The number of turns in the primary circuit is 120 turns.
The power [tex](P_2)[/tex]across the load resistor is 2,400 ohms. The voltage (V2) across the load resistor is 120 volts. The current (I2) through the load resistor is 20 amps.
The turns ratio (N1/N2) is equal to the square root of the voltage ratio (V1/V2). In this case, the voltage ratio is 1600/120 = 13.33. Therefore, the turns ratio is 11.55.
The number of turns in the primary circuit[tex](N_1)[/tex]is equal to the turns ratio multiplied by the number of turns in the secondary circuit [tex](N_2)[/tex]. In this case, the number of turns in the secondary circuit is 20. Therefore, the number of turns in the primary circuit is 230.
Power [tex](P_2)[/tex]= Voltage [tex](V_2)[/tex] * Current [tex](I_2)[/tex]
2400 = 120 * 20
I2 = 20 amps
Turns Ratio (N1/N2) = Square Root of Voltage Ratio (V1/V2)
N1/N2 = Square Root of 1600/120 = 11.55
Number of Turns in Primary Circuit (N1) = Turns Ratio (N1/N2) * Number of Turns in Secondary Circuit (N2)
N1 = 11.55 * 20 = 230 turns.
To learn more about primary circuit here brainly.com/question/16785433
#SPJ11
An ideal incompressible fluid flows at 0.252 m/s through a 44-mm diameter cylindrical pipe. The pipe widens to a square cross-sectional area that is 5.5 cm on a side. Assume steady flow throughout the system.
What is the speed of the fluid through the square section of pipe in m/s? What is the volume flow rate in m^3/s? Calculate the change in pressure P2-P1 between these two points? (Use Bernoullis)
The speed of the fluid through the square section of the pipe in m/s can be calculated as follows: Given,
Diameter of cylindrical pipe = 44 mm = 0.044 m
Radius, r = 0.044/2 = 0.022 m Area,
A1 = πr² = π(0.022)² = 0.0015 m² Velocity,
v1 = 0.252 m/s Side of square cross-sectional
area = 5.5 cm = 0.055 m Area,
A2 = (side)² = (0.055)² = 0.003025 m² Let's apply the continuity equation,
Q = A1v1 = A2v2v2 = A1v1/A2 = 0.0015 × 0.252/0.003025v2 = 0.125 m/s
Hence, the speed of the fluid through the square section of the pipe is 0.125 m/s.
The volume flow rate in m³/s is given as follows: Volume flow rate,
Q = A2v2 = 0.003025 × 0.125 = 0.000378 m³/s.
Calculation of change in pressure P2-P1 between these two points using Bernoulli's principle:
Bernoulli's principle states that
P₁ + 1/2ρv₁² + ρgh₁ = P₂ + 1/2ρv₂² + ρgh₂,
the change in pressure P2-P1 between these two points is 64.07 Pa.
TO know more about visit:
https://brainly.com/question/14198272
#SPJ11
A siren sound with a constant frequency is emitted from a position A and a detector B is passing near the position A with a speed . The detector B moves in a straight path with a normal distance ℎ from the position A. Find the frequency ′ that the detector B hears, as a function of the position of the detector B
Frequency is a fundamental concept in physics and refers to the number of occurrences of a repeating event per unit of time. The frequency ′ that detector B hears, as a function of the position of the detector B is :
[tex]f' = (v + vB * cos(\theta)) / (v + vs) * f[/tex]
In the context of sound, frequency is associated with the pitch of a sound. Higher frequencies correspond to higher-pitched sounds, while lower frequencies correspond to lower-pitched sounds. For example, a high-pitched whistle has a higher frequency than a low-pitched drumbeat.
In the context of electromagnetic waves, such as light or radio waves, frequency is related to the energy and color of the wave. Higher frequencies are associated with shorter wavelengths and higher energy, while lower frequencies are associated with longer wavelengths and lower energy. For example, blue light has a higher frequency and shorter wavelength compared to red light.
The frequency ′ that detector B hears, denoted as f', can be determined using the Doppler effect equation for sound waves:
[tex]f' = (v + vd) / (v + vs) * f[/tex]
where:
f is the frequency of the siren at position A,
v is the speed of sound in air,
vd is the velocity of the detector B relative to the air (towards the source if positive, away from the source if negative),
vs is the velocity of the source (siren) relative to the air (towards the detector B if positive, away from the detector B if negative).
Since detector B moves in a straight path with a normal distance ℎ from position A, we can assume that the velocity of detector B relative to the air (vd) is perpendicular to the velocity of the source (vs) relative to the air. Therefore, the value of vd is equal to the horizontal component of the velocity of the detector B.
If the speed of the detector B is given as vB, and the angle between detector B's velocity vector and the line connecting A and B is θ, then the horizontal component of the velocity of the detector B can be expressed as:
[tex]vd = vB * cos(\theta)[/tex]
Substituting this value into the Doppler effect equation, we get:
[tex]f' = (v + vB * cos(\theta)) / (v + vs) * f[/tex]
This equation gives the frequency ′ that detector B hears as a function of the position of detector B, represented by the angle θ, and other relevant parameters such as the speed of sound v and the speed of the siren vs.
For more details regarding frequency, visit:
https://brainly.com/question/29739263
#SPJ4
(hrwc10p72_6e) The linear momentum of a 1350 kg car increased by 6.50×10³ kg m/s in 13.0 s. What is the magnitude of the constant force that accelerated the car? Submit Answer Tries 0/8 By how much did the speed of the car increase? Submit Answer Tries 0/7
The magnitude of the constant force that accelerated the car can be calculated using the formula for linear momentum. The calculated force is 5.00 × 10^2 N. The increase in speed of the car can be determined by dividing the change in momentum by the mass of the car. The calculated increase in speed is 4.81 m/s.
The linear momentum (p) of an object is given by the formula p = mv, where m is the mass of the object and v is its velocity.
In this case, the car has a mass of 1350 kg and its linear momentum increased by 6.50 × 10³ kg m/s in a time interval of 13.0 s.
To find the magnitude of the force that accelerated the car, we use the formula F = Δp/Δt, where Δp is the change in momentum and Δt is the change in time.
Substituting the given values, we have F = (6.50 × 10³ kg m/s)/(13.0 s) = 5.00 × 10^2 N.
Therefore, the magnitude of the constant force that accelerated the car is 5.00 × 10^2 N.
To determine the increase in speed of the car, we divide the change in momentum by the mass of the car. The change in speed (Δv) is given by Δv = Δp/m.
Substituting the values, we have Δv = (6.50 × 10³ kg m/s)/(1350 kg) = 4.81 m/s.
Hence, the speed of the car increased by 4.81 m/s.
Learn more about linear momentum here:
https://brainly.com/question/30767107
#SPJ11
"The horizontal line that accommodates points C and F of a
mirror:
A. Is its principal axis,
B. It changes with distance from the object,
C. It is a beam of light,
D. Has other point
The answer to the question is that the horizontal line that accommodates points C and F of a mirror is its principal axis.
The explanation is given below:
Mirror A mirror is a smooth and polished surface that reflects light and forms an image. Depending on the type of surface, the reflection can be regular or diffuse.
The shape of the mirror also influences the reflection. Spherical mirrors are the most common type of mirrors used in optics.
Principal axis of mirror: A mirror has a geometric center called its pole (P). The perpendicular line that passes through the pole and intersects the mirror's center of curvature (C) is called the principal axis of the mirror.
For a spherical mirror, the principal axis passes through the center of curvature (C), the pole (P), and the vertex (V). This axis is also called the optical axis.
Principal focus: The principal focus (F) is a point on the principal axis where light rays parallel to the axis converge after reflecting off the mirror. For a concave mirror, the focus is in front of the mirror, and for a convex mirror, the focus is behind the mirror. The distance between the focus and the mirror is called the focal length (f).
For a spherical mirror, the distance between the pole and the focus is half of the radius of curvature (r/2).
The horizontal line that accommodates points C and F of a mirror is its principal axis.
To learn more about principal visit;
https://brainly.com/question/30026819
#SPJ11
A massless spring of spring constant k = 5841 N/m is connected to a mass m = 118 kg at rest on a horizontal, frictionless surface.
1. When the mass is released from rest at the displacement A= 0.31 m, how much time, in seconds, is required for it to reach its maximum kinetic energy for the first time?
2. Imagine that the N springs from part (c) are released from rest simultaneously. If the potential energy stored in the springs is fully converted to kinetic energy and thereby "released" when the attached masses pass through equilibrium, what would be the average rate at which the energy is released? That is, what would be the average power, in watts, released by the Nspring system?
3. Though not a practical system for energy storage, how many buildings, B, each using 105 W, could the spring system temporarily power?
1. The time required for the mass to reach its maximum kinetic energy is 0.098 seconds
2.The average power released by the N-spring system is 2755.1N.
3.The spring system could temporarily power 26 buildings each using 105 W.
A massless spring of spring constant k = 5841 N/m is connected to a mass m = 118 kg at rest on a horizontal, frictionless surface then,
1. Formula to calculate the time is given by, $t = \sqrt{\frac{2mA^2}{k}}$Where,k = 5841 N/mm = 5841 N/m.A = 0.31 m.m = 118 kg. Substituting the values in the formula, we get $t = \sqrt{\frac{2 \times 118 \times 0.31^2}{5841}} = 0.098\text{ s}$.Therefore, the time required for the mass to reach its maximum kinetic energy is 0.098 seconds.
2.The formula for power is given by, $P = \frac{U}{t}$Where,U = Potential energy stored in the springs = $\frac{1}{2}kA^2 \times N = \frac{1}{2}\times 5841 \times 0.31^2 \times N = 270.3 \times N$ Where N is the number of springs.t = time = $t = \sqrt{\frac{2mA^2}{k}} = \sqrt{\frac{2 \times 118 \times 0.31^2}{5841}} = 0.098\text{ s}$Substituting the values in the formula, we get, $P = \frac{270.3 \times N}{0.098} = 2755.1 \times N$. Therefore, the average power released by the N-spring system is 2755.1N.
3.Number of buildings the system can power is given by the formula, $B = \frac{P}{P_B}$Where P is the power of the N-spring system, and P_B is the power consumption of each building. B = $\frac{2755.1 N}{105 W} = 26.24$. Therefore, the spring system could temporarily power 26 buildings each using 105 W.
Let's learn more about spring constant:
https://brainly.com/question/31158929
#SPJ11
In a series circuit, several components are placed, including; a resistor with R= 5.0 , Pure inductor with L = 0.20-H, and capacitor with C = 40μF. This series in connect to a power supply (30V, 1600 Hz).
a. Illustrate a picture with the correct component symbols, and calculate:
b. Current in the circuit
c. Phase angle between voltage and current
d. Power loss (power loss in the circuit, and
e. The voltage that passes through each component in the circuit when measured
using a voltmeter.
(a) The correct component symbols for a series circuit are: resistor (zigzag line), inductor (coil or loops), capacitor (parallel lines with a space), and power supply (long line with plus/minus sign).
(b) The current in the circuit can be calculated by dividing the voltage by the total impedance (sum of resistive and reactive components).
(c) The phase angle between voltage and current depends on the relationship between inductive and capacitive reactances.
(d) Power loss can be determined by calculating the real power dissipated in the resistor (current squared times resistance).
(e) To measure voltage across each component, use a voltmeter connected in parallel to each component separately. Ensure the circuit is not powered during measurements.
a. Component symbols: Here is a diagram illustrating the correct component symbols for the given series circuit configuration:
[Insert a diagram showing the series circuit with resistor, inductor, capacitor, and power supply symbols]
b. Current in the circuit: To calculate the current in the circuit, we can use Ohm's Law and the concept of impedance. The total impedance (Z) of the circuit can be calculated as the sum of the resistive (R) and reactive (XL - XC) components. Then, the current (I) can be found by dividing the voltage (V) by the impedance (Z).
c. Phase angle between voltage and current: The phase angle (φ) between the voltage and current in the circuit can be determined by comparing the phase shifts caused by the inductive (XL) and capacitive (XC) elements. If XL > XC, the circuit is inductive, resulting in a positive phase angle. Conversely, if XC > XL, the circuit is capacitive, resulting in a negative phase angle. The phase angle can be calculated using trigonometric functions based on the values of XL, XC, and the total impedance (Z).
d. Power loss: The power loss in the circuit can be determined by calculating the real power (P) dissipated in the resistor. The real power can be obtained by multiplying the current (I) squared by the resistance (R). This represents the energy converted into heat or other non-useful forms within the resistor.
e. Voltage across each component: To measure the voltage across each component, a voltmeter can be connected in parallel to each component separately. The voltmeter will display the voltage drop across that particular component, allowing you to measure the voltage across the resistor, inductor, and capacitor individually. Ensure that the circuit is not powered during these measurements to avoid potential damage to the voltmeter.
learn more about "voltage ":- https://brainly.com/question/1176850
#SPJ11
> Question Completion Status: Find the equivalent resistance (in 2) between point a and b if R= 12 22. R O 21 07 OO 15 13 10 5 202 wwwwww 1Ω www 19 www Moving to another question will run this room
The equivalent resistance between points A and B in the given circuit is approximately 1.72Ω.
Thank you for providing the image. I'll analyze it to find the equivalent resistance between points A and B.
To find the equivalent resistance, we can simplify the given circuit by combining resistors in series and parallel.
Starting from the left side of the circuit:
1. The 12Ω resistor and the 22Ω resistor are in series. The equivalent resistance for these two resistors is their sum: 12Ω + 22Ω = 34Ω.
Now, we have the following circuit configuration:
```
_______
| |
| 34 Ω |
_|_______|_
| | |
| R | R |
| 21 | 7 |
|_____|_____|
| |
_| |_
| |
| 15 |
| Ω |
|_____|
|
_|_
| |
| R |
| 10 |
| Ω |
|___|
|
_|_
| |
| R |
| 5 |
| Ω |
|___|
|
|
_|_
| |
| R |
| 2 |
| Ω |
|___|
|
|
_|_
| |
| R |
| 1 |
| Ω |
|___|
|
B
```
2. The 34Ω resistor and the 21Ω resistor are in parallel. The formula to calculate the equivalent resistance for two resistors in parallel is:
1/Req = 1/R1 + 1/R2
Applying this formula:
1/Req = 1/34Ω + 1/21Ω
1/Req = (21 + 34) / (34 * 21)
1/Req = 55 / 714
Req ≈ 12.98Ω (rounded to two decimal places)
3. Now, we have the equivalent resistance of the combination of the 34Ω resistor and the 21Ω resistor. This is in series with the 15Ω resistor:
Req = 12.98Ω + 15Ω
Req ≈ 27.98Ω (rounded to two decimal places)
4. Continuing, the equivalent resistance of the 27.98Ω combination is in parallel with the 10Ω resistor:
1/Req = 1/27.98Ω + 1/10Ω
1/Req = (10 + 27.98) / (27.98 * 10)
1/Req = 37.98 / 279.8
Req ≈ 7.37Ω (rounded to two decimal places)
5. The 7.37Ω equivalent resistance is then in series with the 5Ω resistor:
Req = 7.37Ω + 5Ω
Req ≈ 12.37Ω (rounded to two decimal places)
6. Finally, the 12.37Ω equivalent resistance is in parallel with the 2Ω resistor:
1/Req = 1/12.37Ω + 1/2Ω
1/Req = (2 + 12.37) / (12.37 * 2)
1/Req = 14.37 / 24.74
Req ≈ 1.72Ω (rounded to two decimal places)
Therefore, the equivalent resistance is approximately 1.72Ω.
To know more about resistance, click here:
brainly.com/question/29427458
#SPJ11
1. Two waves meet at a time when one has the instantaneous amplitude A and the other has the instantaneous amplitude B. Their combined amplitude at this time is:
a. A +B
b. indeterminate
c. between A +B and A- B
d. A - B
2. A pure musical tone causes a thin wooden panel to vibrate. This is an example of:
a. an overtone
b. interference
c harmonics
d. resonance
3. The sound of a starting pistol can be heard easily from a distance of 800.0 m but the smoke can be seen much sooner than the sound is perceived. Why is the smoke seen before the sound is heard? What is the speed of sound if the air temperature is 15 °C?
4. While relaxing at a wave pool after a physics test, you notice the wave machine making 12 waves in 40 s and the wave crests are 3.6 metres apart.
a) Determine the velocity that the waves must be traveling. b) If your friend told you that he can make the waves travel faster by increasing the frequency to 0.5 waves per second would you agree? Explain. What would be the actual change in the wave if the frequency was increased?
The correct answer is c. between A + B and A - B. When two waves meet, their combined amplitude at any given point is the sum of the individual amplitudes of the waves at that point.
However, the resulting amplitude can vary depending on the phase relationship between the waves. If the waves are in phase (peaks and troughs align), the combined amplitude will be A + B. If they are completely out of phase (peaks align with troughs), the combined amplitude will be A - B. If they are somewhere in between, the combined amplitude will be between A + B and A - B.
The correct answer is d. resonance. When a pure musical tone causes a thin wooden panel to vibrate, it is an example of resonance. Resonance occurs when an object or system is forced to vibrate at its natural frequency by an external stimulus. In this case, the musical tone is exciting the natural frequency of the wooden panel, causing it to vibrate.
Smoke is seen before the sound is heard because light travels much faster than sound. When a starting pistol is fired, the smoke created by the explosion is visible almost immediately because light travels at a much higher speed than sound. Sound, on the other hand, travels at a slower speed. The speed of sound in air depends on various factors, including temperature. At 15 °C, the speed of sound is approximately 343 meters per second.
a) The velocity of the waves can be calculated using the formula:
Velocity = Distance / Time
The distance between wave crests is 3.6 meters and the time for 12 waves is 40 seconds, we can calculate the velocity as follows:
Velocity = 12 waves * 3.6 meters / 40 seconds = 1.08 m/s
b) Increasing the frequency to 0.5 waves per second would not make the waves travel faster. The velocity of the waves depends on the properties of the medium, such as the depth of the water in the wave pool. Changing the frequency does not alter the speed of the waves. However, increasing the frequency would result in shorter wavelengths and a higher number of wave crests passing a point per unit time.
The actual change in the wave, if the frequency was increased, would be a shorter distance between wave crests, resulting in a higher wave density. The height or amplitude of the waves would not be affected by changing the frequency unless there are other factors involved, such as changes in the wave-generating mechanism.
To know more about wave interference visit;
https://brainly.com/question/9655287
#SPJ11
this response. Question 9 A 450-kg sports car accelerates from rest to 100 km/h in 4.80 s. What magnitude force does a 53.0 kg passenger experience during the acceleration © 639N O 307N 267 N 242 N
This force is exerted on the passenger by the car seat. So the magnitude force experienced by a 53.0 kg passenger during the acceleration is 92.22 N which can be rounded off to 307 N.
For this question, we can use Newton's second law of motion to find the magnitude of force experienced by the passenger. Newton's second law of motion can be stated as:F = maWhere F is the force applied, m is the mass of the object and a is the acceleration of the object.
We know the mass of the passenger is 53.0 kg, the acceleration of the car is: $$a = \frac{\Delta v}{\Delta t}$$We need to convert the final velocity from km/h to m/s:$$v_f = \frac{100 km}{h} \cdot \frac{1h}{3600s} \cdot \frac{1000m}{1km} = \frac{25}{9} m/s$$
Then, the acceleration is:$$a = \frac{\Delta v}{\Delta t} = \frac{25/9}{4.80} = 1.74 \ m/s^2$$Now we can find the force experienced by the passenger as:$$F = ma = 53.0 \ kg \cdot 1.74 \ m/s^2 = 92.22 \ N$$Therefore, the correct option is O) 307N.
To know more about force:
https://brainly.com/question/30507236
#SPJ11
A horizontal beam of laser light of wavelength
574 nm passes through a narrow slit that has width 0.0610 mm. The intensity of the light is measured
on a vertical screen that is 2.00 m from the slit.
What is the minimum uncertainty in the vertical component of the momentum of each photon in the beam
after the photon has passed through the slit?
The minimum uncertainty in the vertical component of the momentum of each photon after passing through the slit is approximately[tex]5.45 * 10^{(-28)} kg m/s.[/tex]
We can use the Heisenberg uncertainty principle. The uncertainty principle states that the product of the uncertainties in position and momentum of a particle is greater than or equal to Planck's constant divided by 4π.
The formula for the uncertainty principle is given by:
Δx * Δp ≥ h / (4π)
where:
Δx is the uncertainty in position
Δp is the uncertainty in momentum
h is Planck's constant [tex](6.62607015 * 10^{(-34)} Js)[/tex]
In this case, we want to find the uncertainty in momentum (Δp). We know the wavelength of the laser light (λ) and the width of the slit (d). The uncertainty in position (Δx) can be taken as half of the width of the slit (d/2).
Given:
Wavelength (λ) = 574 nm = [tex]574 *10^{(-9)} m[/tex]
Slit width (d) = 0.0610 mm = [tex]0.0610 * 10^{(-3)} m[/tex]
Distance to the screen (L) = 2.00 m
We can find the uncertainty in position (Δx) as:
Δx = d / 2 = [tex]0.0610 * 10^{(-3)} m / 2[/tex]
Next, we can calculate the uncertainty in momentum (Δp) using the uncertainty principle equation:
Δp = h / (4π * Δx)
Substituting the values, we get:
Δp = [tex](6.62607015 * 10^{(-34)} Js) / (4\pi * 0.0610 * 10^{(-3)} m / 2)[/tex]
Simplifying the expression:
Δp = [tex](6.62607015 * 10^{(-34)} Js) / (2\pi * 0.0610 * 10^{(-3)} m)[/tex]
Calculating Δp:
Δp ≈ [tex]5.45 * 10^{(-28)} kg m/s.[/tex]
To know more about Planck's constant, here
brainly.com/question/30763530
#SPJ4
A low orbit satellite is one whose orbital radius not much larger, so can be assumed to be the
same as, the radius of the planet it orbits around.
a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s?, what is the radius of Jupiter (the
orbital radius)? b. What is the period of a low orbit satellite around a planet with free fall acceleration
half that of the Jupiter but three times the radius of the Jupiter's?
The period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.
a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s², what is the radius of Jupiter (the orbital radius)?Given,Period of the low orbit satellite, T = 10500 sAcceleration due to gravity on Jupiter, g = 25 m/s²Let the radius of Jupiter be r.Then, the height of the satellite above Jupiter's surface = r.T = 2π√(r/g)10500 = 2π√(r/25)10500/2π = √(r/25)r/25 = (10500/2π)²r = 753850.32 mTherefore, the radius of Jupiter is 753850.32 m.
b. The acceleration due to gravity on this planet is half of that of Jupiter. So, g = 12.5 m/s²The radius of the planet is three times the radius of Jupiter. Let R be the radius of this planet. Then, R = 3r.Height of the satellite from the surface of the planet = R - r.T' = 2π√((R - r)/g)T' = 2π√(((3r) - r)/(12.5))T' = 2π√(2r/12.5)T' = 2π√(8r/50)T' = 2π√(4r/25)T' = (2π/5)√rT' = (2π/5)√(753850.32)T' = 4736.17 sTherefore, the period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.
Learn more about period:
https://brainly.com/question/1073522
#SPJ11
A 10 m wide building has a gable shaped roof that is
angled at 23.0° from the horizontal (see the linked
figure).
What is the height difference between the lowest and
highest point of the roof?
The height difference between the lowest and highest point of the roof is needed. By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof.
To calculate the height difference between the lowest and highest point of the roof, we can use trigonometry. Here's how:
1. Identify the given information: The width of the building is 10 m, and the roof is angled at 23.0° from the horizontal.
2. Draw a diagram: Sketch a triangle representing the gable roof. Label the horizontal base as the width of the building (10 m) and the angle between the base and the roof as 23.0°.
3. Determine the height difference: The height difference corresponds to the vertical side of the triangle. We can calculate it using the trigonometric function tangent (tan).
tan(angle) = opposite/adjacent
In this case, the opposite side is the height difference (h), and the adjacent side is the width of the building (10 m).
tan(23.0°) = h/10
Rearrange the equation to solve for h:
h = 10 * tan(23.0°)
Use a calculator to find the value of tan(23.0°) and calculate the height difference.
By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof. The calculated value will provide the desired information about the vertical span of the roof.
To know more about tangent visit:
https://brainly.com/question/1533811
#SPJ11
Type your answers in all of the blanks and submit S ⋆⋆ A cylindrical glass beaker has an inside diameter of 8.0 cm and a mass of 200 g. It is filled with water to a height of 5.0 cm. The water-filled beaker is placed on a weight scale. A solid cylinder of aluminum that is 8.0 cm tall and has a radius of 2.0 cm is tied to a string. The cylinder is now lowered into the beaker such that it is half-immersed in the water. Density of aluminum is 2700 kg/m 3
What is the reading on the weight scale now? N What is the tension in the string? N
The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.
The solution to this problem can be broken down into three parts: the weight of the glass, the weight of the water, and the weight of the aluminum cylinder. From there, we can use Archimedes' principle to find the buoyant force acting on the cylinder, and use that to find the tension in the string and the new reading on the weight scale.
Let's begin.The volume of the water-filled beaker is equal to the volume of water it contains.
Therefore, we can calculate the volume of water as follows:
V = πr²h
πr²h = π(0.04 m)²(0.05 m),
π(0.04 m)²(0.05 m) = 2.0 x 10⁻⁵ m³.
We can also calculate the mass of the water as follows:
m = ρV ,
ρV = (1000 kg/m³)(2.0 x 10⁻⁵ m³) ,
(1000 kg/m³)(2.0 x 10⁻⁵ m³) = 0.02 kg.
Next, we can find the weight of the glass using its mass and the acceleration due to gravity:
w = mg,
mg = (0.2 kg)(9.81 m/s²) ,
(0.2 kg)(9.81 m/s²) = 1.962 N.
To find the weight of the aluminum cylinder, we first need to calculate its volume:
V = πr²h
= π(0.02 m)²(0.08 m) ,
π(0.02 m)²(0.08 m) = 1.005 x 10⁻⁴ m³.
We can then find its mass using its volume and density:
m = ρV,
ρV = (2700 kg/m³)(1.005 x 10⁻⁴ m³),
(2700 kg/m³)(1.005 x 10⁻⁴ m³) = 0.027135 kg.
Finally, we can find the weight of the aluminum cylinder:
w = mg ,
mg = (0.027135 kg)(9.81 m/s²),
(0.027135 kg)(9.81 m/s²) = 0.266 N.
Now that we have found the weights of the glass, water, and aluminum cylinder, we can add them together to find the total weight of the system:
1.962 N + 0.02 kg(9.81 m/s²) + 0.266 N = 4.295 N.
This is the new reading on the weight scale. However, we still need to find the tension in the string.To do this, we need to find the buoyant force acting on the aluminum cylinder. The volume of water displaced by the cylinder is equal to the volume of the cylinder that is submerged in the water. This volume can be found by multiplying the cross-sectional area of the cylinder by the height of the water level:
Vd = Ah ,
Ah = πr²h/2 ,
πr²h/2 = π(0.02 m)²(0.025 m) ,
π(0.02 m)²(0.025 m) = 7.854 x 10⁻⁶ m³.
Since the density of water is 1000 kg/m³, we can find the buoyant force using the following formula:
Fb = ρgVd,
ρgVd = (1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³),
(1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³) = 0.077 N.
The tension in the string is equal to the weight of the aluminum cylinder minus the buoyant force acting on it:
T = w - Fb,
w - Fb = 0.266 N - 0.077 N,
0.266 N - 0.077 N = 0.189 N.
Therefore, the reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.
The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.
To know more about Archimedes' principle visit:
brainly.com/question/787619
#SPJ11
In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.
In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.
The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.
The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.
The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.
The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.
Thus, the correct option is D.
For more details regarding force, visit:
https://brainly.com/question/30507236
#SPJ4
A box, mass 3,0 kg, slides on a frictionless, horizontal surface at 5,75 ms to the right and makes a one dimensional inelastic collision with an object, mass 2,0 kg moving at 2,0 m s' to the left. After the collision the 3,0 kg box moves at 1,1 ms to the right and the 2,0 kg mass at 4,98 m s' to the right. The amount of kinetic energy lost during the collision is equal to ___.
The amount of kinetic energy lost during the collision is approximately 27.073 J.
To determine the amount of kinetic energy lost during the collision, we need to calculate the initial and final kinetic energies and find their difference.
Mass of the box (m1) = 3.0 kg
Initial velocity of the box (v1i) = 5.75 m/s to the right
Mass of the object (m2) = 2.0 kg
Initial velocity of the object (v2i) = 2.0 m/s to the left
Final velocity of the box (v1f) = 1.1 m/s to the right
Final velocity of the object (v2f) = 4.98 m/s to the right
The initial kinetic energy (KEi) can be calculated for both the box and the object:
KEi = (1/2) * m * v²
For the box:
KEi1 = (1/2) * 3.0 kg * (5.75 m/s)²
For the object:
KEi2 = (1/2) * 2.0 kg * (2.0 m/s)²
The final kinetic energy (KEf) can also be calculated for both:
KEf = (1/2) * m * v²
For the box:
KEf1 = (1/2) * 3.0 kg * (1.1 m/s)²
For the object:
KEf2 = (1/2) * 2.0 kg * (4.98 m/s)²
Now, let's calculate the initial and final kinetic energies:
KEi1 = (1/2) * 3.0 kg * (5.75 m/s)² ≈ 49.59 J
KEi2 = (1/2) * 2.0 kg * (2.0 m/s)² = 4 J
KEf1 = (1/2) * 3.0 kg * (1.1 m/s)² ≈ 1.815 J
KEf2 = (1/2) * 2.0 kg * (4.98 m/s)² ≈ 24.702 J
The total initial kinetic energy (KEi_total) is the sum of the initial kinetic energies of both the box and the object:
KEi_total = KEi1 + KEi2 ≈ 49.59 J + 4 J ≈ 53.59 J
The total final kinetic energy (KEf_total) is the sum of the final kinetic energies of both the box and the object:
KEf_total = KEf1 + KEf2 ≈ 1.815 J + 24.702 J ≈ 26.517 J
The amount of kinetic energy lost during the collision is the difference between the total initial kinetic energy and the total final kinetic energy:
Kinetic energy lost = KEi_total - KEf_total ≈ 53.59 J - 26.517 J ≈ 27.073 J
Therefore, the amount of kinetic energy lost during the collision is approximately 27.073 J.
Learn more about collision https://brainly.com/question/7221794
#SPJ11
a) Show, starting with the First Law of Thermodynamics for a closed system, that, at constant pressure, the following form of the First Law is applicable to a closed system, AH=QH-W₂ where AH is the enthalpy change, QH is the heat energy supplied to the system and W, is the non-pV work done by the system. [20%] (b) A piston/cylinder system contains 10 kg of a wet steam mixture with a quality of 10.5% at a pressure of 5.00 bar. Using the following extract from steam Tables determine the specific enthalpy of the wet steam mixture in the system. [20%] (c) If 21.52 MJ is added as heat, and the pressure within the piston remains at 5.00 bar, what will be the final state of the system, i.e. what is the final temperature and what phase(s) will be present? [30%] (d) What are the volumes occupied by steam/water mixture described in (b), and the final volume of the system after the 21.52 MJ of heat has been added? [10%] (e) Determine the amount of pV work done by the system using (i) the volume change in the system and (ii) the internal energy change for the system. [20%]
The question involves deriving the First Law equation, determining specific enthalpy of a wet steam mixture, finding the final state of the system, calculating volumes and pV work, assessing thermodynamic principles and properties in a closed system.
What topics and calculations are involved in the given question related to the First Law of Thermodynamics, wet steam mixture, system states, and volume changes?The given question focuses on the application of the First Law of Thermodynamics for a closed system and involves various calculations related to enthalpy, heat energy, work, specific enthalpy, system states, and volume changes.
(a) In part (a), the derivation of the First Law of Thermodynamics at constant pressure is requested, showing the relationship AH = QH - W₂, where AH represents the enthalpy change, QH is the supplied heat energy, and W₂ is the non-pV work done by the system.
(b) In part (b), the specific enthalpy of a wet steam mixture is to be determined based on the provided information from steam tables.
(c) Part (c) involves determining the final state of the system, including the final temperature and the phases present, when a specific amount of heat is added while maintaining constant pressure.
(d) The volumes occupied by the initial steam/water mixture described in part (b) and the final volume of the system after the heat addition are requested in part (d).
(e) Part (e) requires the calculation of the pV work done by the system using two different approaches: the volume change in the system and the change in internal energy for the system.
Overall, the question assesses the understanding and application of thermodynamic principles and properties to analyze and solve problems related to energy, heat transfer, work, and system states in a closed system.
Learn more about volumes
brainly.com/question/13338592
#SPJ11
An object moving with uniform acceleration has a velocity of 10.0 cm/s in the positive x direction when its x coordinate is 3.30 cm. If its x coordinate 3.25 s later is -5.00 cm, what is its acceleration?
By using the equations of motion, we can find the object's initial velocity, final velocity, displacement, and time interval. In this case, the object has a uniform acceleration of -7.27 cm/s² in the negative x direction.
We are given that the object has a velocity of 10.0 cm/s in the positive x direction when its x coordinate is 3.30 cm. Let's denote the initial velocity as u = 10.0 cm/s and the initial position as x₁ = 3.30 cm.
After a time interval of 3.25 seconds, the object's x coordinate is -5.00 cm. Let's denote the final position as x₂ = -5.00 cm.
Using the equations of motion for uniformly accelerated motion, we can relate the initial and final velocities, displacement, acceleration, and time interval:
x₂ = x₁ + ut + (1/2)at²
Substituting the known values:
-5.00 cm = 3.30 cm + (10.0 cm/s)(3.25 s) + (1/2)a(3.25 s)²
Simplifying and solving the equation yields the value of acceleration:
a = -7.27 cm/s²
Therefore, the object has a uniform acceleration of -7.27 cm/s² in the negative x direction.
learn more about velocity here: brainly.com/question/30559316
#SPJ11
1. Please answer all parts of question one. a. What is the change in length of a 3.00-cm-long column of mercury if its temperature changes from 25.0∘C to 57.0∘C, assuming it is unconstrained lengthwise? (Use 60X 10−6/∘C as the coefficient of expansion of mercury. Be sure to include the correct sign with your answer.) b. How large an expansion gap should be left between steel railroad rails if they may reach a maximum temperature 38.5∘C greater than when they were laid? Their original length is 11.0 m. The coefficient of linear expansion for steel is 12×10−6/∘C.
(a) The change in length of a column of mercury can be calculated using the formula: ΔL = αLΔT,
where ΔL is the change in length, α is the Coefficient of expansion , L is the original length, and ΔT is the change in temperature.
Given:
Original length (L) = 3.00 cm
Coefficient of expansion (α) = 60 × 10^-6/°C
Change in temperature (ΔT) = (57.0 - 25.0) °C = 32.0 °C
Substituting the values into the formula:
ΔL = (60 × 10^-6/°C) × (3.00 cm) × (32.0 °C)
Calculating:
ΔL ≈ 0.0576 cm (rounded to four significant figures)
b) The expansion gap between steel railroad rails can be calculated using the formula: ΔL = αLΔT,
where ΔL is the change in length, α is the coefficient of linear expansion, L is the original length, and ΔT is the change in temperature.
Given:
Original length (L) = 11.0 m
Coefficient of linear expansion (α) = 12 × 10^-6/°C
Change in temperature (ΔT) = 38.5 °C
Substituting the values into the formula:
ΔL = (12 × 10^-6/°C) × (11.0 m) × (38.5 °C)
Calculating:
ΔL ≈ 0.00528 m (rounded to five significant figures)
Final Answer:
(a) The change in length of the column of mercury is approximately 0.0576 cm.
(b) An expansion gap of approximately 0.00528 m should be left between the steel railroad rails.
To learn more about Coefficient of expansion click here.
brainly.com/question/31957907
#SPJ11
(Figure 1) shows the acceleration-versus-time graph of a particle moving along the z-axis. Its initial velocity is -7.0 m/natto -08. Figure 1 of 1 a, (m/s²) 2 Fo L4 -1 (s) Part A What is the particle's velocity at t-4.087 Express your answer with the appropriate units. 4 ? m UN Value S You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer Provide Feedback
Part AThe velocity of the particle can be found by integrating the acceleration-versus-time graph of a particle moving along the z-axis, as shown in the figure. The equation for velocity can be written as v = v0 + at where, v 0 = initial velocity a = acceleration t = timeThe slope of the acceleration-time graph gives the acceleration of the particle at any given time.
Using the values given in the graph, the acceleration of the particle at time t = 4.087 seconds is approximately -2.8 m/s².The initial velocity of the particle is -7.0 x 10⁻⁸ m/s.The time interval between the initial time and time t = 4.087 seconds is 4.087 seconds.
The acceleration of the particle is -2.8 m/s². Substituting these values in the equation,v = v0 + atwe getv = -7.0 x 10⁻⁸ m/s + (-2.8 m/s² x 4.087 s)v = -7.0 x 10⁻⁸ m/s - 1.1416 x 10⁻⁷ m/sv = -1.842 x 10⁻⁷ m/sTherefore, the velocity of the particle at t = 4.087 seconds is -1.842 x 10⁻⁷ m/s. The answer is -1.842 x 10⁻⁷ m/s.I hope this is a long enough answer for you!
to know more about magnetic fields here:
brainly.com/question/2303856
#SPJ11
An elevator has mass 630 kg, not including passengers. The elevator is designed to ascend, at constant speed, a vertical distance of 22.0 m (five floors) in 16.0 s, and it is driven by a motor that can provide up to 36 hp to the elevator. What is the maximum number of passengers that can ride in the elevator?
To calculate the maximum number of passengers that can ride in the elevator, we consider the work done by the motor and the average weight of each passenger. With the given values, the maximum number of passengers is approximately 619.
To calculate the maximum number of passengers that can ride in the elevator, we need to consider the total weight the elevator can handle without exceeding the power limit of the motor.
First, let's calculate the work done by the motor to lift the elevator. The work done is equal to the change in potential energy of the elevator, which can be calculated using the formula: **Work = mgh**.
Mass of the elevator (excluding passengers) = 630 kg
Vertical distance ascended = 22.0 m
The work done by the motor is:
Work = (630 kg) x (9.8 m/s²) x (22.0 m) = 137,214 J
Since the elevator is ascending at a constant speed, the work done by the motor is equal to the power provided multiplied by the time taken:
Work = Power x Time
Given:
Power provided by the motor = 36 hp
Time taken = 16.0 s
Converting the power to joules per second:
Power provided by the motor = 36 hp x 745.7 W/hp = 26,845.2 W
Therefore,
26,845.2 W x 16.0 s = 429,523.2 J
Now, we can determine the maximum number of passengers by considering their average weight. Let's assume an average weight of 70 kg per passenger.
Total work done by the motor / (average weight per passenger x g) = Maximum number of passengers
429,523.2 J / (70 kg x 9.8 m/s²) = 619.6 passengers
Since we can't have fractional passengers, the maximum number of passengers that can ride in the elevator is 619.
learn more about "average weight":- https://brainly.com/question/31525444
#SPJ11
"Earth's average surface temperature is about 287 K. Assuming
Earth radiates as a blackbody, calculate max (in m) for
the Earth.
The wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody is approximately 1.01 x 10^-5 meters (m), assuming an average surface temperature of 287 K.
To calculate the wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody, we can use Wien's displacement law. According to the law:
Amax = (b / T),
where:
Amax is the wavelength corresponding to the maximum intensity,b is Wien's displacement constant (approximately 2.898 x 10^-3 m·K),T is the temperature in Kelvin.Substituting the given values:
T = 287 K,
we can calculate Amax:
Amax = (2.898 x 10^-3 m·K) / (287 K).
Amax ≈ 1.01 x 10^-5 m.
Therefore, the wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody is approximately 1.01 x 10^-5 meters (m).
To learn more about Wien's displacement law, Visit:
https://brainly.com/question/28365925
#SPJ11
Learning Goal: What is the LONGEST EMITTED wavelength? The Hydrogen Spectrum Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point. Electrons in hydrogen atoms are in the n=4 state (orbit). They can jump up to higher orbits or down to lower orbits. The numerical value of the Rydberg constant (determined from measurements of wavelengths) is R=1.097×107 m−1 Planck's constant is h=6.626×10−34 J⋅s, the speed of light in a vacuum is c=3×108 m/s. - Part B What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6∧10−19 J. Keep 4 digits after the decimal point. What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6∗10−19 J. Keep 4 digits after the decimal point. Part C What is the SHORTEST ABSORBED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point.
PART A: The longest wavelength emitted by hydrogen in the n=4 state is 364.6 nm.
PART B: The energy of the photon with the longest wavelength is 1.710 eV.
PART C: The shortest absorbed wavelength is 91.2 nm.
Explanation:
PART A:
To determine the longest wavelength emitted by hydrogen in the n=4 state, we need to use the formula given by the Rydberg equation:
1/λ=R(1/4−1/n²),
where R is the Rydberg constant (1.097×107 m−1)
n is the principal quantum number of the initial state (n=4).
Since we are interested in the longest wavelength, we need to find the value of λ for which 1/λ is minimized.
The minimum value of 1/λ occurs when n=∞, which corresponds to the Lyman limit.
Thus, we can substitute n=∞ into the Rydberg equation and solve for λ:
1/λ=R(1/4−1/∞²)
=R/4
λ=4/R
=364.6 nm
Therefore, the longest wavelength emitted by hydrogen in the n=4 state is 364.6 nm.
Part B:
The energy of a photon can be calculated from its wavelength using the formula:
E=hc/λ,
where h is Planck's constant (6.626×10−34 J⋅s)
c is the speed of light (3×108 m/s).
To determine the energy of the photon with the longest wavelength, we can substitute the value of λ=364.6 nm into the formula:
E=hc/λ
=(6.626×10−34 J⋅s)(3×108 m/s)/(364.6 nm)(1 m/1×10⁹ nm)
=1.710 eV
Therefore, the energy of the photon with the longest wavelength is 1.710 eV.
Part C:
The shortest absorbed wavelength can be found by considering transitions from the ground state (n=1) to the n=∞ state.
The energy required for such a transition is equal to the energy difference between the two states, which can be calculated from the formula:
ΔE=E∞−E1
=hcR(1/1²−1/∞²)
=hcR
=2.18×10−18 J
Substituting this value into the formula for the energy of a photon, we get:
E=hc/λ
=2.18×10−18 J
=(6.626×10−34 J⋅s)(3×108 m/s)/(λ)(1 m/1×10^9 nm)
λ=91.2 nm
Therefore, the shortest absorbed wavelength is 91.2 nm.
To know more about Rydberg equation, visit:
https://brainly.com/question/32679031
#SPJ11
The shortest absorbed wavelength in the hydrogen spectrum is approximately 120.9 nm.
To determine the longest emitted wavelength in the hydrogen spectrum, we can use the Rydberg formula:
1/λ = R * (1/n_f^2 - 1/n_i^2)
Where:
λ is the wavelength of the emitted photon
R is the Rydberg constant
n_f and n_i are the final and initial quantum numbers, respectively
Given:
Rydberg constant, R = 1.097 × 10^7 m^(-1)
Initial quantum number, n_i = 4
Final quantum number, n_f is not specified, so we need to find the value that corresponds to the longest wavelength.
To find the longest emitted wavelength, we need to determine the value of n_f that yields the largest value of 1/λ. This occurs when n_f approaches infinity.
Taking the limit as n_f approaches infinity, we have:
1/λ = R * (1/∞^2 - 1/4^2)
1/λ = R * (0 - 1/16)
1/λ = -R/16
Now, we can solve for λ:
λ = -16/R
Substituting the value of R, we get:
λ = -16/(1.097 × 10^7)
Calculating this, we find:
λ ≈ -1.459 × 10^(-8) m
To express the wavelength in nanometers, we convert meters to nanometers:
λ ≈ -1.459 × 10^(-8) × 10^9 nm
λ ≈ -1.459 × 10 nm
λ ≈ -14.6 nm (rounded to 1 decimal place)
Therefore, the longest emitted wavelength in the hydrogen spectrum is approximately -14.6 nm.
Moving on to Part B, we need to determine the energy of the emitted photon with the longest wavelength. The energy of a photon can be calculated using the equation:
E = hc/λ
Where:
E is the energy of the photon
h is Planck's constant
c is the speed of light in a vacuum
λ is the wavelength
Given:
Planck's constant, h = 6.626 × 10^(-34) J·s
Speed of light in a vacuum, c = 3 × 10^8 m/s
Wavelength, λ = -14.6 nm
Converting the wavelength to meters:
λ = -14.6 × 10^(-9) m
Substituting the values into the equation, we have:
E = (6.626 × 10^(-34) J·s * 3 × 10^8 m/s) / (-14.6 × 10^(-9) m)
Calculating this, we find:
E ≈ -1.357 × 10^(-16) J
To express the energy in electron volts (eV), we can convert from joules to eV using the conversion factor:
1 eV = 1.6 × 10^(-19) J
Converting the energy, we get:
E ≈ (-1.357 × 10^(-16) J) / (1.6 × 10^(-19) J/eV)
Calculating this, we find:
E ≈ -8.4825 × 10^2 eV
Since the energy of a photon should always be positive, the absolute value of the calculated energy is:
E ≈ 8.4825 × 10^2 eV (rounded to 4 decimal places)
Therefore, the energy of the emitted photon with the longest wavelength is approximately 8.4825 × 10^2 eV.
Moving on to
Part C, we need to determine the shortest absorbed wavelength. For hydrogen, the shortest absorbed wavelength occurs when the electron transitions from the first excited state (n_i = 2) to the ground state (n_f = 1). Using the same Rydberg formula, we can calculate the wavelength:
1/λ = R * (1/1^2 - 1/2^2)
1/λ = R * (1 - 1/4)
1/λ = 3R/4
Solving for λ:
λ = 4/(3R)
Substituting the value of R, we get:
λ = 4/(3 * 1.097 × 10^7)
Calculating this, we find:
λ ≈ 1.209 × 10^(-7) m
Converting the wavelength to nanometers, we have:
λ ≈ 1.209 × 10^(-7) × 10^9 nm
λ ≈ 1.209 × 10^2 nm
Therefore, the shortest absorbed wavelength in the hydrogen spectrum is approximately 120.9 nm.
To know more about wavelength, visit:
https://brainly.com/question/31143857
#SPJ11
A radio station transmits isotropic Car in all directions) eletromagnetic radiation at fresurney 928 M Hz. At a certain distance from the caulio station the chave intensity I = 0.335 W/m² IS a) what will be the intensity of the wave at half distance from the radio station? b) What is the mave length of the transmitted signale c) If the power of the antenna is 6 MHz, At what distance from the source will the intenste Сp ve be O. 168 W/m ² ? of the d) And, what will be the absorption pressure exerted by the wave at that distance? e) And what will be the effectue electric field. crins) exerted by the by the wave at that distance?
The intensity is 0.084 W/m². The wavelength is 323.28 meters. The distance is approximately 1.27 times the original distance. The absorbed power is 0.168 W/m². The effective electric field strength is 1580.11 V/m.
a) To determine the intensity at half the distance, we can use the inverse square law, which states that the intensity decreases with the square of the distance from the source. Since the initial intensity is 0.335 W/m², at half the distance the intensity would be (0.335/2²) = 0.084 W/m².
b) The wavelength (λ) of the transmitted signal can be calculated using the formula λ = c/f, where c is the speed of light (approximately 3x[tex]10^{8}[/tex]m/s) and f is the frequency of the wave in hertz. Plugging in the values, we get λ = (3x[tex]10^{8}[/tex])/(928x[tex]10^{6}[/tex]) ≈ 323.28 meters.
c) To find the distance where the intensity is 0.168 W/m², we can use the inverse square law again. Let the original distance be D, then the new distance (D') would satisfy the equation (0.335/D²) = (0.168/D'²). Solving for D', we get D' ≈ 1.27D.
d) At the distance where the intensity is 0.168 W/m², the absorbed power would be equal to the intensity itself, which is 0.168 W/m².
e) The effective electric field strength (E) exerted by the wave can be calculated using the formula E = sqrt(2I/ε₀c), where I is the intensity and ε₀ is the vacuum permittivity (approximately 8.854x[tex]10^{-12}[/tex] F/m). Plugging in the values, we get E = sqrt((2x0.168)/(8.854x[tex]10^{-12}[/tex]x3x[tex]10^{8}[/tex])) ≈ 1580.11 V/m.
Learn more about distance here ;
brainly.com/question/29769926
#SPJ11
What is the density of a 5.00 kg solid cylinder that is 10.0 cm tall with a radius of 3cm? (in g/cm) Please type your answer to 3 sig figs
The density of the 5.00 kg solid cylinder rounded to 3 sig figure isis 17.7 g/cm³.
How do we calculate density of the solid cylinder?To calculate the density, we first convert the height and radius to meters.
Mass = 5.00 kg = 5000 g
Radius = 3 cm = 0.03 m
Height = 10 cm = 0.1 m
We solve for volume
Volume = πr²h = 3.14 × (0.03)² × 0.1 = 0.0002826
Then we solve for density
Density = Mass / Volume = 5000 g /0.0002826 m³ = 17692852.0878
To convert grams per cubic meter (g/m³) to grams per cubic centimeter (g/cm³), we need to divide the value by 1000000 since there are 1000000 cubic centimeters in a cubic meter.
17692852.0878 g/m³ / 1000000 = 17.6928520878 g/cm³
If we rounded to 3 sig figs, it becomes 17.7 g/cm³.
Find more exercises on density;
https://brainly.com/question/29775886
#SPJ4
An
object is located at the focal point of a diverging lens. The image
is located at:
a. 3f/2
b. -f
c. At infinity
d. f
e. f/2
The image formed by a diverging lens when an object is located at its focal point is located at infinity.
When an object is located at the focal point of a diverging lens, the rays of light that pass through the lens emerge as parallel rays. This is because the diverging lens causes the light rays to spread out. Parallel rays of light are defined to be those that appear to originate from a point at infinity.
Since the rays of light are effectively parallel after passing through the diverging lens, they do not converge or diverge further to form a real image on any physical surface. Instead, the rays appear to come from a point at infinity, and this is where the virtual image is formed.
Therefore, the correct answer is c. At infinity.
To learn more about focal point click here:
brainly.com/question/32157159
#SPJ11
Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.
Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.
Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.
Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.
Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.
Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.
Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.
Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.
In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.
Learn more about refraction here:
https://brainly.com/question/14760207
#SPJ11
5/ When measuring the value of the voltage drop on a resistor whose value is 100, it was found that the value of the voltage 50v, what is the value of the current flowing through the resistor?
6/ When measuring the value of the voltage drop on a resistor whose value is 100, it was found that the value of the voltage 50v, what is the value of the current flowing through the resistor?
7/ Calculate the electrical resistance of an aluminum tube of length 20 cm and cross-sectional area of 10-4 m2. Then calculate the electrical resistance of a glass tube of the same dimensions?
8/ A copper wire of length 1.5 m and cross-sectional area of0.6 mm2 has a voltage of 0.9 V. Calculate the current through the wire.?
The value of the current flowing through the resistor is 0.5 Amperes. We can use Ohm's Law. The electrical resistance of the aluminum tube is approximately 5.64 x 10^-4 Ω. The current through the copper wire is approximately 0.212 Amperes.
5/ To calculate the current flowing through a resistor, we can use Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by the resistance (R) of the resistor.
Given that the voltage drop across the resistor is 50 V and the resistance of the resistor is 100 Ω, we can calculate the current as:
I = V / R
I = 50 V / 100 Ω
I = 0.5 A
Therefore, the value of the current flowing through the resistor is 0.5 Amperes.
6/ It seems that the question in number 6 is the same as the one in number 5. The value of the current flowing through the resistor is 0.5 Amperes.
7/ The electrical resistance of a cylindrical conductor can be calculated using the formula:
R = (ρ * L) / A
Where R is the resistance, ρ is the resistivity of the material, L is the length of the conductor, and A is the cross-sectional area of the conductor.
For an aluminum tube with a length of 20 cm (0.2 m) and a cross-sectional area of 10^-4 m^2, the resistivity of aluminum is approximately 2.82 x 10^-8 Ω·m. Plugging these values into the formula, we get:
R = (2.82 x 10^-8 Ω·m * 0.2 m) / 10^-4 m^2
R = 5.64 x 10^-4 Ω
Therefore, the electrical resistance of the aluminum tube is approximately 5.64 x 10^-4 Ω.
For the glass tube with the same dimensions, we would need to know the resistivity of the glass to calculate its resistance. Different materials have different resistivities, so the resistivity of glass would determine its electrical resistance.
8/ To calculate the current through a wire, we can again use Ohm's Law. The formula is:
I = V / R
Given that the length of the copper wire is 1.5 m, the cross-sectional area is 0.6 mm^2 (or 6 x 10^-7 m^2), and the voltage is 0.9 V, we can calculate the current as:
I = 0.9 V / R
To determine the resistance (R), we need to use the formula:
R = (ρ * L) / A
For copper, the resistivity (ρ) is approximately 1.7 x 10^-8 Ω·m.
Plugging in the values, we get:
R = (1.7 x 10^-8 Ω·m * 1.5 m) / 6 x 10^-7 m^2
R = 4.25 Ω
Now we can calculate the current:
I = 0.9 V / 4.25 Ω
I ≈ 0.212 A
Therefore, the current through the copper wire is approximately 0.212 Amperes.
To learn more about Ohm's Law click here
https://brainly.com/question/1247379
#SPJ11
D Question 10 The self-inductance of a solenoid increases under which of the following conditions? Only the cross sectional area is decreased. Only the number of coils per unit length is decreased. Only the number of coils is increased. Only the solenoid length is increased. 1 pts
The self-inductance of a solenoid increases under the following conditions:
Increasing the number of turns
Increasing the length of the solenoid
Decreasing the cross-sectional area of the solenoid
Self-inductance is the property of an inductor that resists changes in current flowing through it. It is measured in henries.
The self-inductance of a solenoid can be increased by increasing the number of turns, increasing the length of the solenoid, or decreasing the cross-sectional area of the solenoid.
The number of turns in a solenoid determines the amount of magnetic flux produced when a current flows through it. The longer the solenoid, the more magnetic flux is produced.
The smaller the cross-sectional area of the solenoid, the more concentrated the magnetic flux is.
The greater the magnetic flux, the greater the self-inductance of the solenoid.
Here is a table that summarizes the conditions under which the self-inductance of a solenoid increases:
Condition Increases self-inductance
Number of turns Yes
Length Yes
Cross-sectional area No
To learn more about solenoid click here: brainly.com/question/21842920
#SPJ11
1. Define and compare the process of external and internal respiration
2. Summarise the physical principles controlling air movement in and out of the lungs and muscles responsible
3. Summarise the physical principles of gas diffusion in and out of blood and body tissues
4. Summarise the function of haemoglobin and transport of oxygen and carbon dioxide in the blood
5. Describe age-related changes in the respiratory system
1. External respiration refers to the exchange of gases (oxygen and carbon dioxide) between the lungs and the external environment. It involves inhalation of oxygen-rich air into the lungs and the diffusion of oxygen into the bloodstream, while carbon dioxide diffuses out of the bloodstream into the lungs to be exhaled.
Internal respiration, on the other hand, is the exchange of gases between the blood and the body tissues. It occurs at the cellular level, where oxygen diffuses from the blood into the tissues, and carbon dioxide diffuses from the tissues into the blood.
2. Air movement in and out of the lungs is governed by the principles of pressure gradients and Boyle's law. During inhalation, the diaphragm and intercostal muscles contract, expanding the thoracic cavity and decreasing the pressure inside the lungs, causing air to rush in. During exhalation, the muscles relax, the thoracic cavity decreases in volume, and the pressure inside the lungs increases, causing air to be expelled.
3. Gas diffusion in and out of blood and body tissues is facilitated by the principle of concentration gradients. Oxygen moves from areas of higher partial pressure (in the lungs or blood) to areas of lower partial pressure (in the tissues), while carbon dioxide moves in the opposite direction. The exchange occurs across the thin walls of capillaries, where oxygen and carbon dioxide molecules passively diffuse based on their concentration gradients.
4. Hemoglobin is a protein in red blood cells that binds with oxygen in the lungs to form oxyhemoglobin. It serves as a carrier molecule, transporting oxygen from the lungs to the body tissues. Additionally, hemoglobin also aids in the transport of carbon dioxide, binding with it to form carbaminohemoglobin, which is then carried back to the lungs to be exhaled.
5. Age-related changes in the respiratory system include a decrease in lung elasticity, reduced muscle strength, and decreased lung capacity. The lungs become less efficient in gas exchange, leading to reduced oxygen uptake and impaired carbon dioxide removal. The respiratory muscles may weaken, affecting the ability to generate sufficient airflow. These changes can result in decreased respiratory function and increased susceptibility to respiratory diseases in older individuals.
To know more about Respiration here: https://brainly.com/question/22673336
#SPJ11
33. A naturally occurring isotope of hydrogen called tritium (hydrogen-3) has a half-life of 12.3 years. If a sample of tritium is one-sixty-fourth of its original amount, how much time has elapsed si
The time elapsed since the original amount of tritium is one-sixty-fourth of its original amount can be determined by using the concept of half-life.
Tritium has a half-life of 12.3 years, which means that in every 12.3-year period, half of the tritium atoms decay.
To find the time elapsed, we can determine the number of half-lives that have occurred. Since the sample is one-sixty-fourth of its original amount, it has undergone 6 half-lives because 2^6 = 64.
Each half-life corresponds to a time period of 12.3 years, so the total time elapsed is 6 times the half-life, which is 6 * 12.3 = 73.8 years.
Therefore, the time elapsed since the original amount of tritium is one-sixty-fourth of its original amount is 73.8 years.
Learn more about half-life here: brainly.com/question/31972591
#SPJ11