Find the sample size needed to estimate the percentage of adults who have consulted fortune tellers. Use a 0.03 margin of error, use confidence level 0f 98%, and use results from prior Pew research Center poll suggesting that 15% of adults have consulted fortune tellers.Type your question here

Answers

Answer 1

To estimate the percentage of adults who have consulted fortune tellers with a margin of error of 0.03 and a confidence level of 98%, we would need a sample size of 1,055.

To find the sample size needed to estimate the percentage of adults who have consulted fortune tellers, we need to use the formula:

n = (z^2 * p * q) / E^2

Where n is the sample size, z is the z-score for the confidence level (in this case 2.33 for a 98% confidence level), p is the proportion in the population (0.15 based on prior Pew research), q is the complement of p (0.85), and E is the desired margin of error (0.03).

Plugging in the values, we get:

n = (2.33^2 * 0.15 * 0.85) / 0.03^2

Simplifying, we get:

n = 1,054.87

We cannot have a decimal for sample size, so we need to round up to the nearest whole number. Therefore, the sample size needed to estimate the percentage of adults who have consulted fortune tellers is 1,055.

In conclusion, to estimate the percentage of adults who have consulted fortune tellers with a margin of error of 0.03 and a confidence level of 98%, we would need a sample size of 1,055.

Learn more on confidence interval here:

https://brainly.com/question/24131141

#SPJ11


Related Questions

The relationship between the elapsed time, ttt, in years, since alina began studying the population, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, is modeled by the following function:

Answers

To model the relationship between the elapsed time, ttt, in years, since Alina began studying the population, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, we can use the following function:

n(t) = kt + b

where kk is a constant that represents the initial rate of population growth, and bb is a constant that represents the current population size.

To determine the values of kk and bb, we can use the following information:

The initial population size was 100,000 bears, so bb = 100,000.Alina began studying the population 10 years ago, so t = 10.

Substituting these values into the function, we get:

n(t) = 10(t + 10) + 100,000

n(t) = 100,000 + 100t

n(t) = 100,000 + 10t

Therefore, the relationship between the elapsed time, ttt, in years, and the total number of bears, n(t)n(t)n, left parenthesis, t, right parenthesis, can be modeled by the following function:

n(t) = 100,000 + 10t

Learn more about functions visit : brainly.com/question/11624077

#SPJ11

Find an increasing subsequence of maximal length and a decreasing subsequence of maximal length in the sequence $22, 5, 7, 2, 23, 10, 15, 21, 3, 17.$

Answers

The increasing subsequence of maximal length is $5,7,10,15,21$ and the decreasing subsequence of maximal length is $22,23,17$.

To find an increasing subsequence of maximal length, we can use the longest increasing subsequence algorithm. Starting with an empty sequence, we iterate through each element of the given sequence and append it to the longest increasing subsequence that ends with an element smaller than the current one.

If no such sequence exists, we start a new increasing subsequence with the current element. The resulting sequence is the increasing subsequence of maximal length.

Using this algorithm, we get the increasing subsequence $5,7,10,15,21$ of length 5.

To find a decreasing subsequence of maximal length, we can reverse the given sequence and use the longest increasing subsequence algorithm on the reversed sequence. The resulting sequence is the decreasing subsequence of maximal length.

Using this algorithm, we get the decreasing subsequence $22,23,17$ of length 3.

For more questions like Sequence click the link below:

https://brainly.com/question/21961097

#SPJ11

You randomly draw a marble from a bag of 120 marbles. you record it’s color and replace it. use the results to estimate the number of marbles in the bag for each color.

Answers

Suppose there are 120 marbles in a bag. You select a marble randomly, document its color, and then put it back. This process is repeated many times. Now, you need to use the results to estimate the number of marbles in the bag for each color.

Based on the data given, it is feasible to get an estimate of the number of marbles of each color in the bag.Step 1: Determine the percent of each color From the sample, you can figure out the percentage of each color of the marbles that were selected. The relative frequency for each color can be found using the following formula:Relative frequency = Frequency of each color / Total number of trials (selections)In this case, let’s assume that the numbers of red, green, blue and yellow marbles drawn are as follows: Red marbles = 30Green marbles = 20Blue marbles = 50Yellow marbles = 20Total number of marbles selected = 120Then, the relative frequencies of the colors are as follows:Red marbles = 30/120 = 0.25Green marbles = 20/120 = 0.1667Blue marbles = 50/120 = 0.4167Yellow marbles = 20/120 = 0.1667

Step 2: Estimate the number of each color in the bag The percentages obtained in Step 1 can be used to estimate the number of marbles of each color in the bag.

To know more about  randomly visit:

brainly.com/question/13319968

#SPJ11

1. use the ti 84 calculator to find the z score for which the area to its left is 0.13. Round your answer to two decimal places.
2. use the ti 84 calculator to find the z score for which the area to the right is 0.09. round your answer to two decimal places.
3. use the ti 84 calculator to find the z scores that bound the middle 76% of the area under the standard normal curve. enter the answers in ascending order and round
to two decimal places.the z scores for the given area are ------- and -------.
4. the population has a mean of 10 and a standard deviation of 6. round your answer to 4 decimal places.
a) what proportion of the population is less than 21?
b) what is the probability that a randomly chosen value will be greater then 7?

Answers

1) The z score for which the area to its left is 0.13 is -1.08, 2) to the right is 0.09 is 1.34 3) to the middle 76% of the area are -1.17 and 1.17. 4) a)The proportion is less than 21 is 0.9664. b) The probability being greater than 7 is 0.6915.

1) To find the z score for which the area to its left is 0.13 using TI-84 calculator

Press the "2nd" button, then press the "Vars" button. Choose "3:invNorm" and press enter. Enter the area to the left, which is 0.13, and press enter. The z-score for this area is -1.08 (rounded to two decimal places). Therefore, the z score for which the area to its left is 0.13 is -1.08.

2) To find the z score for which the area to the right is 0.09 using TI-84 calculator

Press the "2nd" button, then press the "Vars" button. Choose "2: normalcdf" and press enter. Enter a large number, such as 100, for the upper limit. Enter the mean and standard deviation of the standard normal distribution, which are 0 and 1, respectively.

Subtract the area to the right from 1 (because the calculator gives the area to the left by default) and press enter. The area to the left is 0.91. Press the "2nd" button, then press the "Vars" button.

Choose "3:invNorm" and press enter. Enter the area to the left, which is 0.91, and press enter. The z-score for this area is 1.34 (rounded to two decimal places). Therefore, the z score for which the area to the right is 0.09 is 1.34.

3) To find the z scores that bound the middle 76% of the area under the standard normal curve using TI-84 calculator

Press the "2nd" button, then press the "Vars" button. Choose "2: normalcdf" and press enter. Enter the mean and standard deviation of the standard normal distribution, which are 0 and 1, respectively.

Enter the lower limit of the area, which is (1-0.76)/2 = 0.12. Enter the upper limit of the area, which is 1 - 0.12 = 0.88. Press enter and the area between the two z scores is 0.76. Press the "2nd" button, then press the "Vars" button.

Choose "3:invNorm" and press enter. Enter the area to the left, which is 0.12, and press enter. The z-score for this area is -1.17 (rounded to two decimal places). Press the "2nd" button, then press the "Vars" button. Choose "3:invNorm" and press enter.

Enter the area to the left, which is 0.88, and press enter. The z-score for this area is 1.17 (rounded to two decimal places). Therefore, the z scores that bound the middle 76% of the area under the standard normal curve are -1.17 and 1.17.

4) To find the probabilities using the given mean and standard deviation

a) To find the proportion of the population that is less than 21

Calculate the z-score for 21 using the formula z = (x - μ) / σ, where x = 21, μ = 10, and σ = 6.

z = (21 - 10) / 6 = 1.83.

Press the "2nd" button, then press the "Vars" button. Choose "2: normalcdf" and press enter. Enter the mean, which is 0, and the standard deviation, which is 1, for the standard normal distribution.

Enter the lower limit of the area as negative infinity and the upper limit of the area as the z-score, which is 1.83. Press enter and the area to the left of 1.83 is 0.9664. Therefore, the proportion of the population that is less than 21 is 0.9664 (rounded to four decimal places).

b) To find the probability that a randomly chosen value will be greater than 7

Calculate the z-score for 7 using the formula z = (x - μ) / σ, where x = 7, μ = 10, and σ = 6.

z = (7 - 10) / 6 = -0.5.

Press the "2nd" button, then press the "Vars" button. Choose "2: normalcdf" and press enter. Enter the mean, which is 0, and the standard deviation, which is 1, for the standard normal distribution.

Enter the lower limit of the area as the z-score, which is -0.5, and the upper limit of the area as positive infinity. Press enter and the area to the right of -0.5 is 0.6915.

Therefore, the probability that a randomly chosen value will be greater than 7 is 0.6915 (rounded to four decimal places).

To know more about Probability:

https://brainly.com/question/11234923

#SPJ4

Which expression represents the value, in dollars, of a certain number of dimes, d, and nickels, n? 0. 10d 0. 05n 0. 05d 0. 10n 0. 15d n 0. 15dn.

Answers

The expression that represents the value, in dollars, of a certain number of dimes, d, and nickels, n, is:

0.10d + 0.05n.

To determine the expression that represents the value, in dollars, of a certain number of dimes (d) and nickels (n), we can follow these steps:

Step 1: Consider the values associated with dimes and nickels.

Each dime has a value of $0.10.

Each nickel has a value of $0.05.

Step 2: Determine how the values of dimes and nickels contribute to the overall value.

The value of dimes is calculated by multiplying the number of dimes (d) by $0.10.

The value of nickels is calculated by multiplying the number of nickels (n) by $0.05.

Step 3: Combine the values of dimes and nickels to form the expression.

The value of dimes, 0.10d, represents the total value contributed by dimes.

The value of nickels, 0.05n, represents the total value contributed by nickels.

Therefore, Combining the value of dimes, 0.10d, and the value of nickels, 0.05n, gives us the expression 0.10d + 0.05n, which represents the value, in dollars, of a certain number of dimes (d) and nickels (n).

To know more about algebra, visit:

https://brainly.com/question/2601772

#SPJ11

Problem 7.1 (35 points): Solve the following system of DEs using three methods substitution method, (2) operator method and (3) eigen-analysis method: ( x' =x - 3y y'=3x +7y

Answers

The integral value is x = -3c1*(e^(3t/2)/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)sin((sqrt(89)/2)t)) - 3c2(e^(3t/2)/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C

We have the following system of differential equations:

x' = x - 3y

y' = 3x + 7y

Substitution Method:

From the first equation, we have x' + 3y = x, which we can substitute into the second equation for x:

y' = 3(x' + 3y) + 7y

Simplifying, we get:

y' = 3x' + 16y

Now we have two first-order differential equations:

x' = x - 3y

y' = 3x' + 16y

We can solve for x in the first equation and substitute into the second equation:

x = x' + 3y

y' = 3(x' + 3y) + 16y

y' = 3x' + 25y

Now we have a single second-order differential equation for y:

y'' - 3y' - 25y = 0

The characteristic equation is:

r^2 - 3r - 25 = 0

Solving for r, we get:

r = (3 ± sqrt(89)i) / 2

The general solution for y is:

y = c1*e^(3t/2)cos((sqrt(89)/2)t) + c2e^(3t/2)*sin((sqrt(89)/2)t)

To find x, we can substitute this solution for y into the first equation and solve for x:

x' = x - 3(c1*e^(3t/2)cos((sqrt(89)/2)t) + c2e^(3t/2)*sin((sqrt(89)/2)t))

x' - x = -3c1*e^(3t/2)cos((sqrt(89)/2)t) - 3c2e^(3t/2)*sin((sqrt(89)/2)t)

This is a first-order linear differential equation that can be solved using an integrating factor:

IF = e^(-t)

Multiplying both sides by IF, we get:

(e^(-t)x)' = -3c1e^tcos((sqrt(89)/2)t) - 3c2e^t*sin((sqrt(89)/2)t)

Integrating both sides with respect to t, we get:

e^(-t)x = -3c1int(e^tcos((sqrt(89)/2)t) dt) - 3c2int(e^t*sin((sqrt(89)/2)t) dt) + C

Using integration by parts, we can solve the integrals on the right-hand side:

int(e^tcos((sqrt(89)/2)t) dt) = (e^t/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)*sin((sqrt(89)/2)t)) + C1

int(e^tsin((sqrt(89)/2)t) dt) = (e^t/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C2

Substituting these integrals back into the equation for x, we get:

x = -3c1*(e^(3t/2)/2)(cos((sqrt(89)/2)t) + (sqrt(89)/2)sin((sqrt(89)/2)t)) - 3c2(e^(3t/2)/2)(sin((sqrt(89)/2)t) - (sqrt(89)/2)*cos((sqrt(89)/2)t)) + C

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

Let's solve the system of differential equations using three different methods: substitution method, operator method, and eigen-analysis method.

Substitution Method:

We have the following system of differential equations:

x' = x - 3y ...(1)

y' = 3x + 7y ...(2)

To solve this system using the substitution method, we can solve one equation for one variable and substitute it into the other equation.

From equation (1), we can rearrange it to solve for x:

x = x' + 3y ...(3)

Substituting equation (3) into equation (2), we get:

y' = 3(x' + 3y) + 7y

y' = 3x' + 16y ...(4)

Now, we have a new system of differential equations:

x' = x - 3y ...(3)

y' = 3x' + 16y ...(4)

We can now solve equations (3) and (4) simultaneously using standard techniques, such as separation of variables or integrating factors, to find the solutions for x and y.

Operator Method:

The operator method involves representing the system of differential equations using matrix notation and finding the eigenvalues and eigenvectors of the coefficient matrix.

Let's represent the system as a matrix equation:

X' = AX

where X = [x, y]^T is the vector of variables, and A is the coefficient matrix given by:

A = [[1, -3], [3, 7]]

To find the eigenvalues and eigenvectors of A, we solve the characteristic equation:

det(A - λI) = 0

where I is the identity matrix and λ is the eigenvalue. By solving the characteristic equation, we can obtain the eigenvalues and corresponding eigenvectors.

Eigen-analysis Method:

The eigen-analysis method involves diagonalizing the coefficient matrix A by finding a diagonal matrix D and a matrix P such that:

A = PDP^(-1)

where D contains the eigenvalues of A on the diagonal, and P contains the corresponding eigenvectors as columns.

By diagonalizing A, we can rewrite the system of differential equations in a new coordinate system, making it easier to solve.

To solve the system using the eigen-analysis method, we need to find the eigenvalues and eigenvectors of A, and then perform the necessary matrix operations to obtain the solutions.

Please note that the above methods outline the general approach to solving the system of differential equations. The specific calculations and solutions may vary depending on the values of the coefficients and initial conditions provided.

Know more about differential equations here:

https://brainly.com/question/31583235

#SPJ11

Consider the following distribution of velocity of a vehicle with time. Time,
t (s) 0, 1.0, 2.5, 6.0, 9, 12.0 Velocity,
V (m/s) 0, 10, 15, 18, 22, 30
The acceleration is equal to the derivative of the velocity with respect to time. Use Equation 23.9 of the book (derivatives of unequally spaced data) to calculate the acceleration at t = 4 seconds and t = 10 seconds.

Answers

The acceleration at t=10 seconds is approximately 0.2222 m/s^2.

Using Equation 23.9 of the book, we can calculate the acceleration at t=4 seconds and t=10 seconds as follows:

At t=4 seconds:

The first-order divided difference for velocity between t=2.5 and t=6.0 is:

f[t_2, t_1] = (V(t_2) - V(t_1))/(t_2 - t_1) = (18 - 15)/(6.0 - 2.5) = 1.7143 m/s^2

The first-order divided difference for velocity between t=1.0 and t=2.5 is:

f[t_1, t_0] = (V(t_1) - V(t_0))/(t_1 - t_0) = (15 - 10)/(2.5 - 1.0) = 10 m/s^2

The second-order divided difference for velocity between t=2.5, t=6.0, and t=1.0 is:

f[t_2, t_1, t_0] = (f[t_2, t_1] - f[t_1, t_0])/(t_2 - t_0) = (1.7143 - 10)/(6.0 - 1.0) = -1.6571 m/s^2

Therefore, the acceleration at t=4 seconds is approximately -1.6571 m/s^2.

At t=10 seconds:

The first-order divided difference for velocity between t=9.0 and t=12.0 is:

f[t_2, t_1] = (V(t_2) - V(t_1))/(t_2 - t_1) = (30 - 22)/(12.0 - 9.0) = 2.6667 m/s^2

The first-order divided difference for velocity between t=6.0 and t=9.0 is:

f[t_1, t_0] = (V(t_1) - V(t_0))/(t_1 - t_0) = (22 - 18)/(9.0 - 6.0) = 1.3333 m/s^2

The second-order divided difference for velocity between t=9.0, t=12.0, and t=6.0 is:

f[t_2, t_1, t_0] = (f[t_2, t_1] - f[t_1, t_0])/(t_2 - t_0) = (2.6667 - 1.3333)/(12.0 - 6.0) = 0.2222 m/s^2

Therefore, the acceleration at t=10 seconds is approximately 0.2222 m/s^2.

Learn more about acceleration here:

https://brainly.com/question/31946450

#SPJ11

Saving Answer Which of the following is correct according to the Central limit theorem? As the sample size increases, the sample distribution of the mean is closer to the normal distribution but only when the distribution of the population is normal As the sample size increases, the sample distribution of the mean is closer to the normal distribution zegardless of whether or not the distribution of the population is normal As the sample size increases, the sample distribution of the mean is closer to the population distribution regardless of whether or not the population distribution is normal O As the sample size increases, the sample distribution of the mean is closer to the population distribution

Answers

According to the Central Limit Theorem, as the sample size increases, the sample distribution of the mean is closer to the normal distribution regardless of whether or not the distribution of the population is normal.

As the sample size increases, the sample distribution of the mean is closer to the normal distribution regardless of

whether or not the distribution of the population is normal. This is known as the Central Limit Theorem, which states

that as the sample size increases, the distribution of sample means will become approximately normal, regardless of

the distribution of the population, as long as the sample size is sufficiently large (usually n ≥ 30). This is an important

concept in statistics because it allows us to make inferences about population parameters based on sample statistics.
This theorem states that the distribution of sample means approaches a normal distribution as the sample size

increases, even if the original population distribution is not normal. The three rules of the central limit theorem are

The data should be sampled randomly.

The samples should be independent of each other.

The sample size should be sufficiently large but not exceed 10% of the population.

learn more on Limit Theorem: https://brainly.com/question/18403552

#SPJ11

Plot StartRoot 0. 9 EndRoot on the number line. Which inequalities are true? Check all that apply. 0 < StartRoot 0. 9 EndRoot StartRoot 0. 9 EndRoot < 0. 9 StartRoot 0. 9 EndRoot < 1 StartRoot 0. 9 EndRoot > StartRoot 1 EndRoot 0. 9 > StartRoot 0. 9 EndRoot< 1.

Answers

The true inequalities in the number line are:

0 < √0.9, √0.9 < 0.9

√0.9 < 1, 0.9 > √0.9 < 1

To plot √0.9 on the number line, we need to find its approximate value.

√0.9 is between 0 and 1 because 0.9 is greater than 0 but less than 1. However, it is closer to 1 than 0.

So, we can represent √0.9 as a point on the number line between 0 and 1, closer to 1.

Now let's analyze the given inequalities:

0 < √0.9: This inequality is true because √0.9 is greater than 0.

√0.9 < 0.9: This inequality is true because √0.9 is less than 0.9.

√0.9 < 1: This inequality is true because √0.9 is less than 1.

√0.9 > √1: This inequality is false because √0.9 is less than √1.

0.9 > √0.9 < 1: This inequality is true because √0.9 is less than 1 and greater than 0.9.

So, the true inequalities are:

0 < √0.9

√0.9 < 0.9

√0.9 < 1

0.9 > √0.9 < 1

Learn more about inequality here:

https://brainly.com/question/28823603

#SPJ11

Admission to a theater cost $5. 50 for a child ticket and $11. 50 for an adult ticket. The theater sold 80 tickets for $734. 0. How many of each type of ticket was sold?

Answers

The number of child tickets sold is 56, and the number of adult tickets sold is 24.

Let's assume the number of child tickets sold is represented by 'x', and the number of adult tickets sold is represented by 'y'.

According to the given information, the total number of tickets sold is 80. Therefore, we have the equation:

x + y = 80 ---(1)

The total revenue generated from ticket sales is $734.00. Since each child ticket costs $5.50 and each adult ticket costs $11.50, we can express the total revenue as:

5.50x + 11.50y = 734.00 ---(2)

To solve this system of equations, we can use the substitution method or the elimination method. Let's use the elimination method:

Multiply equation (1) by 5.50 to eliminate 'x':

5.50(x + y) = 5.50(80)

5.50x + 5.50y = 440 ---(3)

Subtract equation (3) from equation (2) to eliminate 'x':

(5.50x + 11.50y) - (5.50x + 5.50y) = 734.00 - 440

6.00y = 294

y = 49

Substitute the value of y back into equation (1) to find x:

x + 49 = 80

x = 80 - 49

x = 31

Therefore, the number of child tickets sold is 31, and the number of adult tickets sold is 49, which adds up to a total of 80 tickets, as stated in the problem.

Visit here to learn more about revenue:

brainly.com/question/28558536

#SPJ11

the numbers: 8, 6, 4, 2 are added one at a time in the same order given into an initially empty left leaning rb tree.

Answers

After adding the numbers 8, 6, 4, 2 one by one in the same order to an initially empty left-leaning red-black tree, the resulting tree would look like:

      4B

    /   \

  2R    6R

         \

          8R

First, the number 8 is added to the tree as the root node since the tree is initially empty. The node is colored red to follow the rule that the root node must be red.

8R

Next, the number 6 is added to the left of the root node. Since 6 is less than 8, it becomes the left child of the root. To maintain the left-leaning property, the node is rotated to the right. The node 8 becomes the right child of 6, and it is colored red to follow the rule that the parent of a red node must be black.

     6B

    /   \

  2R    8R

The number 4 is added to the left of the node 6. Since 4 is less than 6, it becomes the left child of 6. The node 6 violates the left-leaning property, so it is rotated to the right. The node 4 becomes the root of the subtree, and the node 6 becomes its right child.

    4B

   /   \

 2R    6R

       \

        8R

Finally, the number 2 is added to the left of the node 4. Since 2 is less than 4, it becomes the left child of 4. The node 4 violates the left-leaning property, so it is rotated to the right. The node 2 becomes the root of the subtree, and the node 4 becomes its right child.

    4B

   /   \

 2R    6R

       \

        8R

The resulting tree is a valid left-leaning red-black tree that satisfies all the properties of a red-black tree.

For more questions like Numbers click the link below:

https://brainly.com/question/490943

#SPJ11

Determine all horizontal asymptotes of f(x) = x - 2/x^2 + 2 + 2 Determine all vertical asymptotes of f(x) = x - 2/x^2 - 11 + 2 Which of the functions do not have any vertical no horizontal aysmptotes? (a) sin x (b) 5 (c) e^x (d) Inx (e) x^-1 Differentiate: (a) sin(x^2) (b) sin^2x (c) e^1/x (d)In x - 1/x^3 + 1 (e) cos(squareroot 3x)

Answers

Setting the denominator equal to zero and factoring, we get:

x^2 - 11x + 2 = 0

Determine all horizontal asymptotes of f(x) = (x - 2)/(x^2 + 2x + 2)

To find the horizontal asymptotes of f(x), we need to examine the limit of f(x) as x approaches positive or negative infinity.

As x approaches infinity, the terms involving x^2 and 2x become insignificant compared to x^2. Thus, we can simplify the function by ignoring the terms containing x:

f(x) ≈ x/x^2 = 1/x

As x approaches negative infinity, we can make a similar simplification:

f(x) ≈ -x/x^2 = -1/x

Therefore, we can conclude that the function f(x) has two horizontal asymptotes, y = 0 and y = -1.

Determine all vertical asymptotes of f(x) = (x - 2)/(x^2 - 11x + 2)

To find the vertical asymptotes of f(x), we need to look for values of x that make the denominator of f(x) equal to zero. These values would make the function undefined.

To learn more about denominator visit:

brainly.com/question/7067665

#SPJ11

you pick one card at random from a standard deck of 52 cards. you pick a black card

Answers

Answer:

its like choosing one of 52 which is a 0,0213 chance

Step-by-step explanation:

This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
f(x, y, z) = 6x + 6y + 5z; 3x2 + 3y2 + 5z2 = 29
Max value ________
Min value ____________

Answers

The max value and min value can then be determined from these critical points.

To find the extreme values of a function subject to a constraint, we can use Lagrange multipliers. First, we set up the Lagrangian equation by multiplying the constraint by a scalar λ and adding it to the original function.

Then, we take the partial derivatives of the Lagrangian equation with respect to each variable and set them equal to zero. This will give us a system of equations to solve for the critical points.

Once we have the critical points, we need to determine which ones are maximums and which are minimums.

To do this, we can use the second derivative test. If the second derivative is positive at a critical point, it is a minimum. If the second derivative is negative, it is a maximum.

In summary, to find the extreme values of a function subject to a constraint using Lagrange multipliers, we set up the Lagrangian equation, solve for the critical points, and then use the second derivative test to determine which ones are maximums and which are minimums.

To learn more about : max value

https://brainly.com/question/30236354

#SPJ11

The maximum value of f(x, y, z) is 26.5, and the minimum value is -29.

How did we get the values?

To find the extreme values of the function f(x, y, z) = 6x + 6y + 5z subject to the constraint 3x² + 3y² + 5z² = 29 using Lagrange multipliers, set up the following system of equations:

1. ∇ f = λ∇g

2. g(x, y, z) = 3x² + 3y² + 5z² - 29

where ∇f and ∇g are the gradients of f and g respectively, and λ is the Lagrange multiplier.

Taking the partial derivatives, we have:

∇ f = (6, 6, 5)

∇g = (6x, 6y, 10z)

Setting these two gradients equal to each other, we get:

6 = 6λx

6 = 6λy

5 = 10λz

Dividing the first two equations by 6\(\lambda\), we obtain:

x = ¹/λ

y = ¹/λ

Substituting these values into the third equation, we have:

5 = 10λz

z = ¹/2λ

Now, substitute x, y, and z back into the constraint equation to find the value of λ:

3(¹/λ)² + 3(¹/λ)² + 5(1/2λ)² = 29

6(¹/λ²) + 5(⁴/λ²) = 29

24 + 5 = 116λ²

116λ² = 29

λ² = ²⁹/₁₁₆

λ = ±√²⁹/₁₁₆

λ = ± √²⁹/2√29

λ = ± ¹/₂

We have two possible values for λ, λ = ¹/₂ and λ = ¹/₂

Case 1: λ = ¹/₂

Using this value of λ, we can find the corresponding values of x, y, and z:

x = ¹/λ = 2

y =¹/λ = 2

z = 1/2 λ = ¹/₂

Case 2: λ = -1/2

Using this value of λ, find the corresponding values of x, y, and z:

x = 1/λ = -2

y = 1/λ = -2

z = 1/(2λ) = -1

Now that we have the values of x, y, and z for both cases, substitute them into the objective function f(x, y, z) to find the extreme values.

For Case 1:

f(x, y, z) = 6x + 6y + 5z

= 6(2) + 6(2) + 5(1/2)

= 12 + 12 + 2.5

= 26.5

For Case 2:

f(x, y, z) = 6x + 6y + 5z

= 6(-2) + 6(-2) + 5(-1)

= -12 - 12 - 5

= -29

Therefore, the maximum value of f(x, y, z) is 26.5, and the minimum value is -29.

learn more about Lagrange multipliers: https://brainly.com/question/4609414

#SPJ4

The real number(s) a for which that the vectors Vi= (a, 1), v,-(4, a), v3= (4,6) are linearly independent is(are) (a) a (b) aメ12 c) The vectors are linearly independent for all real numbers a. (d) a 2 (e) The vectors are linearly dependent for all real numbers a

Answers

The correct answer is (c) The vectors are linearly independent for all real numbers a, excluding a = ±√96.

To determine if the vectors v1 = (a, 1), v2 = (-4, a), and v3 = (4, 6) are linearly independent, we can check the determinant of the matrix formed by these vectors. If the determinant is not equal to zero, the vectors are linearly independent. Otherwise, they are linearly dependent.

The matrix is:
| a, -4, 4 |
| 1,  a, 6 |

The determinant is: a * a * 1 + (-4) * 6 * 4 = a^2 - 96.

Now, we want to find the real number(s) a for which the determinant is not equal to zero:

a^2 - 96 ≠ 0
a^2 ≠ 96

So, the vectors are linearly independent if a^2 is not equal to 96. This occurs for all real numbers a, except for a = ±√96. Therefore, the correct answer is (c) The vectors are linearly independent for all real numbers a, excluding a = ±√96.

learn more about linearly independent

https://brainly.com/question/30720942

#SPJ11

a lot of 30 watches is 20 efective. what is the probability that a sample of 3 will contain 2 defectives

Answers

The probability that a sample of 3 will contain 2 defectives is 4/9.

Total number of lot of watches = 30

Number of defective watches = 20

Probability to choose defective watches = 20/30 = 2/3.

The size of sample = 3. so n = 3.

p = probability to choose defective watch = 2/3

q = probability to choose normal watch = 1 - p = 1 - 2/3 = (3 -2)/3 = 1/3.

So the sample follows Binomial Distribution.

The required probability to choose sample of 3 watches which contains 2 defectives is given by

= P(X = 2)

= C(3, 2)*(2/3)²*(1/3)

= 3*(4/9)*(1/3)

= 4/9

Hence the required probability is 4/9.

To know more about binomial distribution here

https://brainly.com/question/9325204

#SPJ4

A scientist uses a submarine to study ocean life.
She begins 83 feet below sea level.
• After descending for 5 seconds, she's 151 feet below sea level.
Find the rate of change in the submarine's elevation in feet per second. If
necessary, round your answer to the nearest tenth

Answers

The scientist descends from 83 feet below sea level to 151 feet below sea level, a change in depth of 151 - 83 = 68 feet. This change occurs over a time of 5 seconds.

The rate of change in depth, or the speed at which the submarine is descending, is given by the ratio of the change in depth to the time taken:

Rate of change in depth = (final depth - initial depth) / time taken

Rate of change in depth = (151 ft - 83 ft) / 5 s

Rate of change in depth = 13.6 ft/s (rounded to one decimal place)

Therefore, the rate of change in the submarine's elevation is 13.6 feet per second.

Consider the reduction of the rectangle. A large rectangle has a length of 16. 8 feet and width of 2. 3 feet. A smaller rectangle has a length of 4. 5 feet and width of x feet. Not drawn to scale Rounded to the nearest tenth, what is the value of x? 0. 1 feet 0. 6 feet 1. 6 feet 2. 0 feet.

Answers

A large rectangle has a length of 16.8 feet and width of 2.3 feet. A smaller rectangle has a length of 4.5 feet and width of x feet. the value of x is 0.6 feet

The solution of the given problem is as follows:

Given: A large rectangle has a length of 16.8 feet and width of 2.3 feet. A smaller rectangle has a length of 4.5 feet and width of x feet.

We know that the ratio of width is the same as the ratio of length of the rectangles of similar shape, thus the formula for the reduction of the rectangle is:

`large rectangle width / small rectangle width = large rectangle length / small rectangle length`

Putting the given values, we get:

`2.3 / x = 16.8 / 4.5`

Solving the above expression, we get:x = 0.6 feet (rounded to the nearest tenth)

Therefore, the value of x is 0.6 feet.Answer: 0.6 feet.

To know more about rectangle visit:

https://brainly.com/question/15019502

#SPJ11

See how many penguins are standing on the ice? Half as many are swimming in the water. How many are swimming? How many penguins in all?

Answers

The number of penguins in the water as; 7 penguins. The total number of penguins as; 21 penguins

Since solving real-life cases with the use of arithmetic operations.

Let we are given: There are 14 penguins on the ice.

Half, as many are swimming, implies that: 7 of them are swimming

Thus, the number of penguins in water = 7 penguins

The total number of penguins overall = penguins in water + penguins on the ice

The total number of penguins overall = 7 + 14

The total number of penguins overall = 21 penguins

Learn more about word problems here:

brainly.com/question/25693822

#SPJ1

verify that the inverse of at is (a- 1 )r. hint: use the multiplication rule for tranposes, (cd)r = d7cr.

Answers

By using the multiplication rule for transposes,  (cd)^t = d^t c^t  it is proved that the inverse of a^t is (a^- 1 )^t.The multiplication rule of transposes states that , the transpose of the product of two matrices is equal to the product of their transposes in the reverse order.

Follow the steps below to prove that inverse of a^t is (a- 1 )t,  (Let us assume A = a):

Consider a matrix A and its inverse A^-1. According to the definition of the inverse, AA^-1 = I (identity matrix). Take the transpose of both sides of the equation: (AA^-1)^T = I^T. Apply the multiplication rule for transposes: (A^-1)^T A^T = I^T. Note that the identity matrix is its own transpose (I^T = I).Now, we have (A^-1)^T A^T = I. This equation demonstrates that the product of (A^-1)^T and A^T results in the identity matrix.

Thus, we have verified that the inverse of A^T is indeed (A^-1)^T. Therefore it is proved that  inverse of a^t is (a^- 1 )^t.

To learn more about inverse : https://brainly.com/question/3831584

#SPJ11

Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}b. If a sequence of positive numbers converges, then the sequenceis decreasing.c. If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

Answers

a. True, b. False, c. False. are the correct answers.

Find out if the given statements are correct or not?

a. The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}

This statement is true. The sequence of partial sums for the series 1+2+3+⋯ is given by:

1, 1+2=3, 1+2+3=6, 1+2+3+4=10, …

We can see that each term in the sequence of partial sums is obtained by adding the next term in the series to the previous partial sum. For example, the second term in the sequence of partial sums is obtained by adding 2 to the first term. Similarly, the third term is obtained by adding 3 to the second term, and so on. Therefore, the sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}.

b. If a sequence of positive numbers converges, then the sequence is decreasing.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and converges to 0 as n approaches infinity. However, this sequence is not decreasing. In fact, each term in the sequence is greater than the previous term. For example, the second term (1/2) is greater than the first term (1/1), and the third term (1/3) is greater than the second term (1/2), and so on.

c. If the terms of the sequence {an} are positive and increasing, then the sequence of partial sums for the series ∑[infinity]k=1 ak diverges.

This statement is false. Here is a counterexample:

Consider the sequence {1/n} for n = 1, 2, 3, …. This sequence is positive and increasing, since each term is greater than the previous term. The sequence of partial sums for the series ∑[infinity]k=1 ak is given by:

1, 1+1/2, 1+1/2+1/3, 1+1/2+1/3+1/4, …

We can see that the sequence of partial sums is increasing, but it is also bounded above by the value ln(2) (which is approximately 0.693). Therefore, by the Monotone Convergence Theorem, the series converges to a finite value (in this case, ln(2)).

Learn more  about  Sequence

brainly.com/question/16671654

a.  The statement "The sequence of partial sums for the series 1+2+3+⋯ is {1,3,6,10,…}" is true

b. The statement If a sequence of positive numbers converges, then the sequence is decreasing is false

c. the statement is false If the terms of the sequence {an}{an} are positive and increasing. then the sequence of partial sums for the series ∑[infinity]k=1ak diverges.

a. The statement is true. The nth partial sum of the series 1 + 2 + 3 + ... + n is given by the formula Sn = n(n+1)/2. For example, S3 = 3(3+1)/2 = 6, which corresponds to the third term of the sequence {1,3,6,10,...}. This pattern continues for all n, so the sequence of partial sums for the series 1 + 2 + 3 + ... is indeed {1,3,6,10,...}.

b. The statement is false. A sequence of positive numbers may converge even if it is not decreasing. For example, the sequence {1, 1/2, 1/3, 1/4, ...} is not decreasing, but it converges to 0.

c. The statement is false. The sequence of partial sums for a series with positive, increasing terms may converge or diverge. For example, the series ∑[infinity]k=1(1/k) has positive, increasing terms, but its sequence of partial sums (1, 1+1/2, 1+1/2+1/3, ...) converges to the harmonic series, which diverges.

On the other hand, the series ∑[infinity]k=1(1/2^k) also has positive, increasing terms, and its sequence of partial sums (1/2, 3/4, 7/8, ...) converges to 1.

Learn more about converges series at https://brainly.com/question/15415793

#SPJ11

A. Once she completes a wall, Sabrina notices that the number of squares along each side of the wall is equal to the number of square centimeters in each tile’s area. Write an equation for the number of squares on the wall, SW, in terms of c. Then, solve for the number of squares on the wall.



From the previous question, the area of the tile is 100 cm



b. Write an equation for the area of the wall, Aw. Then solve for the area of the wall

Answers

The equation for the number of squares on the wall, SW, in terms of c (the number of square centimeters in each tile's area) is [tex]SW = c^2[/tex]. The equation for the area of the wall, Aw, is [tex]Aw = SW * c^2[/tex].

a. The number of squares on the wall, SW, is equal to the number of square centimeters in each tile's area, [tex]c^2[/tex]. This equation represents the relationship between the side length of the wall (SW) and the number of square centimeters in each tile's area (c). To find the specific number of squares on the wall, we need to know the value of c.

b. The area of the wall, Aw, can be calculated by multiplying the number of squares on the wall (SW) by the area of each square, which is [tex]c^2[/tex]. Therefore, the equation for the area of the wall is [tex]Aw = SW * c^2[/tex]. To determine the actual area of the wall, we need to know the values of SW and c.

In order to obtain specific numerical values for the number of squares on the wall and the area of the wall, we need to be provided with the value of c or any other relevant information. Without this information, we cannot provide a numerical solution.

Learn more about equation here:

https://brainly.com/question/12974594

#SPJ11

Mr. Hillman is buying boxes of colored


pencils for his classroom. They regularly


cost $1. 80 each but are on sale for 30%


off. If sales tax is 6% and he has a $40


budget, how many boxes can be buy?

Answers

Mr. Hillman can buy a maximum of 29 boxes of colored pencils within his budget.

To calculate how many boxes Mr. Hillman can buy, we need to consider the discounted price, sales tax, and his budget.

First, let's calculate the discounted price of each box. The discount is 30%, so Mr. Hillman will pay 70% of the regular price.

Discounted price = 70% of $1.80

               = 0.70 * $1.80

               = $1.26

Next, we need to add the sales tax of 6% to the discounted price.

Price with sales tax = (1 + 6%) * $1.26

                   = 1.06 * $1.26

                   = $1.3356 (rounded to two decimal places)

Now, we can calculate the maximum number of boxes Mr. Hillman can buy with his $40 budget.

Number of boxes = Budget / Price with sales tax

              = $40 / $1.3356

              ≈ 29.95

Since we cannot buy a fraction of a box, Mr. Hillman can buy a maximum of 29 boxes of colored pencils within his budget.

Learn more about discounted price here:

rainly.com/question/21554541

#SPJ11

an adult is selected at random. the probability that the person's highest level of education is an undergraduate degree is

Answers

The probability that a randomly selected adult has an undergraduate degree would be 0.30 or 30%.

To determine the probability that an adult's highest level of education is an undergraduate degree, we would need information about the distribution of education levels in the population. Without this information, it is not possible to calculate the exact probability.

However, if we assume that the distribution of education levels in the population follows a normal distribution, we can make an estimate. Let's say that based on available data, we know that approximately 30% of the adult population has an undergraduate degree.

Know more about probability here:

https://brainly.com/question/30034780

#SPJ11

A genetic experiment involving peas yielded one sample of offspring consisting of 405 green peas and 138 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 27% of offsprinig peas will be yellow. Identify the null hypothesis, alterrnative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution.A) what are the hypotheses? alternative hypothesis?B) Identify the test statistict=?C) Identify the P-value___ (round to four decimal places as needed)D) Identify the critical value(s)The critical value(s) is (are)___(round to three decimal places as needed. Use a comma to seperate as needed)

Answers

A genetic experiment with peas resulted in 138 yellow and 405 green peas. The null hypothesis was rejected at the 0.05 level, concluding that the proportion of yellow peas is different from 27%. The test statistic was -1.7524  and the p-value was 0.0791. The critical values were -1.96 and 1.96.

The null hypothesis is that the proportion of yellow peas is equal to 0.27, and the alternative hypothesis is that the proportion of yellow peas is not equal to 0.27.

The test statistic is the z-score, which is calculated as z = (P - p) / √(p(1-p)/n), where P is the sample proportion, p is the hypothesized proportion, and n is the sample size.

The P-value for the two-tailed test is calculated as P(Z ≤ -z) + P(Z ≥ z), where z is the absolute value of the calculated z-score. Using a significance level of 0.05, the critical z-value is ±1.96.

The sample proportion of yellow peas is P = 138 / (405 + 138) ≈ 0.2543. The calculated z-score is z = (0.2543 - 0.27) / √(0.27 * 0.73 / 543) ≈ -1.7524. The P-value is P(Z ≤ -1.7524) + P(Z ≥ 1.7524) ≈ 0.0791.

The critical values for a two-tailed test with a significance level of 0.05 are ±1.96. Since the calculated z-score of -1.7524 is less than the critical value of -1.96, we fail to reject the null hypothesis.

Therefore, there is not enough evidence to conclude that the proportion of yellow peas is different from 0.27. The final conclusion is that the data do not support the claim that under the same circumstances, 27% of offspring peas will be yellow.

To know more about Null hypothesis:

https://brainly.com/question/28920252

#SPJ4

Rewrite the product as a sum or difference. 16 sin(28x) sin(11x) Rewrite the product as a sum or difference. sin(-x) sin(9x)

Answers

The product as a sum or difference is:

1) 16 sin(28x) sin(11x) = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x) = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]

1) 16 sin(28x) sin(11x)
We can use the Product-to-Sum identity: sin(A)sin(B) = (1/2)[cos(A-B) - cos(A+B)]
So, 16 sin(28x) sin(11x) can be rewritten as:
8[cos(28x - 11x) - cos(28x + 11x)] = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x)
Again, we use the Product-to-Sum identity: sin(A)sin(B) = ([tex]\frac{1}{2}[/tex])[cos(A-B) - cos(A+B)]
So, sin(-x) sin(9x) can be rewritten as:
([tex]\frac{1}{2}[/tex])[cos(-x - 9x) - cos(-x + 9x)] = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]

Learn more about Product-to-Sum identity here:

https://brainly.com/question/29016343

#SPJ11

Two dice are tossed. Let X be the absolute difference in the number of dots facing up. (a) Find and plot the PMF of X. (b) Find the probability that X lessthanorequalto 2. (c) Find E[X] and Var[X].

Answers

a. the probabilities for X = 3, X = 4, and X = 5. The PMF of X can be plotted as a bar graph, with X on the x-axis and P(X) on the y-axis. b. Var[X] = E[X^2] - (E[X])^2

(a) To find the PMF (Probability Mass Function) of X, we need to consider all possible outcomes when two dice are tossed. There are 36 possible outcomes, each of which has a probability of 1/36. The absolute difference in the number of dots facing up can be 0, 1, 2, 3, 4, 5. We can calculate the probabilities of these outcomes as follows:

When the absolute difference is 0, the numbers on both dice are the same, so there are 6 possible outcomes: (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6). The probability of each outcome is 1/36. Therefore, P(X = 0) = 6/36 = 1/6.

When the absolute difference is 1, the numbers on the dice differ by 1, so there are 10 possible outcomes: (1,2), (2,1), (2,3), (3,2), (3,4), (4,3), (4,5), (5,4), (5,6), and (6,5). The probability of each outcome is 1/36. Therefore, P(X = 1) = 10/36 = 5/18.

When the absolute difference is 2, the numbers on the dice differ by 2, so there are 8 possible outcomes: (1,3), (3,1), (2,4), (4,2), (3,5), (5,3), (4,6), and (6,4). The probability of each outcome is 1/36. Therefore, P(X = 2) = 8/36 = 2/9.

Similarly, we can find the probabilities for X = 3, X = 4, and X = 5. The PMF of X can be plotted as a bar graph, with X on the x-axis and P(X) on the y-axis.

(b) To find the probability that X ≤ 2, we need to add the probabilities of X = 0, X = 1, and X = 2. Therefore, P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1/6 + 5/18 + 2/9 = 11/18.

(c) To find the expected value E[X], we can use the formula E[X] = ∑x P(X = x). Using the PMF values calculated in part (a), we get:

E[X] = 0(1/6) + 1(5/18) + 2(2/9) + 3(1/6) + 4(1/18) + 5(1/36)

= 35/12

To find the variance Var[X], we can use the formula Var[X] = E[X^2] - (E[X])^2, where E[X^2] = ∑x (x^2) P(X = x). Using the PMF values calculated in part (a), we get:

E[X^2] = 0^2(1/6) + 1^2(5/18) + 2^2(2/9) + 3^2(1/6) + 4^2(1/18) + 5^2(1/36)

= 161/18

Therefore, Var[X] = E[X^2] - (E[X])^2

Learn more about probabilities here

https://brainly.com/question/25839839

#SPJ11

Case Study 12 Demand for regular daily admission tickets to the same theme park, based on average daily attendance, is given by D(p) = -7.7p2 + 495.8p + 10,000, where the regular admission price is Sp and D is the number of tickets demanded at that price. 5. The current regular daily admission price is $85. At this price, what is the elasticity of demand for tickets? Round to 3 decimal places. 6. Is the demand for tickets elastic or inelastic? Explain the meaning of your answer in the context of this problem. 7. Is revenue increasing or decreasing? 8. The park's Board of Directors is also considering raising the price of the regular daily admission ticket in 2023. Based on elasticity of demand, should they consider the increase? Explain your reasoning.
Previous question

Answers

Board of Directors should not consider raising the price

The elasticity of demand for tickets at the current regular daily admission price of $85 can be calculated using the formula:

Elasticity = (% change in quantity demanded) / (% change in price)

First, we need to find the quantity demanded at the current price. Using the demand function, D(p) = -7.7p^2 + 495.8p + 10,000:

D(85) = -7.7(85)^2 + 495.8(85) + 10,000 ≈ 6,724.5 tickets

Next, we find the derivative of the demand function with respect to price to calculate the rate of change:

dD(p)/dp = -15.4p + 495.8

At the price of $85, the rate of change is:

-15.4(85) + 495.8 ≈ -821.2

Now, we can calculate the elasticity of demand:

Elasticity = (-821.2/6,724.5) / (1/85) ≈ -1.569

Rounded to 3 decimal places, the elasticity of demand is -1.569. Since the elasticity is less than -1, the demand for tickets is elastic, meaning that a percentage increase in price will result in a larger percentage decrease in quantity demanded.

Given the elasticity of demand, if the price is increased, the revenue is expected to decrease, as fewer people will purchase tickets at the higher price. Therefore, based on the elasticity of demand, the Board of Directors should not consider raising the price of the regular daily admission ticket in 2023.

Learn more about elasticity here:

https://brainly.com/question/28790459

#SPJ11

Lucy lives in a state where sales tax is 8%. This means you can find the total cost of an item, including tax, by using the expression c + 0. 08c, where c is the pre-tax price of the item. Use the expression to find the total cost of an item that has a pre-tax price of $36. 0

Answers

The total cost of an item with a pre-tax price of $36.00, including sales tax of 8%, is $38.88.

To calculate the total cost of an item with sales tax, we use the expression c + 0.08c, where c represents the pre-tax price of the item. In this case, c is $36.00.

Substituting the value of c into the expression, we have $36.00 + 0.08($36.00). Simplifying the expression, we get $36.00 + $2.88 = $38.88.

Therefore, the total cost of the item, including sales tax, is $38.88. This means that if Lucy purchases an item with a pre-tax price of $36.00, she will need to pay a total of $38.88, with $2.88 being the sales tax amount added to the original price.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Rocket mortgage

House cost:434,900

We will offer you a compounded annually loan,rate of 2. 625%,with a 10% deposit

Length of mortgage 20 years

Length of mortgage 30 years

Need answer ASAP

Answers

Assuming that the loan is for the full amount of the house cost ($434,900) and that the interest rate is compounded annually, the calculations are as follows:

For a 20-year mortgage:

10% deposit = $43,490

Loan amount = $391,410

Monthly payment = $2,256.91

Total interest paid over 20 years = $256,847.60

Total cost of the mortgage = $698,247.60

For a 30-year mortgage:

10% deposit = $43,490

Loan amount = $391,410

Monthly payment = $1,953.44

Total interest paid over 30 years = $333,038.40

Total cost of the mortgage = $767,448.40

To learn more about interest rate click here : brainly.com/question/15548383

#SPJ11

Other Questions
prove that the set of all languages that are not recursively enumerable is not countable. on the start screen, click these to display a preview of each of the templates and the variants of the theme. this is called _____ true/false. pseudomonas methylotrophus is used to produce single cell protein from methanol In determining whether transactions have been recorded, the direction of the audit testing should be from the a. General ledger balances. b. Adjusted trial balance. c. Original source documents. d. General journal entries. Today, a bond has a coupon rate of 13.5%, par value of $1000, YTM of 9.50%, and semi-annual coupons with the next coupon due in 6 months. One year ago, the bond's price was $1,281.05 and the bond had 7 years until maturity. What is the current yield of the bond today?A rate equal to or greater than 11.34% but less than 11.75%A rate equal to or greater than 11.20% but less than 11.34%A rate less than 11.06% or a rate greater than 12.38%A rate equal to or greater than 11.75% but less than 12.38%A rate equal to or greater than 11.06% but less than 11.20%Two years ago, the price of a bond was $927.00, and one year ago, the price of the bond was $985.00. Over the past year, the bond paid a total of $74.00 in coupon payments, which were just paid. If the bond is currently priced at $941.00, then what was the rate of return for the bond over the past year (from 1 year ago to today)? The par value of the bond is $1,000. consider the following parametric equation. x = 11(\cos \theta \theta \sin \theta) y = 11(\sin \theta - \theta \cos \theta) what is the length of the curve for \theta= 0 to \theta= \frac{7}{2} \pi? Suppose X is a non-empty set and P(X) denotes its powerset. Let R be a relation on P(X) defined by saying that a pair (Y,Z) is in R if and only if Y C Z. Which properties does this relation have (select all that apply)? a. reflexive b. irreflexive c.symmetric d.antisymmetric e.transitive responsibility accounting reports for profit centers will include a.revenues only b.costs only c.revenues, expenses, and income or loss from operations d.expenses and fixed assets minimize q=5x^2 4y^2 where x y=9 Suppose a generator has a peak voltage of 210 V and its 500 turn, 5.5 cm diameter coil rotates in a 0.25 T field.Randomized Variable:0=210VB=0.25Td=5.5cm when getheight is called with the node that contains d. what value will the recursive call getheight(node.getright()) return? Est-ce que ceci est un trinme carr parfait? Montre les dmarches.a) x +8x+64 Find the linearization L(x,y) of the function at each point. f(x,y)= x2 + y2 +1 a. (3,2) b. (2.0) can you input the value of an enumeration type directly from a standard input device Speed A cart, weighing 24.5 N, is released from rest on a 1.00-m ramp, inclined at an angle of 30.0 as shown in Figure 16. The cart rolls down the incline and strikes a second cart weighing 36.8 N.a. Define the two carts as the system. Calculate the speed of the first cart at the bottom of the incline.b. If the two carts stick together, with what initial speed will they move along? Consider the following array and answer the questions: All answers are numeric. ArrayX: uns 16 [Num]:= [2, 3, 5, 7, 8, 10); Question 1 How many elements the array has? 2 What is index of the first element? 3 What is the index of the last element? 4 What is the size of each element of the array (in bytes)? 5 Assume we use a Register as an index to get an individual elements of this HLA array. What must the size of register be in bytes)? 6 If the address of ArrayX is 100, what is the address of ArrayX [0]? 7 What is the address of ArrayX [1]? If x = 0 and y 0 where is the point (x y) located on the x-axis on the y-axis submit? Part A. Utilize recursion to determine if a number is prime or not. Here is a basic layout for your function. 1.) Negative Numbers, 0, and 1 are not primes. 2.) To determine if n is prime: 2a.) See if n is divisible by i=2 2b.) Set i=i+1 2c.) If i^2 n. Why? Take n=19 as an example. i=2, 2 does not divide 19 evenly i=3, 3 does not divide 19 evenly i=4, 4 does not divide 19 evenly i=5, we don't need to test this. 5*5=25. If 5*x=19, the value of x would have to be smaller then 5. We already tested those values! No larger numbers can be factors unless one we already test is to. Hint: You may have the recursion take place in a helper function! In other words, define two functions, and have the "main" function call the helper function which recursively performs the subcomputations l# (define (is_prime n) 0;Complete this function definition. ) Part B. Write a recursive function that sums the digits in a number. For example: the number 1246 has digits 1,2,4,6 The function will return 1+2+4+6 You may assume the input is positive. You must write a recursive function. Hint: the built-in functions remainder and quotient are helpful in this question. Look them up in the Racket Online Manual! # (define (sum_digits n) 0;Complete this function definition. Which is the correct cell notation for the following reaction? Au3+(ag) + Al(s) rightarrow Al3+(aq) + Au(s) ? AI3(ag)|Al(s)||Au3+(ag)|Au(s) ? AI(s)Al3+(aq)||Au3+(aq)|Au(s) ? AI3+(aq)|Au(s)||Au3+(aq)|AI(s) ? Au(s)|AI(s)||Au3+(aq)|AI3+(aq) Consider cobal (ii) chloride and cobalt (ii) iodide will disolve seeprately. will cobalt (ii) fluoride be more or less soluble than clhoride (ii) bromide?