Find y as a function of x if y′′′+16y′=0 y(0)=0,y′(0)=20,y′(0)=−32. y(x)=

Answers

Answer 1

The final solution of function of x is : y(x) = 5 sin 4x + 1.6 cos 4x. Given the differential equation is `y′′′+16y′=0` with initial conditions `y(0)=0, y′(0)=20, y′(0)=−32`.

We need to find the value of y(x).Step-by-step explanation:Given the differential equation `y′′′+16y′=0`On integrating both sides, we get;y′′+16y= C1 where C1 is an arbitrary constant.

Again differentiating the above equation with respect to x, we get;y′′′+16y′= 0On integrating both sides, we get;y′′+16y= C2where C2 is another arbitrary constant.On applying the initial condition `y(0) = 0`, we get;C2 = 0 Hence, the differential equation can be rewritten as; y′′+16y=0On integrating both sides, we get;y′= C3 cos 4x + C4 sin 4xwhere C3 and C4 are arbitrary constants.

Again integrating the above equation with respect to x, we get;y= C5 sin 4x + C6 cos 4xwhere C5 and C6 are other arbitrary constants.On applying the initial condition `y′(0) = 20`, we get;C5 = 5Hence, the differential equation can be rewritten as;y = 5 sin 4x + C6 cos 4xOn applying the initial condition `y′′(0) = −32`, we get;-20C6 = −32C6 = 1.6 Hence, the final solution is;y(x) = 5 sin 4x + 1.6 cos 4x

Learn more about differential equation : https://brainly.com/question/14620493

#SPJ11


Related Questions



Solve each equation. Check each solution. 1 / b+1 + 1 / b-1 = 2 / b² - 1}

Answers

The given equation is 1 / (b+1) + 1 / (b-1) = 2 / (b² - 1) and it has no solutions.

To solve this equation, we'll start by finding a common denominator for the fractions on the left-hand side. The common denominator for (b+1) and (b-1) is (b+1)(b-1), which is also equal to b² - 1 (using the difference of squares identity).

Multiplying the entire equation by (b+1)(b-1) yields (b-1) + (b+1) = 2.

Simplifying the equation further, we combine like terms: 2b = 2.

Dividing both sides by 2, we get b = 1.

To check if this solution is valid, we substitute b = 1 back into the original equation:

1 / (1+1) + 1 / (1-1) = 2 / (1² - 1)

1 / 2 + 1 / 0 = 2 / 0

Here, we encounter a problem because division by zero is undefined. Hence, b = 1 is not a valid solution for this equation.

Therefore, there are no solutions to the given equation.

To know more about dividing by zero, refer here:

https://brainly.com/question/903340#

#SPJ11

4. A pizza shop has 12" pizzas with 6 slices and 16" pizzas with slices. Which pizza has bigger slices?​

Answers

6, 12 slices will be tiny a pizza has 8 slices in total, and 6 will add to its size

2021 2020 2019 2018 2017
Sales $ 507,222 $ 333,699 $ 260, 702 $ 175,557 $ 126,300 Cost of goods sold 261, 133 171, 736 136, 208 91, 284 64, 413 Accounts receivable 24, 702 19,555 17,910 10,253 8,664
Compute trend percents for the above accounts, using 2017 as the base year. For each of the three accounts, state situation as revealed by the trend percents appears to be favorable or unfavorable.
Trend Percent for Net Sales:
Numerator: / Denominator:
/ = Trend percent
2021: / = %
2020: / = %
2019: / = %
2018: / = %
2017: / = %
Is the trend percent for Net Sales favorable or unfavorable?
Trend Percent for Cost of Goods Sold:
Numerator: / Denominator:
/ = Trend percent
2021: / = %
2020: / = %
2019: / = %
2018: / = %
2017: / = %
Is the trend percent for Cost of Goods Sold favorable or unfavorable?
Trend Percent for Accounts Receivable:
Numerator: / Denominator:
/ = Trend percent
2021: / = %
2020: / = %
2019: / = %
2018: / = %
2017: / = %
You can now record yourself and your scre
Is the trend percent for Accounts Receivable favorable or unfavorable?

Answers

The table of data below shows the sales ($), cost of goods sold ($), and accounts receivable for the years 2017, 2018, 2019, 2020, and 2021. To compute trend percents for the above accounts, using 2017 as the base year.

For each of the three accounts, state the situation as revealed by the trend percents appears to be favorable or unfavorable. Here are the calculations:

Trend Percent for Net Sales: Numerator: / Denominator: / = Trend percent2021: (507222/126300) x 100 = 401%2020: (333699/126300) x 100 = 264%2019: (260702/126300) x 100 = 206%2018: (175557/126300) x 100 = 139%2017: (126300/126300) x 100 = 100%Is the trend percent for Net Sales favorable or unfavorable?

The trend percent for Net Sales is favorable since it is increasing over time. Trend Percent for Cost of Goods Sold: Numerator: / Denominator: / = Trend percent2021: (261133/64413) x 100 = 405%2020: (171736/64413) x 100 = 267%2019: (136208/64413) x 100 = 211%2018: (91284/64413) x 100 = 142%2017: (64413/64413) x 100 = 100% Is the trend percent for Cost of Goods Sold favorable or unfavorable?

The trend percent for Cost of Goods Sold is unfavorable since it is increasing over time.

Trend Percent for Accounts Receivable: Numerator: / Denominator: / = Trend percent2021: (24702/8664) x 100 = 285%2020: (19555/8664) x 100 = 225%2019: (17910/8664) x 100 = 207%2018: (10253/8664) x 100 = 118%2017: (8664/8664) x 100 = 100%

Is the trend percent for Accounts Receivable favorable or unfavorable? The trend percent for Accounts Receivable is unfavorable since it is increasing over time.

Learn more about Accounts Receivable at https://brainly.com/question/32614851

#SPJ11

Solve the following IVP. You may use any method you want, but show the details of your work: dy/dt​=−4y+2e^3t,y(0)=5.

Answers

The solution to the given initial value problem dy/dt = -4y + 2e^3t, y(0) = 5 is y = e^(6t) + 4e^(4t).

To solve the given initial value problem (IVP) dy/dt = -4y + 2e^3t, y(0) = 5, we can use the method of integrating factors.

Write the differential equation in the form dy/dt + P(t)y = Q(t).
  In this case, P(t) = -4 and Q(t) = 2e^3t.

Determine the integrating factor (IF), denoted by μ(t).
  The integrating factor is given by μ(t) = e^(∫P(t)dt).
  Integrating P(t) = -4 with respect to t, we get ∫P(t)dt = -4t.
  Therefore, the integrating factor μ(t) = e^(-4t).

Multiply the given differential equation by the integrating factor μ(t).
  We have e^(-4t) * dy/dt + e^(-4t) * (-4y) = e^(-4t) * 2e^3t.

Simplify the equation and integrate both sides.
  The left-hand side simplifies to d/dt (e^(-4t) * y) = 2e^(-t + 3t).
  Integrating both sides, we get e^(-4t) * y = ∫2e^(-t + 3t)dt.
  Simplifying the right-hand side, we have e^(-4t) * y = 2∫e^(2t)dt.
  Integrating ∫e^(2t)dt, we get e^(-4t) * y = 2 * (1/2) * e^(2t) + C, where C is the constant of integration.

Solve for y by isolating it on one side of the equation.
  e^(-4t) * y = e^(2t) + C.
  Multiplying both sides by e^(4t), we have y = e^(6t) + Ce^(4t).

Apply the initial condition y(0) = 5 to find the value of the constant C.
  Substituting t = 0 and y = 5 into the equation, we get 5 = e^0 + Ce^0.
  Simplifying, we have 5 = 1 + C.
  Therefore, C = 5 - 1 = 4.

Substitute the value of C back into the equation for y.
  So, y = e^(6t) + 4e^(4t).

Therefore, the solution to the given initial value problem is y = e^(6t) + 4e^(4t).

To know more about initial value problem, refer to the link below:

https://brainly.com/question/33247383#

#SPJ11

Weekly wages at a certain factory are normally distributed with a mean of $400 and a standard deviation of $50. Find the probability that a worker selected at random makes between $350 and $450.

Answers

The probability that a worker selected at random makes between $350 and $450 is given as follows:

68%.

What does the Empirical Rule state?

The Empirical Rule states that, for a normally distributed random variable, the symmetric distribution of scores is presented as follows:

The percentage of scores within one standard deviation of the mean of the distribution is of approximately 68%.The percentage of scores within two standard deviations of the mean of the distribution is of approximately 95%.The percentage of scores within three standard deviations of the mean off the distribution is of approximately 99.7%.

350 and 450 are within one standard deviation of the mean of $400, hence the probability is given as follows:

68%.

More can be learned about the Empirical Rule at https://brainly.com/question/10093236

#SPJ1

The probability that a worker selected at random makes between $350 and $450 is approximately 0.6827.

To calculate this probability, we need to use the concept of the standard normal distribution. Firstly, we convert the given values into z-scores, which measure the number of standard deviations an individual value is from the mean.

To find the z-score for $350, we subtract the mean ($400) from $350 and divide the result by the standard deviation ($50). The z-score is -1.

Next, we find the z-score for $450. By following the same process, we obtain a z-score of +1.

We then use a z-table or a calculator to find the area under the standard normal curve between these two z-scores. The area between -1 and +1 is approximately 0.6827, which represents the probability that a worker selected at random makes between $350 and $450.

For more similar questions on standard deviation

brainly.com/question/475676

#SPJ8

One machine produces 30% of a product for a company. If 10% of
the products from this machine are defective, and the other machines produce no
defective items, what is the probability that an item produced by this company
is defective?

Answers

The probability that an item produced by this company is defective is 0.03 or 3%.

To find the probability that an item produced by this company is defective, we can use conditional probability. Let's break down the problem step by step:

Let's assume that the company has only one machine that produces 30% of the products.

Probability of selecting a product from this machine: P(Machine) = 0.3

Probability of a product being defective given it was produced by this machine: P(Defective | Machine) = 0.10

Now, we need to find the probability that any randomly selected item from the company is defective. We can use the law of total probability to calculate it.

Probability of selecting a defective item: P(Defective) = P(Machine) * P(Defective | Machine)

Substituting the values, we get:

P(Defective) = 0.3 * 0.10 = 0.03

Therefore, the probability that an item produced by this company is defective is 0.03 or 3%.

Learn more about probability

brainly.com/question/31828911

#SPJ11

Solve for s.
5s–9=3s+5

Answers

The value for s is 7.

What is a equation?

Equations are mathematical statements containing two algebraic expressions on both sides of an 'equal to (=)' sign. It shows the relationship of equality between the expression written on the left side with the expression written on the right side.

Given:

[tex]\sf 5s-9=3s+5[/tex]

Rearrange unknown terms to the left side of the equation:

[tex]\sf 5s-3s=9+5[/tex]

Combine like terms:

[tex]\sf 2s=9+5[/tex]

Calculate the sum or difference:

[tex]\sf 2s=14[/tex]

Divide both sides of the equation by the coefficient of variable:

[tex]\sf s=\dfrac{14}{2}[/tex]

[tex]\rightarrow \bold{s=7}[/tex]

Hence, the value for s is 7.

Read more on equations at:

https://brainly.com/question/29657983

What is the last digit in the product of 3^1×3^2×3^3×⋯×3^2020×3^2021×3^2022

Answers

The last digit in the product of the given expression is 3.

Here, we have,

To find the last digit in the product of the given expression, we can observe a pattern in the last digit of powers of 3:

3¹ = 3 (last digit is 3)

3² = 9 (last digit is 9)

3³ = 27 (last digit is 7)

3⁴ = 81 (last digit is 1)

3⁵ = 243 (last digit is 3)

3⁶ = 729 (last digit is 9)

From the pattern, we can see that the last digit of the powers of 3 repeats every 4 powers.

So, if we calculate 3²⁰²¹, we can determine the last digit in the product.

3²⁰²¹ can be written as

(3⁴)⁵⁰⁵ × 3

= 1⁵⁰⁵ × 3

= 3.

Therefore, the last digit in the product of the given expression is 3.

To learn more on multiplication click:

brainly.com/question/5992872

#SPJ4

Select the correct answer from the drop-down menu.
Simplify the expression.
4x5y³x3x³y²
6x4y10
=

Answers

The simplified expression of the division (4x⁵y³x * 3x³y²) / (6x⁴y¹⁰) is  

2x² / y⁵

What is the simplification of the expression?

To simplify the expression (4x⁵y³x * 3x³y²) / (6x⁴y¹⁰), we can combine the terms and simplify the coefficients and variables separately.

First, let's simplify the coefficients: 4 * 3 / 6 = 12 / 6 = 2.

Now, let's simplify the variables. For the variable x, we subtract the exponents when dividing: 5 + 1 - 4 = 2. For the variable y, we subtract the exponents: 3 + 2 - 10 = -5.

Therefore, the simplified expression is:

2x² * y⁻⁵

However, we can simplify the expression further by simplifying the negative exponent of y. Recall that y⁻⁵ is equivalent to 1/y⁵, indicating that y is in the denominator. So, we can rewrite the expression as:

2x² / y⁵

Hence, the simplified expression is 2x² / y⁵

Learn more on simplification of expression here;

https://brainly.com/question/28036586

#SPJ1

f=-N+B/m ????????????

Answers

The given equation is f=-N+B/m. This equation represents a relationship between the variables f, N, B, and m. The equation can be rearranged to solve for any one of the variables in terms of the others. Here are the steps to solve for B:
Add N to both sides of the equation to isolate B/m on one side: f+N=B/m
Multiply both sides of the equation by m to isolate B: B=fm+Nm
Therefore, the equation to solve for B is B=fm+Nm.

Calculate the mean value of the radius (r) at which you would find the electron if the H atom wave function is 100(r).

Answers

The mean value of the radius (r) at which you would find the electron, given the H atom wave function is 100(r), is 0.

The wave function of an electron in the hydrogen atom, denoted by Ψ, describes the probability distribution of finding the electron at different positions around the nucleus. In this case, the given wave function is 100(r), where r represents the radius.

To calculate the mean value of the radius, we need to evaluate the integral of r multiplied by the absolute square of the wave function, integrated over all possible values of r. However, the wave function 100(r) does not provide a valid description of the hydrogen atom's electron distribution. The wave function should be normalized, meaning that the integral of the absolute square of the wave function over all space should equal 1. In this case, the given wave function lacks normalization.

Since the wave function is not properly normalized, we cannot accurately calculate the mean value of the radius. Without normalization, the probability distribution described by the wave function does not provide meaningful information about the electron's position.

In summary, based on the given wave function, the mean value of the radius cannot be determined without proper normalization of the wave function. A properly normalized wave function is necessary to obtain accurate information about the electron's position.

Learn more about radius

brainly.com/question/31744314

#SPJ11



Given sinθ=-24/25 and 180°<θ<270° , what is the exact value of each expression?


b. tanθ/2

Answers

The exact value of tan(θ/2) given sinθ = -24/25 and 180° < θ < 270° is ±(4/3). This is obtained by applying the half-angle identity for tangent and finding the value of cosθ using the given value of sinθ.

To find the exact value of tan(θ/2) given sinθ = -24/25 and 180° < θ < 270°, we can use the half-angle identity for tangent. The half-angle identity for tangent is: tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))

First, we need to find the value of cosθ using the given value of sinθ. Since sinθ = -24/25, we can use the Pythagorean identity for sine and cosine: sin^2θ + cos^2θ = 1. Substituting sinθ = -24/25, we have: (-24/25)^2 + cos^2θ = 1

Simplifying the equation, we get:

576/625 + cos^2θ = 1

cos^2θ = 1 - 576/625

cos^2θ = 49/625

cosθ = ±√(49/625) = ±7/25. Since 180° < θ < 270°, we know that cosθ is negative. Therefore, cosθ = -7/25.

Now, substituting the value of cosθ into the half-angle identity for tangent, we get:

tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))

tan(θ/2) = ±√((1 - (-7/25)) / (1 + (-7/25)))

tan(θ/2) = ±(4/3). Therefore, the exact value of tan(θ/2) given sinθ = -24/25 and 180° < θ < 270° is ±(4/3).

Learn more about half angle here:

https://brainly.com/question/30404576

#SPJ11

Recall that the distance in a graph G between two nodes and y is defined to be the number of edges in the shortest path in G between x and y. Then, the distance between two different nodes of Km,n is (a) always 1, regardless of the nodes O (b) between 1 and 2, depending on the nodes O (c) between 1 and n-1, depending on the nodes O (d) between 1 and m-1, depending on the nodes O (e) between 1 and n+m-1, depending on the nodes

Answers

The distance between two different nodes of a complete bipartite graph Km,n is (e) between 1 and n+m-1, depending on the nodes.

In a complete bipartite graph Km,n, the nodes are divided into two distinct sets, one with m nodes and the other with n nodes. Each node from the first set is connected to every node in the second set, resulting in a total of m*n edges in the graph.

To find the distance between two different nodes in Km,n, we need to consider the shortest path between them. Since every node in one set is connected to every node in the other set, there are multiple paths that can be taken.

The shortest path between two nodes can be achieved by traversing directly from one node to the other, which requires a single edge. Therefore, the minimum distance between any two different nodes in Km,n is 1.

However, if we consider the maximum distance between two different nodes, it would involve traversing through all the nodes in one set and then all the nodes in the other set, resulting in a path with n+m-1 edges. Therefore, the maximum distance between any two different nodes in Km,n is n+m-1.

In conclusion, the distance between two different nodes in a complete bipartite graph Km,n is between 1 and n+m-1, depending on the specific nodes being considered.

Learn more about complete bipartite graphs.

brainly.com/question/32702889

#SPJ11

If we use the limit comparison test to determine, then the series Σ 1 n=17+8nln(n) 1 converges 2 limit comparison test is inconclusive, one must use another test. 3 diverges st neither converges nor diverges

Answers

The series [tex]$\displaystyle \sum _{ n=17}^{\infty }\dfrac{ 8n\ln( n)}{ n+1}$[/tex] cannot be determined by the limit comparison test and requires another test for convergence.

The limit comparison test is inconclusive in this case. The limit comparison test is typically used to determine the convergence or divergence of a series by comparing it to a known series. However, in this case, it is not possible to find a known series that can be used for comparison. The series [tex]$\displaystyle \sum _{ n=17}^{\infty }\dfrac{ 8n\ln( n)}{ n+1}$[/tex] does not have a clear pattern or a simple known series to compare it with. Therefore, the limit comparison test cannot provide a definitive conclusion.

To determine the convergence or divergence of the series [tex]$\displaystyle \sum _{ n=17}^{\infty }\dfrac{ 8n\ln( n)}{ n+1}$[/tex], one must employ another convergence test. There are several convergence tests available, such as the integral test, ratio test, or root test, which can be applied to this series to determine its convergence or divergence. It is necessary to explore alternative methods to establish the convergence or divergence of this series since the limit comparison test does not yield a conclusive result.

To learn more about convergence refer:

https://brainly.com/question/30275628

#SPJ11

Determine the solution of the following initialvalue Problem and give the maximum domain of the solution. ye−xy′=−x,y(0)=1.

Answers

The solution to the initial value problem is y(x) = e^x. The maximum domain of the solution is (-∞, ∞).

To solve the initial value problem, we start by rearranging the given differential equation: ye^(-xy') = -x. Next, we differentiate both sides of the equation with respect to x using the chain rule. The derivative of ye^(-xy') with respect to x is y'e^(-xy') - xye^(-xy')y''.

Plugging these values back into the original equation, we get y'e^(-xy') - xye^(-xy')y'' = -x. Simplifying further, we divide through by e^(-xy') to obtain y' - xy'' = -xe^(xy').

We now have a linear homogeneous second-order differential equation. To solve it, we assume a power series solution of the form y = ∑(n=0 to ∞) a_nx^n. Substituting this series into the equation and equating the coefficients of like powers of x, we find that the coefficients satisfy the recurrence relation a_n = (n+1)a_(n+2).

Since the equation is homogeneous, it implies that the coefficient a_0 must be nonzero for nontrivial solutions. By solving the recurrence relation, we find that all coefficients a_n are proportional to a_0.

Therefore, the general solution to the differential equation is y(x) = a_0e^x. To determine the value of a_0, we substitute the initial condition y(0) = 1 into the general solution, giving a_0e^0 = 1. Thus, a_0 = 1.

Hence, the solution to the initial value problem is y(x) = e^x, and its maximum domain is (-∞, ∞).

To know more about differential equations, refer here:

https://brainly.com/question/32645495#

#SPJ11

If the accumulated amount is Php26,111.11, and the principal is Php 25,000 , what is the simple interest made for 200 days? a. 7.5% b. 8% c. 9% d. 12.5% a. b. c. d.

Answers

The simple interest made for 200 days is approximately 4.44%.

Given that the principal (P) is Php 25,000 and the accumulated amount (A) is Php 26,111.11, we need to find the rate (R) for 200 days of time (T).

Rearranging the formula, we have: Rate = (Simple Interest * 100) / (Principal * Time).

Substituting the given values, we have: Rate = ((26,111.11 - 25,000) * 100) / (25,000 * 200).

Simplifying the equation, we have: Rate = (1,111.11 * 100) / (25,000 * 200) = 4.44444%.

Converting the rate to a percentage, we have: Rate ≈ 4.44%.

Therefore, the simple interest made for 200 days is approximately 4.44%.

None of the options provided in the answer choices match the calculated simple interest, so there doesn't seem to be a suitable option available.

Learn more about simple interest calculations visit:

https://brainly.com/question/25845758

#SPJ11

which pairs of variables have a linear relationship pick two options

Answers

The correct options are the ones where both variables use the same units:

Side length and perimeter of 1 face (both have length units)Area of a face and total surface area (both have units of area).Which pairs of variables have a linear relationship?

First, remember that a linear relatioship is a polynomial of degree 1, so we can write it as:

y = ax + b

From the given options, the pairs of variables that have linear relationship are all the ones that use the same units.

The first correct option is:

Side length and perimeter of 1 face (both have length units)

The second correct option is:

Area of a face and total surface area (both have units of area).

Learn more about linear relationships at:

https://brainly.com/question/13828699

#SPJ1

Help me please worth 30 points!!!!

Answers

The roots of the equation are;

a. (n +2)(n -8)

b. (x-5)(x-3)

How to determine the roots

From the information given, we have the expressions as;

f(x) = n² - 6n - 16

Using the factorization method, we have to find the pair factors of the product of the constant and x square, we have;

a. n² -8n + 2n - 16

Group in pairs, we have;

n(n -8) + 2(n -8)

Then, we get;

(n +2)(n -8)

b. y = x² - 8x + 15

Using the factorization method, we have;

x² - 5x - 3x + 15

group in pairs, we have;

x(x -5) - 3(x - 5)

(x-5)(x-3)

Learn more about factorization at: https://brainly.com/question/25829061

#SPJ1

Which equation represents the graph? a graph of a line that passes through the points 0 comma negative 2 and 3 comma negative 1
Pls help

Answers

It’s B explanation: I got it right

I need to know how many units multiply + divide

Answers

Step-by-step explanation:

if you're calculating the area of that shape?

first, you calculate the area of triangle

Area of triangle =1/2(8-(-4))(9-5)=1/2(12)(4)=6×4=24

Area of rectangle =(8-(-4))(5-(-5))=(12)(10)=120

the total area will be 120+24=144

Directions: Do as indicated. Show your solutions as neatly as possible. Draw corresponding figures as needed in the problem. 1. Show that if we have on the same line OA + OB + OC = 0 PQ + PR + PS = 0 then AQ + BR + CS = 30P

Answers

By using the given information and properties of lines, we can prove that AQ + BR + CS = 30P.

In order to prove the equation AQ + BR + CS = 30P, we need to utilize the given information that OA + OB + OC = 0 and PQ + PR + PS = 0.

Let's consider the points A, B, C, P, Q, R, and S that lie on the same line. The equation OA + OB + OC = 0 implies that the sum of the distances from point O to points A, B, and C is zero. Similarly, the equation PQ + PR + PS = 0 indicates that the sum of the distances from point P to points Q, R, and S is zero.

Now, let's examine the expression AQ + BR + CS. We can rewrite AQ as (OA - OQ), BR as (OB - OR), and CS as (OC - OS). By substituting these values, we get (OA - OQ) + (OB - OR) + (OC - OS).

Considering the equations OA + OB + OC = 0 and PQ + PR + PS = 0, we can rearrange the terms and rewrite them as OA = -(OB + OC) and PQ = -(PR + PS). Substituting these values into the expression, we have (-(OB + OC) - OQ) + (OB - OR) + (OC - OS).

Simplifying further, we get -OB - OC - OQ + OB - OR + OC - OS. By rearranging the terms, we have -OQ - OR - OS.

Since PQ + PR + PS = 0, we can rewrite it as -OQ - OR - OS = 0. Therefore, AQ + BR + CS = 30P is proven.

Learn more about: properties of lines

brainly.com/question/29178831

#SPJ11

Find an expression for a unit vector normal to the surface
x = 7 cos (0) sin (4), y = 5 sin (0) sin (4), z = cos (4)
for 0 in [0, 2л] and о in [0, л].
(Enter your solution in the vector form (*,*,*). Use symbolic notation and fractions where needed.)
27 cos(0) sin (4), sin(0) sin(4),2 cos(4)
n =
4 49 cos² (0) sin² (4) + 4 25 sin² (0) sin² (4) + 4 cos² (4

Answers

The unit vector normal to the surface is (√3/3, √3/3, √3/3)

a unit vector normal to the surface defined by the parametric equations x = 7cos(θ)sin(4), y = 5sin(θ)sin(4), and z = cos(4), we need to calculate the gradient vector of the surface and then normalize it to obtain a unit vector.

The gradient vector of a surface is given by (∂f/∂x, ∂f/∂y, ∂f/∂z), where f(x, y, z) is an implicit equation of the surface. In this case, we can consider the equation f(x, y, z) = x - 7cos(θ)sin(4) + y - 5sin(θ)sin(4) + z - cos(4) = 0, as it represents the equation of the surface.

Taking the partial derivatives, we have:

∂f/∂x = 1

∂f/∂y = 1

∂f/∂z = 1

Therefore, the gradient vector is (1, 1, 1).

To obtain a unit vector, we need to normalize the gradient vector. The magnitude of the gradient vector is given by:

|∇f| = √(1^2 + 1^2 + 1^2) = √3.

Dividing the gradient vector by its magnitude, we have:

n = (1/√3, 1/√3, 1/√3).

Simplifying the expression, we get:

n = (√3/3, √3/3, √3/3).

Therefore, the unit vector normal to the surface is (√3/3, √3/3, √3/3).

Learn more about: unit vector normal

https://brainly.com/question/29752499

#SPJ11

3. Show that the altitudes of the triangle are concurrent

Answers

The altitudes of a triangle are concurrent. This is known as the concurrency of altitudes in a triangle.

In Euclidean geometry, the altitudes of a triangle are lines drawn from each vertex of the triangle perpendicular to the opposite side. The main property of altitudes is that they are concurrent, meaning they intersect at a single point called the orthocenter.

To prove this, we can use various geometric methods such as triangle similarity, the properties of right angles, and the concept of perpendicularity. By considering each pair of altitudes, we can demonstrate that they intersect at a common point. This point, the orthocenter, is the unique intersection of the altitudes.

The concurrency of the altitudes is a fundamental property of triangles and has many implications in triangle geometry, such as the existence of orthocenters and the relationships between the sides and angles of a triangle.

Learn more about Triangle

brainly.com/question/21972776

#SPJ11

pls help if you can asap!!!!

Answers

Answer:

70 + 67 + 3x + 7 = 180

3x + 144 = 180

3x = 36

x = 12

Accurately construct triangle ABC using the information below. AB = 7 cm AC= 4 cm Angle BAC = 80° Measure the size of angle ACB to the nearest degree.​

Answers

To accurately construct triangle ABC using the given information, follow these steps:

Draw a line segment AB of length 7 cm.

Place the compass at point A and draw an arc with a radius of 4 cm, intersecting the line segment AB. Label this intersection point as C.

Without changing the compass width, place the compass at point C and draw another arc intersecting the previous arc. Label this intersection point as D.

Connect points A and D to form the line segment AD.

Using a protractor, measure and draw an angle of 80° at point A, with AD as one of the rays. Label the intersection point of the angle and the line segment AD as B.

Draw the line segments BC and AC to complete the triangle ABC.

To measure the size of angle ACB to the nearest degree, use a protractor and align the baseline of the protractor with the line segment BC. Read the degree measure where the other ray of angle ACB intersects the protractor.

For such more question on segment

https://brainly.com/question/280216

#SPJ8

) Use Fermat's Little Theorem to compute the following: a) (10 pts) 83⁹8 mod 13

Answers

Using Fermat's Little Theorem  83^98 mod 13 is 2.

Fermat's Little Theorem states that if p is a prime number, and a is a positive integer less than p, then a^(p−1) ≡ 1 mod p. Now we can use this theorem to compute 83^98 mod 13.

a = 83 and p = 13

Since 83 is not divisible by 13, we can use Fermat's Little Theorem. Here, we have to find the exponent (p-1), which is 12 because 13-1=12.Therefore, we can use a^(p-1) ≡ 1 mod p to simplify the expression:

83^(12) ≡ 1 mod 13

Now we can use this equivalence to find the remainder when 83^98 is divided by 13.83^(12) = 1 mod 1383^96 = (83^12)^8 = 1^8 = 1 mod 1383^98 = 83^96 * 83^2 = 1 * 83^2 mod 13

Now, we need to calculate the remainder when 83^2 is divided by 13.83^2 = 6889 = 13 * 529 + 2

Hence, 83^98 ≡ 83^2 ≡ 2 mod 13.

Therefore, 83^98 mod 13 is 2.

Learn more about Fermat's Little Theorem:https://brainly.com/question/8978786

#SPJ11

choose the graph of y>x^2-9

Answers

The graph of the inequality y > x² - 9 is given by the image presented at the end of the answer.

How to graph the inequality?

The inequality for this problem is given as follows:

y > x² - 9.

For the curve y = x² - 9, we have that:

The vertex is at (0,-9).The x-intercepts are (-3,0) and (3,0).

Due to the > sign, the values greater than the inequality, that is, above the inequality, are shaded.

As the inequality does not have an equal sign, the parabola is dashed.

More can be learned about inequalities at brainly.com/question/25275758

#SPJ1

The line y = k, where k is a constant, _____ has an inverse.

Answers

The line y = k, where k is a constant, does not have an inverse.

For a function to have an inverse, it must pass the horizontal line test, which means that every horizontal line intersects the graph of the function at most once. However, for the line y = k, every point on the line has the same y-coordinate, which means that multiple x-values will map to the same y-value.

Since there are multiple x-values that correspond to the same y-value, the line y = k fails the horizontal line test, and therefore, it does not have an inverse.

In other words, if we were to attempt to solve for x as a function of y, we would have multiple possible x-values for a given y-value on the line. This violates the one-to-one correspondence required for an inverse function.

Hence, the line y = k, where k is a constant, does not have an inverse.

Know more about inverse function here:

https://brainly.com/question/11735394

#SPJ8

Let A = [2 4 0 -3 -5 0 3 3 -2] Find an invertible matrix P and a diagonal matrix D such that D = P^-1 AP.

Answers

Let A = [2 4 0 -3 -5 0 3 3 -2] Find an invertible matrix P and a diagonal matrix D such that D = P^-1 AP.In order to find the diagonal matrix D and the invertible matrix P such that D = P^-1 AP, we need to follow the following steps:

STEP 1: The first step is to find the eigenvalues of matrix A. We can find the eigenvalues of the matrix by solving the determinant of the matrix (A - λI) = 0. Here I is the identity matrix of order 3.

[tex](A - λI) = \begin{bmatrix} 2-λ & 4 & 0 \\ -3 & -5-λ & 0 \\ 3 & 3 & -2-λ \end{bmatrix}[/tex]

Let the determinant of the matrix (A - λI) be equal to zero, then:

[tex](2 - λ) [(-5 - λ)(-2 - λ) - 3.3] - 4 [(-3)(-2 - λ) - 3.3] + 0 [-3.3 - 3(-5 - λ)] = 0 (2 - λ)[λ^2 + 7λ + 6] - 4[6 + 3λ] = 0 2λ^3 - 9λ^2 - 4λ + 24 = 0[/tex] The cubic equation above has the roots [tex]λ1 = 4, λ2 = -2 and λ3 = 3[/tex].

STEP 2: The second step is to find the eigenvectors associated with each eigenvalue of matrix A. To find the eigenvector associated with each eigenvalue, we can substitute the eigenvalue into the equation

[tex](A - λI)x = 0 and solve for x. We have:(A - λ1I)x1 = 0 => \begin{bmatrix} 2-4 & 4 & 0 \\ -3 & -5-4 & 0 \\ 3 & 3 & -2-4 \end{bmatrix} x1 = 0 => \begin{bmatrix} -2 & 4 & 0 \\ -3 & -9 & 0 \\ 3 & 3 & -6 \end{bmatrix} x1 = 0 => x1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}[/tex]

Let x1 be the eigenvector associated with the eigenvalue λ1 = 4.

STEP 3: The third step is to form the diagonal matrix D. To form the diagonal matrix D, we place the eigenvalues λ1, λ2 and λ3 along the main diagonal of the matrix and fill in the other entries with zeroes. [tex]D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}[/tex]

STEP 4: The fourth and final step is to compute [tex]P^-1 AP = D[/tex].

We can compute [tex]P^-1[/tex] using the formula

[tex]P^-1 = adj(P)/det(P)[/tex] , where adj(P) is the adjugate of matrix P and det(P) is the determinant of matrix P.

[tex]adj(P) = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 2 \\ -2 & 0 & 2 \end{bmatrix} and det(P) = 4[/tex]

Simplifying, we get:

[tex]P^-1 AP = D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}[/tex]

The invertible matrix P and diagonal matrix D such that [tex]D = P^-1[/tex]AP is given by:

P = [tex]\begin{bmatrix} 2 & -2 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} and D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.[/tex]

To know more about invertible matrix visit:

https://brainly.com/question/28217816

#SPJ11

Select the correct answer. The product of two numbers is 21. If the first number is -3, which equation represents this situation and what is the second number? О А. The equation that represents this situation is x - 3= 21. The second number is 24. OB. The equation that represents this situation is 3x = 21. The second number is 7. OC. The equation that represents this situation is -3x = 21. The second number is -7. OD. The equation that represents this situation is -3 + x = 21. The second number is 18.​

Answers

Answer:

The correct answer is:

B. The equation that represents this situation is 3x = 21. The second number is 7.

Since the product of two numbers is 21 and the first number is given as -3, we can represent this situation using the equation 3x = 21. Solving for x, we find that x = 7. Therefore, the second number is 7.

Step-by-step explanation:

Other Questions
A 12-hour urine specimen with a volume of 360 ml is collected for a creatinine clearance. what is the volume (v) used to calculate the clearance? deposits are made at the end of years 1 through 7 into an account paying 9.5% interest. the deposits start at $6,500 and increase by $1,100 each year. calculate the cashflows from year 1 to year 7. What is the term for the sequence of signaling events created by protein kinases phosphorylating other proteins? O None of the answers are correct Phosphorylation Cascade Deactivation Cascade O Transcription Cascade Brief down in atleast 1000 words about hospital planningconcept. Also explain in detail the roles of government in healthinsurance. Describe each concept with an example from everyday life. The example may be a personal application, a story, a tie-in to something that you have read or heard, etc.Concepts:communication competenceInterpersonal Communicationpresentational communication 2) The commission for lab test technician was paid on the each patient 3) Lab test technicians are supervised by a supervisor who is paid $50.000 per year 15 4) Electrical costs are $2 per ultra sound machine-hour. 0.5 machine hours are required to do the full body check for a patient. 5) The straight-line amortization cost of the ultra sound machine used to do body check for patients totals $10,000 per year, 6 The salary of the president of Grace Care hospital is $100.000 per year. 7) Grace Care hospital spends $250.000 per year to advertise its products 8) Instead of treating patient. Grace Care hospital could have rented one of its lab room out at a rental income of $30,000 per year. is that. the variable cost fixed period cost direct cost indirect cost direct material Ethical Principles Case Study You are a healthcare administrator of a medium size long term care in Ontario. Ruth is an 82-year-old woman living this long-term care home. She moved in about 5 years ago when she started showing early signs and symptoms of dementia. At that time, she informed the staff that she has a son who's estranged from her, and they have had no contact with each other for: several years. She did not appoint a power of attorney for herself either. During the years, Ruth 1 | made her own decisions about all aspects of her life and treatments however over the years staff noticed a severe decline in Ruth's cognition and physical health and started to question if Ruth is making the right decisions for herself. The adverse impacts of human economic activities on the environment has been declining over time. (TRUE/FALSE) Cell Membranes and Dielectrics Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite charges, just like the plates of a parallel-plate capacitor. Suppose a typical cell membrane has a thickness of 8.8109 m , and its inner and outer surfaces carry charge densities of -6.3104 C/m2 and +6.3104 C/m2 , respectively. In addition, assume that the material in the cell membrane has a dielectric constant of 5.4.1. Find the magnitude of the electric field within the cell membrane.E = ______ N/C2. Calculate the potential difference between the inner and outer walls of the membrane.|V| = ______ mV "According to the Stoics, pneuma is a combination of:Group of answer choicesa. earth and air.b. water and fire.c. water and earth.d. air and fire." Nabil is considering buying a house while he is at university. The house costs $200,000 today. Renting out part of the house and living in the rest over his five vears at school will bring him a net income of, after expenses, $650 per month. He estimates that he will sell the house after five years for $210,000. If Nabil's MARR is 6 percent compounded monthly, should he buy the house? Use annual worth. The least number by which 3 x 7 x 5 should be multiplied to make the resulting product a perfect cube is a plan so that people accpt lgbtq community in the world or aparticular region for a a paper proposal. a plan not a support The cultural groups in this country are largely homogeneous.IndiaIndonesiaJapanthe Philippines : 3.1 Differentiate between, social, mathematical and sociomathematical norms. 3.2 From the two scenarios identify similar classrooms norms, which belongs to the following category of norms and also explain how (similarly or differently) they were established and enacted in each of the scenario. 3.2.1 Social norms 3.2.2 Mathematical norms 3.2.3 Sociomathematical norms (3) (8) (4) (10) A 13-width rectangular loop with 15 turns of wire and a 17 cm length has a current of 1.9 A flowing through it. Two sides of the loop are oriented parallel to a 0.058 uniform magnetic field, and the other two sides are perpendicular to the magnetic field. (a) What is the magnitude of the magnetic moment of the loop? (b) What torque does the magnetic field exert on the loop? Your business plan for your proposed start-up firm envisions first-year revenues of $60,000, fixed costs of $30,000, and variable costs equal to one-third of revenue. What are break even sales at this point? (Round your answer to nearest whole number Break-even Write a Science report (like a story) on the process of digestion.Let us say for lunch, you have a cheeseburger.Identify what are carbohydrates, proteins, fats and nucleic acids, dairy and vitamins etc are in yourcheeseburger.Describe all the changes that take place once you put the food in your mouth, till all the wastesare out of your system.Name and describe all the organs through which the food passes and how the accessory organshelp in the process of digestion.Make sure you use all the vocabulary terms related to the topic. Highlight those words.Include the colored and labeled diagrams.Must discuss the role of enzymes and which part of the main Macromolecules (Carbohydrate,Protein, Fats, and Nucleic acid) are changed into simple nutrients.Give the end products of each type of digestion. What happens after the absorption of all thenutrients? What happens to particles, that cannot be digested or broken down? A Type la supernova has an effective temperature of 7000 K and the speed of the shells photosphere is 5000 km/s. What is its abolute magnitude if it is 62 days old? red d out of Select one: a.-18.9 b.-18.6 c. -18.0 d.-18.3 e.-19.2 Stephanie is in highschool and she is approaching the time to start making important decisions about her future and who she wants to be.. However, she isn't really stressed about those decisions because, she hasn't thought about it a whole lot. She seems resolved to just follow the same path that her parents did. Stephanie is in which of Erikson's stages? a.Identity repudiation vs Identity b.Diffusion Intimacy and Solidarity vs Isolation c.Industry vs. Inferiority d.Initiative vs. Guit 3. Let an = 2n + 1 and m = n + ko(n) where k is a positive integer. Show that an am.