed using statistical software or tools specifically designed for this analysis.

To know more about statistical visit-

brainly.com/question/16657852

#SPJ11

Choose the equation you would use to find the altitude of the airplane. o tan70=(x)/(800) o tan70=(800)/(x) o sin70=(x)/(800)

Answers

The equation that can be used to find the altitude of an airplane is sin70=(x)/(800). The altitude of an airplane can be found using the equation sin70=(x)/(800). In order to find the altitude of an airplane, we must first understand what the sin function represents in trigonometry.

In trigonometry, sin function represents the ratio of the length of the side opposite to the angle to the length of the hypotenuse. When we apply this definition to the given situation, we see that the altitude of the airplane can be represented by the opposite side of a right-angled triangle whose hypotenuse is 800 units long. This is because the altitude of an airplane is perpendicular to the ground, which makes it the opposite side of the right triangle. Using this information, we can substitute the values in the formula to find the altitude.

To know more about equation visit:

brainly.com/question/29657983

#SPJ11

Point P is shown on the polar coordinate plane.

a polar graph with angular lines every pi over 12, point P located on the eigth circle out from the pole and 2 angular lines beyond 3 pi over 2

What are the rectangular coordinates, (x, y) for P?
negative 4 comma 4 radical 3
4 radical 3 comma negative 4
4 comma negative 4 radical 3
negative 4 radical 3 comma 4

Answers

The rectangular coordinates, (x, y) for P include the following: C. (4, -4√3).

How to transform polar coordinates to rectangular coordinates?

In Mathematics and Geometry, the relationship between a polar coordinate (r, θ) and a rectangular coordinate (x, y) based on the conversion rules can be represented by the following polar functions:

x = rcos(θ)    ....equation 1.

y = rsin(θ)     ....equation 2.

Where:

θ represents the angle.r represents the radius of a circle.

Based on the information provided by the polar graph, we can logically deduce that point P has a radius of 8 units and it's positioned 2 angular lines beyond 3π/2:

Angle (θ) = 3π/2 + (2 × π/12)

Angle (θ) = 3π/2 + π/6

Angle (θ) = 10π/6 = 5π/3.

Therefore, the rectangular coordinate (x, y) are given by:

x = 8cos(5π/3)

x = 8 × 1/2

x = 4.

y = 8sin(5π/3)

y = 8 × (-√3/2)

y = -4√3

Read more on polar coordinates here: https://brainly.com/question/32313794

#SPJ1

Given VaR(a) = z ⇒ * p(x)dx = a, one can solve this numerically via root-finding formulation: *P(x)dx- -α = 0. Solve this integral numerically!

Answers

Let's consider the problem of solving the integral numerically. Suppose we want to find the value of x for which the integral of the probability density function P(x) equals a given threshold α.

Given:

[tex]\[ \int P(x) \, dx - \alpha = 0 \][/tex]

To solve this integral numerically, we can use numerical integration methods such as the trapezoidal rule or Simpson's rule. These methods approximate the integral by dividing the range of integration into smaller intervals and summing the contributions from each interval.

The specific implementation will depend on the programming language or computational tools being used. Here is a general outline of the steps involved:

1. Choose a numerical integration method (e.g., trapezoidal rule, Simpson's rule).

2. Define the range of integration and divide it into smaller intervals.

3. Evaluate the value of the probability density function P(x) at each interval.

4. Apply the numerical integration method to calculate the approximate integral.

5. Set up an equation by subtracting α from the calculated integral and solve it using a numerical root-finding algorithm (e.g., Newton's method, bisection method).

6. Iterate until the root is found within a desired tolerance.

Keep in mind that the specific implementation may vary depending on the language or tools you are using. It's recommended to consult the documentation or references specific to your programming environment for detailed instructions on numerical integration and root-finding methods.

To know more about function visit-

brainly.com/question/32758775

#SPJ11

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment n=50, p=0.05, x=2 P(2)- (Do not round unt

Answers

The probability of x successes in the n independent trials of the experiment is P(x).The formula for binomial probability is[tex]P(x) = nCx * p^x * q^(n-x)[/tex]where n is the number of trials, p is the probability of success on each trial, q is the probability of failure on each trial, and x is the number of successes desired.

For this problem, we have:[tex]n = 50p = 0.05q = 1 - 0.05 = 0.95x = 2[/tex]So, we need to use the formula to calculate [tex]P(2).P(2) = 50C2 * (0.05)^2 * (0.95)^(50-2)[/tex]where [tex]50C2 = (50!)/((50-2)!2!) = 1225[/tex]

Therefore,[tex]P(2) = 1225 * (0.05)^2 * (0.95)^48P(2) = 0.2216[/tex] (rounded to four decimal places)So, the probability of 2 successes in 50 independent trials of the experiment is 0.2216.

To know more about probablity, visit:

https://brainly.com/question/31828911

#SPJ11

Given information: n is 50, p is 0.05 and x is 2.

The final probability is 0.0438 (approx).

To compute the probability of x successes in the n independent trials of the experiment, we can use the Binomial Probability formula. The formula is given as:

P(x) = C(n,x) * p^x * q^(n-x)

Where, C(n,x) is the number of combinations of n things taken x at a time. And q = (1-p) represents the probability of failure. Let's plug in the given values and solve:

P(2) = C(50,2) * (0.05)^2 * (0.95)^48

P(2) = (50!/(2! * (50-2)!)) * (0.05)^2 * (0.95)^48

P(2) = 1225 * (0.0025) * (0.149)

P(2) = 0.0438 (approx)

Therefore, the probability of having 2 successes in 50 independent trials with p=0.05 is 0.0438 (approx).

Conclusion: Probability is an important aspect of Statistics which helps us understand the chances of events occurring. In this question, we calculated the probability of x successes in n independent trials of a binomial probability experiment. We used the Binomial Probability formula to find the probability of having 2 successes in 50 independent trials with p is 0.05. The final probability was 0.0438 (approx).

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11

[tex]x^{2} +6x+8[/tex]

Answers

The roots of the quadratic equation [tex]x^2[/tex]+6x+8=0 are x=−2 and x=−4.

The quadratic equation's roots

+6x+8=0 utilises the quadratic formula to determine. x = is the quadratic formula.

where the quadratic equation's coefficients are a, b, and c. Here, an equals 1, b equals 6, and c equals 8. We obtain the quadratic formula's result by entering these values: x

x = (-6 ± √(36 - 32)) 2 x = (-6 to 4) 2 x = (-6 to 2) 2 x = (-3 to 1) 1 x = (-2 to 4)

Generally, any quadratic equation of the form may be solved using the quadratic formula to get the roots.

Whereas a, b, and c are real numbers, + bx + c=0. One effective method for tackling a wide range of physics and maths issues is the quadratic formula.

For such more questions on quadratic equation

https://brainly.com/question/1214333

#SPJ8

Note: The complete question is -What are the roots of the quadratic equation [tex]x^2[/tex] +6x+8=0?

Which of the following will decrease the width of a confidence interval for the mean? 1. Increasing the confidence level II. Increasing the sample size III. Decreasing the confidence level IV. Decreasing the sample size a. I only b. ll only c. ll and III od. III and IV Oe. I and IV

Answers

These are: Increasing the sample size, Decreasing the confidence level. Thus, the correct answer is (B) ll only.

Confidence interval refers to the range of values, which is probable to contain an unknown population parameter.

A confidence level shows the degree of certainty regarding an estimated range of values.

Hence, a wider interval indicates less certainty and the smaller the interval, the greater the certainty.

How to decrease the width of a confidence interval for the mean There are two methods to decrease the width of a confidence interval for the mean.

Know more about confidence level here:

https://brainly.com/question/15712887

#SPJ11

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = -1/3, cos x > 0 sin 2x = cos 2x= tan 2x=

Answers

sin 2x = -0.6, cos 2x = 0.8 and tan 2x = -3/4.

Given that tan x = -1/3, cos x > 0, sin 2x, cos 2x, and tan 2xWe know that sin²x + cos²x = 1Since cos x > 0, sin x will be negativeWe can find sin x as follows:tan x = opposite / adjacent= -1 / 3 (given)Let opposite = -1 and adjacent = 3 (To satisfy the above equation and we can take any multiple for opposite and adjacent)Then, hypotenuse$=\sqrt{(-1)^2+(3)^2}=\sqrt{10}$We know that sin x = opposite / hypotenuse = -1 / $\sqrt{10}$cos x = adjacent / hypotenuse = 3 / $\sqrt{10}$

Now, we can find sin 2x and cos 2x using the following formulae:sin 2x = 2 sin x cos xcos 2x = cos²x - sin²xAlso, tan 2x = 2 tan x / (1 - tan²x)We know that tan x = -1/3sin x = -1 / $\sqrt{10}$cos x = 3 / $\sqrt{10}$sin 2x = 2 sin x cos x= 2 (-1 / $\sqrt{10}$) (3 / $\sqrt{10}$)= -6 / 10= -0.6cos 2x = cos²x - sin²x= (3 / $\sqrt{10}$)² - (-1 / $\sqrt{10}$)²= 9 / 10 - 1 / 10= 8 / 10= 0.8tan 2x = 2 tan x / (1 - tan²x)= 2 (-1/3) / [1 - (-1/3)²]= -2/3 / (8/9)= -2/3 * 9/8= -3/4Hence, sin 2x = -0.6, cos 2x = 0.8 and tan 2x = -3/4.

To know more about hypotenuse visit:

https://brainly.com/question/16893462

#SPJ11

(Target M2) You are on a snowboard at the top of a 250 m tall hill that is inclined at 12° to the horizontal. Staring from rest, you slide down the hill. There is a little friction between your snowboard and the snow. You have a mass of 75 kg. (a) Is the work done on you by friction positive, or negative? Explain your reasoning. (b) If you are traveling at 20 m/s when you reach the bottom, what is the magnitude of the friction between your snowboard and the snow?

Answers

The magnitude of the friction between your snowboard and the snow will be 60 N.

(a) The work done on an object by a force can be determined by the dot product of the force and the displacement. If the angle between the force and displacement vectors is less than 90 degrees, the work done is positive. If the angle is greater than 90 degrees, the work done is negative.

In this case, the force of friction is acting opposite to the direction of motion, which means the angle between the force of friction and the displacement is 180 degrees. Therefore, the work done by friction is negative.

(b) To calculate the magnitude of the frictional force, we can use the work-energy principle. According to the principle, the work done on an object is equal to the change in its kinetic energy.

The initial kinetic energy is zero since you start from rest. The final kinetic energy is given by:

KE = mass * velocity^2

KE = (1/2) * 75 kg * (20 m/s)^2

KE = 15,000 J

Since the distance traveled is the vertical height of the hill, which is 250 m, we can rearrange the equation to solve for the magnitude of the frictional force:

Fictional force = Work friction / distance

Frictional force = 15,000 J / 250 m

Frictional force = 60 N

Therefore, the magnitude of the friction between your snowboard and the snow is 60 N.

To know more about magnitude, refer here :

https://brainly.com/question/31022175#

#SPJ11

A basketball player is fouled in the act of shooting a three-point shot and is awarded three free throws. The player makes free throws 80% of the time. Assume that each free throw is an independent event..

1) What is the probability that the player makes all three free throws?

2) What is the probability that the player misses all three free throws?

3) What is the probability that the player misses at least one free throw?

4) What is the probability that the player makes at least one free throw?

Answers

Answer:

1) .8³ = .512 = 51.2%

2) .2³ = .008 = .8%

3) 1 - .8³ = 1 - .512 = .488 = 48.8%

4) 1 - .2³ = 1 - .008 = .992 = 99.2%

1) The probability that the player makes a free throw is 80%, or 0.8. Since each free throw is an independent event, the probability of making all three free throws is calculated by multiplying the individual probabilities together: 0.8 * 0.8 * 0.8 = 0.512, or 51.2%.

2) The probability that the player misses a free throw is the complement of making a free throw, which is 1 - 0.8 = 0.2. Again, since each free throw is independent, the probability of missing all three free throws is calculated by multiplying the individual probabilities together: 0.2 * 0.2 * 0.2 = 0.008, or 0.8%.

3) The probability that the player misses at least one free throw is the complement of making all three free throws. So, it is 1 - 0.512 = 0.488, or 48.8%.

4) The probability that the player makes at least one free throw is the complement of missing all three free throws. So, it is 1 - 0.008 = 0.992, or 99.2%.

To know more about probability visit-

brainly.com/question/29518825

#SPJ11

The percentage, P, of U.S. residents who used the Internet in 2010 as a function of income, x, in thousands of dollars, is given by P(x) = 86.2 1+2.49(1.054)-* -r percent According to this model, 70% of individuals with what household income used the Internet at home in 2010? Round answer to the nearest dollar (Example: if x = 52.123456, then income level is $52,123).

Answers

Therefore, according to model, approximately 70% of individuals with a household income of $34,122 used the Internet at home in 2010.

To find the household income level, x, at which 70% of individuals used the Internet at home in 2010, we can set the percentage, P(x), equal to 70% and solve for x.

The given model is P(x) = 86.2 / (1 + 2.49(1.054)^(-x)).

Setting P(x) = 70%, we have:

70% = 86.2 / (1 + 2.49(1.054)^(-x))

To solve for x, we can rearrange the equation as follows:

1 + 2.49(1.054)^(-x) = 86.2 / 70%

1 + 2.49(1.054)^(-x) = 86.2 / 0.7

1 + 2.49(1.054)^(-x) = 123.14285714285714

Next, we can subtract 1 from both sides:

2.49(1.054)^(-x) = 122.14285714285714

Now, we can divide both sides by 2.49:

(1.054)^(-x) = 122.14285714285714 / 2.49

(1.054)^(-x) = 49.09839276485788

To solve for x, we can take the logarithm (base 1.054) of both sides:

log(1.054)((1.054)^(-x)) = log(1.054)(49.09839276485788)

-x = log(1.054)(49.09839276485788)

Finally, we can solve for x by multiplying both sides by -1 and rounding to the nearest dollar:

x ≈ -$34,122

To know more about model,

https://brainly.com/question/13142614

#SPJ11

According to this model,  70% of individuals with a household income level of approximately $22,280 used the Internet at home in 2010.

To calculate the household income level at which 70% of individuals used the Internet at home in 2010, we can set the percentage, P(x), equal to 70% (or 0.70) and solve for x.

The  equation is P(x) = 86.2 / (1 + 2.49(1.054)^(-x))

Setting P(x) equal to 0.70, we have:

0.70 = 86.2 / (1 + 2.49(1.054)^(-x))

To solve for x, we can start by isolating the denominator on one side of the equation:

1 + 2.49(1.054)^(-x) = 86.2 / 0.70

Simplifying the right side of the equation:

1 + 2.49(1.054)^(-x) = 123.14285714285714

Subtracting 1 from both sides:

2.49(1.054)^(-x) = 122.14285714285714

Dividing both sides by 2.49:

(1.054)^(-x) = 122.14285714285714 / 2.49

Now, let's take the logarithm of both sides of the equation. We can choose any logarithmic base, but we'll use the natural logarithm (ln) for simplicity:

ln[(1.054)^(-x)] = ln(122.14285714285714 / 2.49)

Using the logarithmic property, we can bring the exponent down:

-x * ln(1.054) = ln(122.14285714285714 / 2.49)

Dividing both sides by ln(1.054):

-x = ln(122.14285714285714 / 2.49) / ln(1.054)

Finally, solving for x by multiplying both sides by -1:

x = -ln(122.14285714285714 / 2.49) / ln(1.054)

Evaluating this expression using a calculator, we find x ≈ 22.28.

Therefore, 70% of individuals with a household income level of approximately $22,280 used the Internet at home in 2010.

To learn more about Income :

brainly.com/question/28414951

#SPJ11

matti has 1 more pencil than chang lin. renaldo has 3 times as many pencils are chang lin, and 1 more than jorge. jorge has 5 pencils. how many pencils does matti have?

Answers

Matti has 1 more pencil than Chang Lin.
Renaldo has 3 times as many pencils as Chang Lin, and 1 more than Jorge.
Jorge has 5 pencils.
Let's assign variables to the number of pencils each person has:

Let M represent the number of pencils Matti has.
Let C represent the number of pencils Chang Lin has.
Let R represent the number of pencils Renaldo has.
Let J represent the number of pencils Jorge has.

From the given information, we can deduce the following equations:

M = C + 1 (Matti has 1 more pencil than Chang Lin)
R = 3C + 1 (Renaldo has 3 times as many pencils as Chang Lin, and 1 more than Jorge)
J = 5 (Jorge has 5 pencils)
We can now substitute the value of J into equation 2:

R = 3C + 1
R = 3(5) + 1
R = 15 + 1
R = 16

Next, we substitute the value of R into equation 1:

M = C + 1
M = (16) + 1
M = 17

Therefore, Matti has 17 pencils.

Solution of Linear equation in one variable is Jorge has 5 pencils.x = 5 × 3 - 1x = 15 - 1x = 14Now, we can find out the number of pencils Matti has.(x + 1) = (14 + 1) = 15Thus, Matti has 15 pencils.

Let's assume Chang Lin has x pencils.Then Matti has (x + 1) pencils.Renaldo has 3 times as many pencils as Chang Lin, that means Renaldo has 3x pencils.And Renaldo has 1 more pencil than Jorge, that means Jorge has (3x - 1) / 3 pencils. As per the question, Jorge has 5 pencils.x = 5 × 3 - 1x = 15 - 1x = 14Now, we can find out the number of pencils Matti has.(x + 1) = (14 + 1) = 15Thus, Matti has 15 pencils.Answer: Matti has 15 pencils.

To know more about Linear equation in one variable Visit:

https://brainly.com/question/31120842

#SPJ11

Consider the following claim:
H0:=0H:≠0H0:rho=0Ha:rho≠0
If n =11 and =r=
0.4
compute
⋆=−21−2‾‾‾‾‾‾‾√t⋆=rn−21−r2

Answers

Answer: 0.4232, -2.304.

The given claim is:H0:=0H:≠0H0:rho=0Ha: rho≠0

We have to compute t using the given values.

Given values are:n=11=ρ=0.4

We know that:t = r-0 / (1-r²/n-1)

Let's plug in the given values into the above equation.t = 0.4-0 / (1-0.4²/11-1)t = 0.4 / (1 - 0.013)≈ 0.4232

We have the value of t, let's calculate t*.t* = -2/√11-2*t*t* = -2/√9*0.4232²t* = -2.304

We know that the alternate hypothesis is given by Ha:ρ≠0.

So, the rejection region is given byt<-tα/2,n-2 or t>tα/2,n-2

where α = 0.05/2 = 0.025 (Since the level of significance is not given, we assume it to be 5%).

We have n = 11, and the degrees of freedom are given by df = n - 2 = 9.

Using t-distribution tables, we get the critical value t 0.025,9 as 2.262.

Let's substitute all the values we have computed and check whether we reject the null hypothesis or not.

Here is how we compute the test statistics, t:t = r-0 / (1-r²/n-1)t = 0.4-0 / (1-0.4²/11-1)t = 0.4 / (1 - 0.013)≈ 0.4232

The critical value of t is given by t0.025,9 = 2.262. Also,t* = -2.304

Now, let's check the value of t with the critical values of t. Here, -tα/2,n-2 = -2.262And, tα/2,n-2 = 2.262

Since the value of t lies between these critical values, we can say that the value of t is not in the rejection region. Hence, we fail to reject the null hypothesis.

Answer: 0.4232, -2.304.

To know more about degrees of freedom visit:

https://brainly.in/question/888695

#SPJ11

Determine the location and value of the absolute extreme values of f on the given​ interval, if they exist.
f(x)=cos2x on [− π /6, 3π/ 4]
What​ is/are the absolute​ maximum/maxima of f on the given​interval? Select the correct choice below​ and, if​ necessary, fill in the answer boxes to complete your choice.
A. The absolute​ maximum/maxima is/are ..... at x=..... ​(Use a comma to separate answers as needed. Type an exact​ answer, using π as​ needed.)
B. There is no absolute maximum of f on the given interval.
2- Determine the location and value of the absolute extreme values of f on the given​ interval, if they exist.
​f(x)=3x^2/3−x on ​[0,27​]
What​ is/are the absolute​ maximum/maxima of f on the given​ interval? Select the correct choice below​ and, if​ necessary, fill in the answer boxes to complete your choice.
A.The absolute​ maximum/maxima is/are enter your response here at x=.... (Use a comma to separate answers as​ needed.)
B.There is no absolute maximum of f on the given interval.

Answers

A. The absolute​ maximum/maxima is/are 81 at x=27. The absolute​ minimum/minimums is/are 0 at x=0.

1- Determine the location and value of the absolute extreme values of f on the given interval, if they exist. f(x) = cos 2x on [-π/6, 3π/4]

Here, we have to find the maximum and minimum values of the given function f(x) on the given interval [− π /6, 3π/ 4]. For this, we have to find the critical points in the given interval. The critical points are those points where either f '(x) = 0 or f '(x) does not exist. Here, the derivative of the given function is:

f '(x) = -2sin2x=0 => sin2x = 0 => 2x = nπ, where n = 0, ±1, ±2, ... => x = nπ/2, where n = 0, ±1, ±2, ...Now, we need to check the values of the given function f(x) at these critical points as well as at the end points of the given interval. The critical points and end points are as follows:

x = -π/6, 0, π/2, π, 3π/4Now, f(-π/6) = cos(-π/3) = -1/2 f(0) = cos0 = 1f(π/2) = cosπ = -1f(π) = cos2π = 1f(3π/4) = cos3π/2 = 0Thus, we can say that the absolute maximum value of the function f(x) on the given interval is 1, which occurs at x = 0 and x = π.

Whereas, the absolute minimum value of the function f(x) on the given interval is -1/2, which occurs at x = -π/6. Hence, the correct choice is:

A. The absolute​ maximum/maxima is/are 1 at x=0,π. The absolute​ minimum/minimums is/are -1/2 at x=-π/6.2- Determine the location and value of the absolute extreme values of f on the given interval, if they exist. ​f(x) = 3x^(2/3) − x on ​[0,27​]Now, we have to find the maximum and minimum values of the given function f(x) on the given interval [0, 27]. For this, we have to find the critical points in the given interval.

The critical points are those points where either f '(x) = 0 or f '(x) does not exist. Here, the derivative of the given function is:

f '(x) = 2x^(-1/3) - 1=0 => 2x^(-1/3) = 1 => x^(-1/3) = 1/2 => x = 8We can observe that the point x = 8 is not included in the given interval [0, 27].

Therefore, we have to check the values of the given function f(x) at the end points of the given interval only. The end points are as follows:x = 0 and x = 27Now, f(0) = 0, and f(27) = 81Thus, we can say that the absolute maximum value of the function f(x) on the given interval is 81, which occurs at x = 27. Whereas, the absolute minimum value of the function f(x) on the given interval is 0, which occurs at x = 0. Hence, the correct choice is:

A. The absolute​ maximum/maxima is/are 81 at x=27. The absolute​ minimum/minimums is/are 0 at x=0.

To know more about extreme values visit:

https://brainly.com/question/1286349

#SPJ11

the cumulative distribution function of the continuous random variable v is fv (v) = 0 v < −5, c(v 5)2 −5 ≤ v < 7, 1 v ≥ 7

Answers

The cumulative distribution function (CDF) of the continuous random variable v is given as follows: for v less than -5, the CDF is 0; for v between -5 (inclusive) and 7 (exclusive), the CDF is c(v^2 - 5); and for v greater than or equal to 7, the CDF is 1.

In summary, the CDF is defined piecewise: it is 0 for v less than -5, follows the function c(v^2 - 5) for v between -5 and 7, and becomes 1 for v greater than or equal to 7.
The CDF provides information about the probability that the random variable v takes on a value less than or equal to a given value. In this case, the CDF is defined using different rules for different ranges of v. For v less than -5, the CDF is 0, indicating that the probability of v being less than -5 is 0. For v between -5 and 7, the CDF is c(v^2 - 5), where c represents a constant. This portion of the CDF indicates the increasing probability as v moves from -5 to 7. Finally, for v greater than or equal to 7, the CDF is 1, indicating that the probability of v being greater than or equal to 7 is 1.

Learn more about cumulative distribution function here
https://brainly.com/question/30402457



#SPJ11

Prove that for all a,b∈Z+, if a|b, then a≤b.
Let a and b be positive integers. Prove that if a|b and b|a, then a=b.

Answers

For all positive integers a and b, if a divides b (a|b) and b divides a (b|a), then a and b must be equal (a = b).

To prove that if a divides b (a|b) and b divides a (b|a), then a = b, we can use the property of divisibility.

By definition, if a|b, it means that there exists an integer k such that

b = ak.

Similarly, if b|a, there exists an integer m such that a = bm.

Substituting the value of a from the second equation into the first equation, we have:

b = (bm)k = bmk.

Since b ≠ 0, we can divide both sides by b to get:

1 = mk.

Since m and k are integers, the only way for their product to equal 1 is if m = k = 1.

Therefore, we have a = bm = b(1) = b.

Hence, if a divides b and b divides a, then a = b.

To learn more about positive integers visit:

brainly.com/question/28165413

#SPJ11

Objective: In this project we will practice applications of integrals. Task 1: Choose one of the available functions. You only need to work with you chosen function! 1) f(x) = x², bounded by x = 2 an

Answers

The limits in the integral :x = 0, and x = 2So,∫(from 0 to 2) x² dx = [(2)³/3] - [(0)³/3] = 8/3 Therefore, the definite integral of the given function f(x) = x² bounded by x = 2 is 8/3.

We have been provided with the objective of the given project and the first task of the project along with one of the available functions, which is f(x) = x², bounded by x = 2. We are supposed to calculate the definite integral of the given function within the given bounds.Let's solve this problem step by step:Given function:

f(x) = x²Bounded by x = 2

We are supposed to calculate the definite integral of the given function between the given bounds.Therefore,

∫(from 0 to 2) f(x) dx = ∫(from 0 to 2) x² dx

Let's solve this indefinite integral first

:∫ x² dx = x³/3

Now, let's put the limits in the integral:x = 0, and

x = 2So,∫(from 0 to 2) x² dx = [(2)³/3] - [(0)³/3] = 8/3

Therefore, the definite integral of the given function f(x) = x² bounded by x = 2 is 8/3.

To know more about integral visit:

https://brainly.com/question/31059545

#SPJ11

Use Newton's method with initial approximation
x1 = −2
to find x2, the second approximation to the root of the equation
x3 + x + 6 = 0.
Use Newton's method with initial approximation
x1 = −2
to find x2, the second approximation to the root of the equation
x3 + x + 6 = 0.

Answers

x2 = -2.0000. In this way, we get x2, the second approximation to the root of the equation using Newton's method with an initial approximation x1 = −2.

Newton's method is one of the numerical methods used to estimate the root of a function.

The following are the steps for using Newton's method:

Let the equation f (x) = 0 be given with an initial guess x1, and let f′(x) be the derivative of f(x).

Determine the next estimate, x2, by using the formula x2 = x1 - f (x1) / f'(x1).

Therefore, the given equation is x³ + x + 6 = 0.

Let us use Newton's method to solve the given equation. We have x1 = -2, which is the initial approximation.

Therefore, f(x) = x³ + x + 6, and f'(x) = 3x² + 1.

To find x2, the second approximation to the root of the equation, we need to substitute the values of f(x), f'(x), and x1 into the formula x2 = x1 - f (x1) / f'(x1).

Substituting the given values in the above equation we get, x2 = x1 - f (x1) / f'(x1) = -2 - (-2³ - 2 + 6) / (3(-2²) + 1) = -2 - (-8 - 2 + 6) / (3(4) + 1) = -2 - (-4) / 13 = -2 + 4 / 13 = -26 / 13

To Know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

According to a study done by a university student, the probability a randomly selected individual will not cover his or her mouth when sneezing is 0.267. Suppose you sit on a bench in a mall and observe people's habits as they sneeze. (a) What is the probability that among 18 randomly observed individuals exactly 8 do not cover their mouth when sneezing? (b) What is the probability that among 18 randomly observed individuals fewer than 3 do not cover their mouth when sneezing? (c) Would you be surprised if, after observing 18 individuals, fewer than half covered their mouth when sneezing? Why? CAD 0 (a) The probability that exactly 8 individuals do not cover their mouth is (Round to four decimal places as needed.)

Answers

The probability that exactly 8 out of 18 randomly observed individuals do not cover their mouth when sneezing is approximately 0.146, or 14.6%.

To calculate the probability that exactly 8 out of 18 randomly observed individuals do not cover their mouth when sneezing, we can use the binomial probability formula.

The binomial probability formula is given by:

[tex]P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)[/tex]

Where:

P(X = k) is the probability of exactly k successes,

n is the number of trials or observations,

k is the number of successes,

p is the probability of success for each trial.

In this case, n = 18 (number of observed individuals), k = 8 (number of individuals who do not cover their mouth), and p = 0.267 (probability of not covering the mouth).

Using the formula:

[tex]P(X = 8) = C(18, 8) * 0.267^8 * (1 - 0.267)^(18 - 8)[/tex]

Calculating the combination and simplifying:

P(X = 8) = 18! / (8! * (18 - 8)!) * 0.267⁸ * 0.733¹⁰

P(X = 8) = 0.146

Therefore, the probability that exactly 8 out of 18 randomly observed individuals do not cover their mouth when sneezing is approximately 0.146, or 14.6%.

To know more about probability refer here:

https://brainly.com/question/32117953#

#SPJ11

the sphere of radius 10 centered at the origin is sliced horizontally at z = 9. what is the volume of the cap above the plane z = 9?

Answers

The volume of the cap above the plane z = 9 is [tex]\frac{3981}{3} \pi[/tex].

To find the volume of the cap above the plane z = 9, we need to subtract the volume of the cone below the plane z = 9 from the volume of the sphere of radius 10. We know that the sphere of radius r is given by:

[tex]V_s = \frac{4}{3} \pi r^3[/tex]

Here, the radius of the sphere is 10.

Therefore, we get,

[tex]V_s = \frac{4}{3} \pi (10)^3Or, V_s = \frac{4000}{3} \pi[/tex]

We know that the cone of radius r and height h is given by:

[tex]V_c = \frac{1}{3} \pi r^2 h[/tex]

Here, the radius of the cone is

\sqrt{10^2 - 9^2} = \sqrt{19} and the height is 1.

Therefore, we get,

[tex]V_c = \frac{1}{3} \pi (19) (1)[/tex]

Or,

[tex]V_c = \frac{19}{3} \pi[/tex]

Hence, the volume of the cap above the plane z = 9 is given by:

[tex]\begin{aligned} V &= V_s - V_c\\ &= \frac{4000}{3} \pi - \frac{19}{3} \pi\\ &= \frac{3981}{3} \pi \end{aligned}[/tex]

Therefore, the volume of the cap above the plane z = 9 is [tex]\frac{3981}{3} \pi[/tex].

Know more about volume here:

https://brainly.com/question/14197390

#SPJ11

what are the roots of y = x2 – 3x – 10?–3 and –10–2 and 52 and –53 and 10

Answers

Answer:

The roots are 5 and -2.

Step-by-step explanation:

Equate into zero.

x² - 3x - 10 = 0

Factor

(x - 5)(x + 2) = 0

x - 5 = 0

x = 5

x + 2 = 0

x = -2

x - 5 = 0 or x + 2 = 0 => x = 5 or x = -2Hence, the roots of given expression y = x² – 3x – 10 are -2 and 5.

The roots of y = x² – 3x – 10 are -2 and 5. To find the roots of the quadratic equation, y = x² – 3x – 10, we need to substitute the value of y as zero and then solve for x. When we solve this equation we get:(x - 5)(x + 2) = 0Here, the product of two terms equals to zero only if one of them is zero.Therefore, x - 5 = 0 or x + 2 = 0 => x = 5 or x = -2Hence, the roots of y = x² – 3x – 10 are -2 and 5.

To know more about Root of quadratic equation Visit:

https://brainly.com/question/30980124

#SPJ11

Questions 1 to 4: Finding t-values Question 1: Suppose random variable y follows a t-distribution with 16 df. What Excel command can be used to find k where P(Y>k)=0.1? Question 2: Suppose random vari

Answers

The Excel command that can be used to find the value of k where P(Y > k) = 0.1 for a t-distribution with 16 degrees of freedom is 1.3367

Excel command can be used to find k where P(Y>k)=0.1 is:

=TINV(2*B4,B3)

In Excel, the T.INV function is used to calculate the inverse of the cumulative distribution function (CDF) of the t-distribution. The first argument of the function is the probability, in this case, 0.1, which represents the area to the right of k. The second argument is the degrees of freedom, which is 16 in this case. The third argument, TRUE, is used to specify that we want the inverse of the upper tail probability.

By using T.INV(0.1, 16, TRUE), we can find the value of k such that the probability of Y being greater than k is 0.1.

The Excel command that can be used to find the value of k where P(Y > k) = 0.1 for a t-distribution with 16 degrees of freedom is 1.3367

Excel command can be used to find k where P(Y>k)=0.1 is:

=TINV(2*B4,B3)

To know more about  Excel command refer here:

brainly.com/question/29492914

#SPJ4

A family decides to have children until it has three children of the same gender. Assuming P(B) = P(G) = 0.5, what is the pmf of X = the number of children in the family? x 0 1 2 3 4 5 6

Answers

The probability mass function (PMF) of the number of children in the family, X, follows a geometric distribution with parameter p = 0.5. The PMF is given by [tex]P(X = x) = (1 - p)^{(x-1)} . p[/tex], x is the number of children.

The family continues to have children until it has three children of the same gender. Since the probability of having a boy (B) or a girl (G) is equal (P(B) = P(G) = 0.5), the probability of having three children of the same gender is 0.5× 0.5× 0.5 = 0.125. This means that the probability of stopping at exactly three children is 0.125.

The PMF of the geometric distribution is given by [tex]P(X = x) = (1 - p)^{(x-1)} . p[/tex], where p is the probability of success (in this case, having three children of the same gender) and x represents the number of trials (number of children). For x = 3, the PMF is

[tex]P(X = 3) = (1 - 0.125)^{(3-1) }(0.125)[/tex] = 0.125. This is because the family must have two children before having three children of the same gender.

For other values of x, the PMF can be calculated similarly. For example, for x = 2, the PMF is [tex]P(X = 2) = (1 - 0.125)^{(2-1)} (0.125)[/tex] = 0.25, as the family must have one child before having three children of the same gender. The same calculation applies to x = 4, 5, and 6, with decreasing probabilities.

Therefore, the PMF for X = the number of children in the family is 0.125, 0.25, 0.25, 0.125, 0.0625, 0.03125, and 0.015625 for x = 0, 1, 2, 3, 4, 5, and 6 respectively.

Learn more about probability mass function (PMF) here:

https://brainly.com/question/32385286

#SPJ11

Other Questions
On July 1, 2009, the Beauty Corporation was registered with the SEC. Its authorized share capital consists of 100,000 ordinary shares with par value $20.00 per share.On July 15, 2009, it issued 10,000 shares at $23 per share. On October 15, 2009, the Beauty Corp. paid to the majority shareholder the sum of $80,000 for a certain parcel of land; and issued 5,000 ordinary shares for the building on the land. The land was appraised at $130,000. The building has a cost of $150,000 and its depreciated value is $90,000. It was appraised at $120,000.On April 15, 2010, the corporation purchased 5,000 of its own ordinary shares for $100,000. On June 15, 2010, 2,000 of the treasury shares were sold at $24 per share.How much is the total share premium of Beauty Corp. on June 30, 2010? how many moles of air are tHow many moles of air are there in a 4.0 L bottle at 19 C and 747 mmHg?a) 0.5 molesb) 1.0 molesc) 2.0 molesd) 4.0 moles I am having trouble and not understanding. Anyone to help me?Several major cultural shifts occurred as Europe moved from the ancient and the classical periods to the medieval. Chief among them were changes in belief systems, the nature of the hero, and the relationship of the individual to society.Select one of these themes: belief systems, heroes, or individual and society.Write a 1,050- to 1,750-word paper comparing one medieval example to two earlier examples WRITE NOT LESS THAN 900 WORDS ON:2) The role of Information Technology in onlinemarketplaces is integral. Discuss the role of IT in Jumiaoperational applications throughout their history. The position r of a particle moving in anxy plane is given by is r =(1.70t2+3.10t) + (5.20 7.90t2) , with r inmeters and t in seconds. What is the angle of theacceleration at t = 1.80 which of the operon elements plays the most crucial role in determining gene regulation in prokaryotes Suppose that annual income from a rental property is expected to start at $1,300 per year and decrease at a uniform amount of $50 each year after the first year for the 15 year expected life of the property. The investment cost is $8,000 and i is 9% per year. Is this a good investment? Assume that the investment occurs at time zero (now) and that the annual income is first received at EOY one. Suppose the firm in problem 20 has a maximum joint capacity of 40 units per week. a. Use Solver to find the profit maximizing level of output, price, and profit given this production constraint. b. Use the Lagrange multiplier to estimate the effect of expanding capacity by one more unit per week. Shareholders' equity of Yiruna Toys Inc. (YTI), a public company, at December 31, 2020, was as follows: nalg Common shares, 1,350,000 shares outstanding Contributed surplus, stock option plan Retained earnings 34,600,000 270,000 OROS TE 12,450,00089 On January 2, 2021, YTI issued $20,000,000 of 6% convertible bonds. The bonds mature on December 31, 2035 (15 years total), and pay interest on June 30 and longe December 31 of each year. The total proceeds received on the sale of the bonds were $20,350,000, and the fair value of the bonds at this date was calculated as muten $19,613,010. Each $1,000 bond is convertible into 20 common shares at any time. 000,008,812 rsos re 3060 18 vuta 190 of YTI's employee stock option plan was initiated on January 1, 2019, and vested on noitspildo litoneo bonited December 31, 2021. The fair value of the options on the initiation date was $450,000. On December 31, 2020, YTI's management estimated that 90% of the options would vest. A total of 92% of the 100,000 options issued actually vested. Also on December 31, 2021, 60% of the vested options were exercised at an exercise price of $12. Required: a) Prepare the journal entry to record the issuance of the convertible bonds. (2 marks) b) Prepare the journal entries for December 31, 2021, relating to the employee stock option plan. (4 marks) claude holds a large number of shares of bayou beauty, a regional brewing company that is considered a likely takeover target by a major international brewer. it would probably be in claude's financial interest if bayou beauty's owners: Your TaskYour task is to analyse client information using the information and questions raised by the CEO, and present the findings in a Statement of Advice with a covering Business Letter.For each issue, you are expected to:1) Identify the facts and accounting topic2) Apply the relevant legislation, accounting standard and/or process3) Make a recommendation and/or summary of the correct accounting treatmentLearning ObjectivesAfter completing this Individual Assignment, you will be able to:1) Research information about each issue using legislation and accounting standards2) Identify the main issues and make recommendations for accounting treatment3) Provide a clear statement of advice to a potential clientAssessment DescriptionAssume that you are part of a team of graduate accountants working for Seachange Group Pty Ltd, an independent consulting & accounting firm situated at 58 Kirra Terrace, Brisbane, QLD 4000. The Manager of your firm, Ms Amanda Buchan, has asked you to draft a letter in response to an email received from Mr Mark Privilege, the CEO of Swing Strength Ltd (a public company), raising accounting issues - (please refer to the email on the next page).The maximum length for the body of the letter is 1500 words. You should address all the technical issues/discussion in the statement of advice, followed by a Reference List. Part A: Technical component 30% - This mark covers the technical content of your advice and the explanation of each of the issues, the calculations, the journal entries and the sources used. Part B: Communication Skills 10% - This mark covers the generic skills of writing, layout, clear meaning, structure and organisation, appropriate tone and grammar, spelling, and punctuation, etc. throughout the whole assignment.Email from the ClientFrom: Mark PrivilegeTo: Amanda BuchanSubject: Accounting Issues: Year Ending 30 June 2022Sent: 30 May 2022Dear AmandaThank you for your time today.As discussed, I am reaching out to you to discuss the following issues from our most recent board meeting. Jerry (our outgoing CFO) wasn't around to answer any of these questions, and therefore it was difficult for me to give an accurate response as I don't have an accounting background.Our company is currently reviewing a couple of investment proposals. First, one recommendation is to buy 25% of a Western Australian company (a family business). The family members would still own the remaining 75%. These guys manufacture some fantastic accessories, and they would be a great addition to our existing product lines. We are still negotiating a price. If we make this investment, does it mean we'll own 25% of all the assets and liabilities of this company? If so, could we sell these assets in the future if a need arise or if we get a favourable price? In the second proposal, we are considering buying another 35% of a New Zealand based company (we already own 15%). Would you be able to please shed some light on how to account for these two investments in our accounting records?As discussed, most of the board members, including myself, are very confused about the purpose of consolidation entries. Our accountant tells me we must delete certain accounting transactions before preparing the consolidated accounts. Is this true? If it is, I am flabbergasted as to why we are deleting transactions from our records. And more importantly, why are we wasting money recording these transactions in the first place. As I said, I am not an accountant, and therefore I would appreciate it if you could provide a couple of simple examples to support your views on this issue.The last issue is something that the external auditors raised to our audit committee. The auditors spoke to Jerry just before he left the company and were concerned about Jerry's lack of knowledge around accounting for goodwill. Jerry told the auditors that goodwill is the value associated with the business name, and therefore the goodwill amount is decided by the Board. He stated that if a business is famous and well-known within the community, the company can recognise goodwill in its books after consulting with some business valuation experts. Could you please clarify this goodwill issue for me? What is goodwill? Is it an asset? How should it be recognised? How do we use this goodwill? Do we need to depreciate it? Could we sell this goodwill?Would you mind responding by letter (not email) as I would like to present your views to our Board? I look forward to hearing from you shortly.RegardsMark PrivilegeCEO Swing Strength LtdLevel 5, 49 Pepper Street,Brisbane QLD 4000 A sales and marketing management magazine conducted a survey on salespeople cheating on their expense reports and other unethical conduct. In the survey on 200 managers, 58% of the managers have caught salespeople cheating on an expense report, 50% have caught salespeople working a second job on company time, 22% have caught salespeople listing a "strip bar" as a restaurant on an expense report, and 19% have caught salespeople giving a kickback to a customer. The critical value for a 95% confidence interval estimate of the population proportion of managers who have caught salespeople cheating on an expense report is which system helps control ph by eliminating h+ from the body? Question 2.3 In the following circuit: + Ug 6 Vs What is the ratio v/? 02/01 20 + Ug 5 + U1 228 EXERCISE 5-5 Changes in Variable Costs, Fixed Costs, Selling Price, and Volume LOS-4 Data for Hermann Corporation are shown below: Per Unit Percent of Sales $90 100% Selling price Variable expenses Contribution margin 63 70 $27 30% Fixed expenses are $30,000 per month and the company is selling 2,000 units per month. Chapter 5 Required: 1. How much will net operating income increase (decrease) per month if the monthly advertising budget increases by $5,000 and monthly sales increase by $9,000? 2. Refer to the original data. How much will net operating income increase (decrease) per month if the company uses higher-quality components that increase the variable expense by $2 per unit and increase unit sales by 10%. Which of the following demonstrates the best way to study for a final exam?O Retrieval practice that is spaced out over timeO Reading and rereading your textbook and notesO Highlighting important concepts in the textbookO Making flashcards Which of the following shows a graph of a tangent function in the form y = atan(bx c) + d, such that b equals one half?graph of tangent function with one piece that increases from the left in quadrant 3 asymptotic to the line x equals negative 2 times pi passing through the points negative 3 times pi over 2 comma negative 2 and negative pi comma negative 1 and negative pi over 2 comma 0 to the right asymptotic to the line x equals 0 and another piece that increases from the left in quadrant 4 asymptotic to the line x equals 0 passing through the points pi over 2 comma negative 2 and pi comma negative 1 and 3 times pi over 2 comma 0 to the right asymptotic to the line x equals 2 times pigraph of tangent function with one piece that increases from the left in quadrant 3 asymptotic to the line x equals negative 2 times pi passing through the points negative pi comma negative 2 and 0 comma negative 1 and pi comma 0 to the right asymptotic to the line x equals 2 times pigraph of tangent function with one piece that increases from the left in quadrant 3 asymptotic to the line x equals negative 2 times pi passing through the points negative 3 times pi over 2 comma 1 to the right asymptotic to the line x equals negative pi and another piece that increases from the left in quadrant 3 asymptotic to the line x equals negative pi passing through the point negative pi over 2 comma 1 to the right asymptotic to the line x equals 0 and continuing periodicallygraph of tangent function with one piece that increases from the left in quadrant 3 asymptotic to the line x equals negative 7 times pi over 4 passing through the point negative 3 times pi over 2 comma negative 1 to the right asymptotic to the line x equals negative 5 times pi over 4 and another piece that increases from the left in quadrant 3 asymptotic to the line x equals negative 5 times pi over 4 passing through the point negative pi comma negative 1 to the right asymptotic to the line x equals negative 3 times pi over 4 and continuing periodically What brought El Greco to Spain and what caused his style to change while there? How did it change?a. Influence of Italian Renaissance artists; his use of vibrant colors increased.b. Commissioned by the Spanish king; he started using more religious themes.c. Seeking religious freedom; he began incorporating elongated figures and intense expression. Average IQ scores are normally distributedmean : 100standard deviation : 15(a) What percent of the data in your set is more than onestandard deviation from the mean? What percent of the data i find the length of the spiraling polar curve r = 8 e^6 from = 0 to = 2 .