for a fixed sample size, a way of shrinking a confidence interval is to decrease confidence. true or false?

Answers

Answer 1
False.

Decreasing the confidence level does not shrink the confidence interval for a fixed sample size. In fact, it has the opposite effect. The confidence interval represents the range within which we are confident the true population parameter lies. A higher confidence level, such as 95% or 99%, results in a wider confidence interval, providing a greater level of certainty.

If we decrease the confidence level, the resulting confidence interval becomes narrower, but this does not imply that the interval has more precision. Rather, it indicates that we are now less certain about capturing the true population parameter within the interval.

To shrink the confidence interval for a fixed sample size, one would typically need to reduce the variability of the data or increase the sample size, not decrease the confidence level.
Answer 2

For a fixed sample size, decreasing the confidence will reduce the width of the confidence interval. Therefore, the given statement is true.

The confidence interval represents a range of values where the true population parameter is expected to lie with a specific level of confidence. If the interval is wider, there is more uncertainty and vice versa. The width of the confidence interval is mainly affected by three factors: sample size, level of confidence, and variability in the data. For a fixed sample size, reducing the level of confidence will result in a narrower interval, and increasing the confidence will lead to a wider interval. That is because as the confidence level increases, more uncertainty is accounted for, resulting in a wider interval. Conversely, as the confidence level decreases, less uncertainty is accounted for, and the interval narrows.

Thus, for a fixed sample size, decreasing the confidence level will reduce the width of the confidence interval. Therefore, the given statement is true.

To know more about confidence interval visit:

brainly.com/question/32546207

#SPJ11


Related Questions

does the function satisfy the hypotheses of the mean value theorem on the given interval? f(x) = 5x2 2x 4, [−1, 1]

Answers

Yes, the function satisfy the hypotheses of the mean value theorem on the given interval.

The mean value theorem is a significant theorem that is used in calculus, which states that if a function f(x) is continuous over a closed interval [a, b] and differentiable over an open interval (a, b), then there exists a number "c" between a and b such that f'(c) = (f(b) - f(a))/(b - a), Where "f'(c)" is the slope of the tangent line to the graph of the function at c.

And this is true for any function that satisfies the hypotheses of the mean value theorem.

So, let's look at whether the function f(x) = 5x^2 + 2x + 4 satisfies the hypotheses of the mean value theorem or not on the interval [-1, 1].

Hypotheses: The given function is continuous on the closed interval [-1, 1].

The given function is differentiable on the open interval (-1, 1).

So, we know that f(x) is a polynomial function, which is continuous over the whole real line.

Hence, it is continuous on the closed interval [-1, 1].

Now, let's differentiate the function f(x) with respect to x.

f(x) = 5x^2 + 2x + 4

f'(x) = 10x + 2

Now, f'(x) is also a polynomial function, and it exists everywhere on the real line, including the open interval (-1, 1).

Hence, the given function satisfies the hypotheses of the mean value theorem on the interval [-1, 1].

We can also verify that the function satisfies the conclusion of the mean value theorem by calculating the value of "c" as follows:

f'(c) = (f(1) - f(-1))/(1 - (-1))

f'(c) = (5(1)^2 + 2(1) + 4 - [5(-1)^2 + 2(-1) + 4])/(1 - (-1))

f'(c) = 12/2

= 6

So, the function has a slope of 6 at some point c between -1 and 1.

Therefore, the answer to the question is YES.

To know more about mean value theorem, visit:

https://brainly.com/question/30403137

#SPJ11

b) If the joint probability distribution of three discrete random variables X, Y, and Z is given by, f(x, y, z)=. (x+y)z 63 for x = 1,2; y=1,2,3; z = 1,2 find P(X=2, Y + Z ≤3).

Answers

The probability P(X=2, Y+Z ≤ 3) is 13. Random variables are variables in probability theory that represent the outcomes of a random experiment or event.

To find the probability P(X=2, Y+Z ≤ 3), we need to sum up the joint probabilities of all possible combinations of X=2, Y, and Z that satisfy the condition Y+Z ≤ 3.

Step 1: List all the possible combinations of X=2, Y, and Z that satisfy Y+Z ≤ 3:

X=2, Y=1, Z=1

X=2, Y=1, Z=2

X=2, Y=2, Z=1

Step 2: Calculate the joint probability for each combination:

For X=2, Y=1, Z=1:

f(2, 1, 1) = (2+1) * 1 = 3

For X=2, Y=1, Z=2:

f(2, 1, 2) = (2+1) * 2 = 6

For X=2, Y=2, Z=1:

f(2, 2, 1) = (2+2) * 1 = 4

Step 3: Sum up the joint probabilities:

P(X=2, Y+Z ≤ 3) = f(2, 1, 1) + f(2, 1, 2) + f(2, 2, 1) = 3 + 6 + 4 = 13

They assign numerical values to the possible outcomes of an experiment, allowing us to analyze and quantify the probabilities associated with different outcomes.

Learn more about random variables here:

https://brainly.com/question/32245509

#SPJ11

Determine the vertical asymptotes and holes for the graph of the equation below.
y=x+1/x^2-6x-7
Vertical asymptote x=7; Hole x=0
Vertical asymptote x=7; Hole x = -1
Vertical asymptote x=1; Hole x = 7
Vertical asymptote x= -1; Hole x = -7

Answers

The equation y = (x + 1) / ([tex]x^2[/tex] - 6x - 7) has vertical asymptotes at x = 7 and x = -1, and it has a hole at x = -7.

To determine the vertical asymptotes and holes of the given equation, we need to analyze the behavior of the denominator.

First, we factor the denominator, [tex]x^2[/tex] - 6x - 7, as (x - 7)(x + 1). This tells us that the denominator is equal to zero when x = 7 and x = -1.

Vertical asymptotes occur when the denominator approaches zero but the numerator does not. Therefore, we have vertical asymptotes at x = 7 and x = -1.

To identify holes, we look for common factors between the numerator and the denominator. In this case, there is no common factor other than 1. However, we observe that the equation has a discontinuity at x = -7. This means that the function has a hole at x = -7.

In conclusion, the equation y = (x + 1) / ([tex]x^2[/tex]- 6x - 7) has vertical asymptotes at x = 7 and x = -1, and it has a hole at x = -7.

Learn more about common factors here:

https://brainly.com/question/30961988

#SPJ11

Express the confidence interval 64.4 % < p < 82.4 % in the form of ˆ p ± M E .

Answers

The expression of the confidence interval $64.4 \% < p < 82.4 \%$ in the frequency distribution  form of ˆ$p±ME$ is given below.

.The data have a mean (M) of 1150 and a standard deviation (SD) of 150, which correspond to a normal distribution.

The midpoint is given by, ˆ$p=\frac{64.4+82.4}{2}=73.4\%$.Now, subtracting the lower limit from the midpoint gives,$73.4\%-64.4\%=9.0\%$Similarly, subtracting the midpoint from the upper limit gives, $82.4\% -73.4\% =9.0\%$ Therefore, the margin of error is given by $ME=9.0\%$Hence, the confidence interval in the form of ˆ$p±ME$ is $\boxed{73.4\%±9.0\%}$.

To know more about frequency distribution visit:

https://brainly.com/question/14926605

#SPJ11

find the riemann sum for f(x) = x − 1, −6 ≤ x ≤ 4, with five equal subintervals, taking the sample points to be right endpoints.

Answers

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is shown below:

The subintervals have a width of `Δx = (4 − (−6))/5 = 2`.

Therefore, the five subintervals are:`[−6, −4], [−4, −2], [−2, 0], [0, 2],` and `[2, 4]`.

The right endpoints of these subintervals are:`−4, −2, 0, 2,` and `4`.

Thus, the Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is:`

f(−4)Δx + f(−2)Δx + f(0)Δx + f(2)Δx + f(4)Δx`$= (−5)(2) + (−3)(2) + (−1)(2) + (1)(2) + (3)(2)$$= −10 − 6 − 2 + 2 + 6$$= −10$.

Therefore, the Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

The Riemann sum for `f(x) = x − 1`, `−6 ≤ x ≤ 4`, with five equal subintervals, taking the sample points to be right endpoints is `-10`.

To know more about Riemann sum visit:

https://brainly.com/question/29673931

#SPJ11

Please help in the box plot - Data visualization question:

Draw two boxplots based on the following two tables by hand. Report where the median, two ends of the box, and positions of the whiskers. Please guide.

14 14 15 16 16 18 18 19 19 21 22 25 25 29 30 30 -1 3 3 4 15 16 16 17 23 24 24 25 35 36 37 46

Answers

For the first dataset:

Median: 19

And, For the second dataset:

Median: 17

Now, We can find the median, quartiles and the interquartile range (IQR) for each dataset:

For the first dataset:

Median: 19

First quartile (Q₁): 16

Third quartile (Q₃): 25

IQR: Q₃ - Q₁ = 9

For the second dataset:

Median: 17

Q₁: 4

Q₃: 36

IQR: Q₃ - Q₁ = 32

Now, we can draw the boxplots:

For the first dataset:

Draw a number line from the minimum value (14) to the maximum value (30).

Draw a box from Q₁ (16) to Q₃ (25).

Draw a line in the box at the median (19).

Draw whiskers from the box to the minimum and maximum values that are within 1.5 × IQR of the box.

In this case, the whiskers will extend to 14 and 30 because there are no outliers.

For the second dataset:

Draw a number line from the minimum value (-1) to the maximum value (46).

Draw a box from Q1 (4) to Q3 (36).

Draw a line in the box at the median (17).

Draw whiskers from the box to the minimum and maximum values that are within 1.5 IQR of the box.

In this case, the whiskers will extend to -1 and 46 because there are outliers outside of this range.

To learn more about Scatter Plot visit:

brainly.com/question/6592115

#SPJ4

Let f(x) =3x -6 and g(x) =x-2 find f/g and state it’s domain

Answers

Answer:

I think it’s -0.2

Step-by-step explanation:

you take the x - 2 and make that equivalent to f/g and state it’s domain which is -0.2, I just need more points lol. Sorry-

To find the quotient f(x)/g(x), we divide the two functions:

f(x) = 3x - 6

g(x) = x - 2

f(x) / g(x)

= (3x -6)/(x - 2)

Therefore, the quotient is:

f(x)/g(x) = (3x -6)/(x - 2)

To find the domain, we need to ensure that the denominator x - 2 does not equal 0. So we have:

x - 2 ≠ 0

x ≠ 2

Therefore, the domain is all real numbers except 2:

Domain = {x | x ≠ 2}

In summary:

f(x)/g(x) = (3x -6)/(x - 2)

Domain = {x | x ≠ 2}

This means the quotient is (3x -6)/(x - 2) and it is defined for all real numbers except 2, which would result in division by zero.

Hope this explanation makes sense! Let me know if you have any other questions.

suppose g is a function which has continuous derivatives, and that g(0)=−5, g′(0)=9, g′′(0)=−3 and g′′′(0)=18.

Answers

If suppose g is a function that has continuous derivatives, and that g(0)=−5, g′(0)=9, g′′(0)=−3, and g′′′(0)=18, g(1) = 5.5.

Explanation:

To find the value of g(1), if g is a function which has continuous derivatives, and that g(0)=−5, g′(0)=9, g′′(0)=−3 and g′′′(0)=18, we will use the formula of Taylor series expansion.

Taylor series expansion:

If g(x) is infinitely differentiable at x = a, then the Taylor series expansion of g(x) about x = a is given by;

g(x) = g(a) + g'(a)(x-a)/1! + g''(a)(x-a)^2/2! + g'''(a)(x-a)^3/3! + ...

Here,a = 0,g(a) = g(0) = -5

g'(a) = g'(0) = 9

g''(a) = g''(0) = -3

g'''(a) = g'''(0) = 18

Hence the Taylor series expansion is:

g(x) = -5 + 9(x)/1! - 3(x^2)/2! + 18(x^3)/3! + ...

Now we have to find the value of g(1) by using this equation

g(1) = -5 + 9(1)/1! - 3(1^2)/2! + 18(1^3)/3!

g(1) = -5 + 9 - 3/2 + 18/6

g(1) = -5 + 9 - 1.5 + 3

g(1) = 5.5

Hence, g(1) = 5.5.

To know more about Taylor series, visit:

https://brainly.com/question/32235538

#SPJ11

Operation question
Week 1 2 3 4 5 6 7 8 9 10 11 12 Q1 A product has a consistent year round demand. You are the planner and have been tasked with experimenting with some time series analysis. Using this previous weekly

Answers

In the context of demand forecasting for a product with consistent year-round demand, the planner is tasked with experimenting with time series analysis.

By utilizing previous weekly data, the planner can make predictions regarding the demand pattern for the upcoming weeks or months.

Having access to data from several weeks is crucial for the planner to accurately forecast the demand and make informed decisions. The demand forecast plays a vital role in meeting the demand effectively and avoiding any losses resulting from excessive production.

Time series analysis enables the examination of trends, seasonality, and cycles within the data, providing valuable insights.

To forecast the demand pattern, the planner can employ various methods such as Simple Moving Average, Weighted Moving Average, and Exponential Smoothing.

Each method offers a different approach to analyzing the data pattern and generating accurate forecasts. The planner can select the most suitable method based on the specific characteristics of the data and aim to provide accurate forecasting results.

To learn more about analysis, refer below:

https://brainly.com/question/32375844

#SPJ11

Operation question

Week 1 2 3 4 5 6 7 8 9 10 11 12 Q1 A product has a consistent year round demand. You are the planner and have been tasked with experimenting with some time series analysis. Using this previous weekly data:

Week 1: 100 units

Week 2: 120 units

Week 3: 110 units

Week 4: 130 units

Week 5: 140 units

Week 6: 150 units

Week 7: 160 units

Week 8: 170 units

Week 9: 180 units

Week 10: 190 units

Week 11: 200 units

Week 12: 210 units

Q1: A product has a consistent year-round demand. You are the planner and have been tasked with experimenting with some time series analysis. Using this previous weekly data, you need to forecast the demand for the next quarter (Weeks 13 to 24) using a simple exponential smoothing method with a smoothing constant of 0.3.

Chris invests $700 into an account with a 2.6% interest rate that is compounded semiannually. How much money will he have in this account if he keeps it for 10 years? Round your answer to the nearest dollar.

Answers

By investing 700$ at 2.6% interest compounded semi-annually; after 10 years, Chris would obtain about 906$ from his account.

We can arrive at this answer by using the formula for compound interest.

A = P(1 + r/n)ˣ, where x = n*t

Where the terms are defined as follows.

A = Amount present in the future

P = Principal amount, first invested

r  = Rate of interest (annually)

n = No. of compounds per year

t  =  Number of years

In the question, the values given are:

P = 700$

r = 2.6%

n = 2

t = 10

Therefore, the amount present in the account after 10 years will be:

A = 700[1 + (2.6/200)]²⁰

A = 700[1 + 0.013]²⁰

A = 700[1.013]²⁰ = 700*1.294 = 906.33

Thus, A = 906.33$ ≈ 906$

So, the amount present in the account is approximately 906$.

For more on compound interest,

brainly.com/question/26457073

brainly.com/question/26367706

After 10 years, Chris will have approximately $951 in his account.

To calculate the final amount in Chris's account after 10 years, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A is the final amountP is the principal amount (initial investment)r is the annual interest rate (as a decimal)n is the number of times interest is compounded per yeart is the number of years

In this case, Chris invested $700 with a 2.6% interest rate, compounded semiannually. Therefore, the annual interest rate (r) would be 0.026, and the number of times interest is compounded per year (n) would be 2.

Plugging in the values into the formula:

A = 700(1 + 0.026/2)^(2 * 10)A = 700(1.013)^20A ≈ 951

Therefore, after 10 years, Chris will have approximately $951 in his account.

Learn more about compound interest

brainly.com/question/14295570

#SPJ11

The goal of this problem is to overestimate and underestimate the area under the graph of f(x)=−13+14x−x2 from x=1 to x=13 using an "upper sum" and "lower sum" of areas of 4 rectangles of equal width.
a) Overestimate using an upper sum:
b) Underestimate using a lower sum:

Answers

The area under the curve of the function from x = 1 to x = 13 is -36 square units for both overestimation and underestimation.

The height of the second rectangle is f(4), the height of the third rectangle is f(7), and the height of the fourth rectangle is f(10). Overestimate using an upper sum: The area under the curve of the function from x = 1 to x = 13 is to be overestimated using an upper sum. An upper sum is the sum of the areas of the rectangles where the height of each rectangle is the maximum value of the function in the interval of the rectangle. The upper sum is given by: `upper sum = f(1)Δx + f(4)Δx + f(7)Δx + f(10)Δx`. The height of the rectangle starting at x = 1 is f(1) = -13 + 14(1) - (1)² = -12. The height of the rectangle starting at x = 4 is f(4) = -13 + 14(4) - (4)² = 3. The height of the rectangle starting at x = 7 is f(7) = -13 + 14(7) - (7)² = -20. The height of the rectangle starting at x = 10 is f(10) = -13 + 14(10) - (10)² = 17. Thus, `upper sum = (-12)(3) + (3)(3) + (-20)(3) + (17)(3) = -36 + 9 - 60 + 51 = -36`. Therefore, the overestimated area under the curve of the function from x = 1 to x = 13 is -36 square units.

Underestimate using a lower sum: The area under the curve of the function from x = 1 to x = 13 is to be underestimated using a lower sum. The minimum value of the function in the interval of the rectangle starting at x = 7 is f(7) = -20. The minimum value of the function in the interval of the rectangle starting at x = 10 is f(10) = 17. Thus, `lower sum = (-12)(3) + (3)(3) + (-20)(3) + (17)(3) = -36 + 9 - 60 + 51 = -36`. Therefore, the underestimated area under the curve of the function from x = 1 to x = 13 is -36 square units.

To know more about function visit:-

https://brainly.com/question/30721594

#SPJ11

As in the previous cases for ,and, we use the trig ratios to compute the following values of the trig functions for an angle of 0 radians. However, now we must watch out for division by zero--which, of course, is not allowed! If we every have a zero in the denominator, we say that the trig function is undefined. Complete the following table. If the expression is undefined, enter DNE. hyp sin (0) 0 = = opp hyp =)|csc(0) = DNE (P cos(0) = sec (0) = tan (0) = cot (0) =

Answers

In trigonometry, the trig functions of an angle can be found by using the trigonometric ratios.

However, if there is a zero in the denominator, then the trig function is undefined. The trig function can be undefined only when the denominator is equal to zero.

The values of the trig functions for an angle of 0 radians are as follows:

hyp sin (0) 0 = 0/1

= 0

opp hyp = 0/1 = 0

|csc(0) = 1/0 = DNE (undefined)

cos(0) = 1/1

= 1sec (0)

= 1/1

= 1

tan (0) = 0/1

= 0

cot (0) = 1/0

= DNE (undefined)

Hence, the completed table is shown above.

To know more about trigonometry visit :-

https://brainly.com/question/13729598

#SPJ11

Find equations of the osculating circles of the parabola y= (1/2)x^2 at the points (0,0) and (1, 1/2). Graph the osculating circles and the parabola on the same screen.

Answers

The equations of the osculating circles of the parabola y = (1/2)x^2 at the points (0,0) and (1, 1/2) are x^2 + y^2 = 0 and (x-1/2)^2 + (y-1/4)^2 = 1/16, respectively.

To find the equations of the osculating circles, we need to determine the center and radius of each circle. The osculating circle at (0,0) is tangent to the parabola at that point. Since the radius of the circle is zero, the equation is simply x^2 + y^2 = 0.

At the point (1, 1/2), the osculating circle is tangent to the parabola as well. We can start by finding the slope of the tangent line at this point, which is the derivative of the parabola. Differentiating y = (1/2)x^2 with respect to x, we get dy/dx = x. Evaluating this at x = 1 gives us the slope of the tangent line as 1.

The center of the osculating circle can be found by moving along the normal line from the point (1, 1/2) by a distance equal to the radius of the circle. Since the radius is perpendicular to the tangent line, we can use the slope of the tangent line to find the slope of the normal line, which is -1 (the negative reciprocal of 1).

Using the point-slope form of a line, we have y - (1/2) = -1(x - 1), which simplifies to y = -x + 3/2. Solving this equation simultaneously with the parabola equation, we find the intersection points of the parabola and the normal line.

Substituting y = -x + 3/2 into y = (1/2)x^2, we get (-x + 3/2) = (1/2)x^2. Rearranging this equation, we have (1/2)x^2 + x - 3/2 = 0. Solving this quadratic equation, we find x = 1/2 or x = -3.

Substituting these values back into the normal line equation, we can find the y-coordinates of the intersection points. When x = 1/2, y = -1/2 + 3/2 = 1, and when x = -3, y = 3/2.

Now, we can use the midpoint formula to find the center of the osculating circle, which is the average of the intersection points: (1/2, (1 + 3/2)/2) = (1/2, 5/4) = (0.5, 1.25).

The radius of the osculating circle can be found by the distance formula between the center and one of the intersection points: r = sqrt((1/2 - 1/2)^2 + (5/4 - 1)^2) = sqrt(1/16) = 1/4.

Putting it all together, the equation of the osculating circle at (1, 1/2) is (x - 1/2)^2 + (y - 1/4)^2 = 1/16.

Learn more about Osculating circles

brainly.com/question/32186207

#SPJ11

Quiz Part A - Question 1 a) In a sequence of consecutive years 1, 2,..., T an annual number of bankruptcies are recorded by the Central Bank. The random counts N₁, i = 1, 2,..., T of bankruptcies in

Answers

The expected number of bankruptcies over the T years is equal to the sum of the means of the Poisson distributions in each year.

In a sequence of consecutive years 1, 2, . . ., T an annual number of bankruptcies is recorded by the Central Bank.

The random counts N₁, i = 1, 2, . . . , T of bankruptcies in each of the T years are assumed to be independent and Poisson distributed with parameters λ₁, i = 1, 2, . . ., T, respectively.

The total number of bankruptcies during the T years is denoted by N.

The total number of bankruptcies during the T years can be written as follows:

N = \sum_{i=1}^{T}N_i

The sum of independent Poisson variables is a Poisson variable with a mean equal to the sum of means of the individual Poisson variables.

That is, E(N) = E\left(\sum_{i=1}^{T}N_i\right) = \sum_{i=1}^{T}E(N_i) = \sum_{i=1}^{T}\lambda_i

Therefore, the expected number of bankruptcies over the T years is equal to the sum of the means of the Poisson distributions in each year.

Know more about Poisson distributions here:

https://brainly.com/question/9123296

#SPJ11

2. The exit poll of 10,000 voters showed that 48.4% of voters voted for party A. Calculate a 95% confidence level upper bound on the turnout. [2pts] 3. What is the additional sample size to estimate t

Answers

The 95% confidence level upper bound on the turnout is approximately 49.38%, and the additional sample size needed to estimate the population proportion with a 95% confidence level and a margin of error of 0.01 is approximately 1867.

To calculate a 95% confidence level upper bound on the turnout, we can use the formula for confidence interval for a proportion:

Upper Bound = Sample Proportion + Margin of Error

The sample proportion is 48.4% (0.484) and the margin of error can be calculated using the formula:

Margin of Error = Z * √((Sample Proportion * (1 - Sample Proportion)) / Sample Size)

For a 95% confidence level, the Z-value corresponding to a 95% confidence level is approximately 1.96.

Assuming the sample size is 10,000, we can substitute these values into the formula:

Margin of Error = 1.96 * √((0.484 * (1 - 0.484)) / 10000)

Calculating the margin of error:

Margin of Error = 1.96 * √(0.2497488 / 10000)

≈ 0.0098

Therefore, the 95% confidence level upper bound on the turnout is:

Upper Bound = 0.484 + 0.0098

≈ 0.4938 (or 49.38%)

To estimate the additional sample size needed to estimate the population proportion with a desired margin of error, we can use the formula:

[tex]n = (Z^2 * P * (1 - P)) / (E^2)[/tex]

Where:

n is the sample size needed

Z is the Z-value corresponding to the desired confidence level

P is the estimated population proportion

E is the desired margin of error

Assuming we want a 95% confidence level (Z = 1.96), and the desired margin of error is 0.01, we can substitute these values into the formula:

[tex]n = (1.96^2 * 0.484 * (1 - 0.484)) / (0.01^2)[/tex]

Calculating the sample size:

n ≈ 1867

To know more about population proportion,

https://brainly.com/question/23905122

#SPJ11

You intend to conduct an ANOVA with 5 groups in which each group will have the same number of subjects: n=10n=10. (This is referred to as a "balanced" single-factor ANOVA.) What are the degrees of freedom for the numerator? d.f.(treatment) = What are the degrees of freedom for the denominator? d.f.(error) =

Answers

The degrees of freedom for the numerator and denominator in a balanced single-factor ANOVA can be calculated using the following formulas.

Degrees of freedom for the numerator = number of groups - 1Degrees of freedom for the denominator = (number of subjects - number of groups)df(Treatment) = number of groups - 1 = 5 - 1 = 4df(Error) = (number of subjects - number of groups) = (10 * 5) - 5 = 50 - 5 = 45Therefore, the degrees of freedom for the numerator is 4 and the degrees of freedom for the denominator is 45.The following formulae can be used to determine the degrees of freedom for the numerator and denominator in a balanced one-factor ANOVA.Number of groups minus one equals degrees of freedom for the numerator.

To know more about ANOVA , visit ;

https://brainly.com/question/15084465

#SPJ11

Your hypothesis test finds that the obtained value is less than the critical value. What do you conclude? Retain the alternative hypothesis Reject the alternative hypothesis Reject the null hypothesis Retain the null hypothesis

Answers

In hypothesis testing, the level of significance is a predetermined probability of rejecting the null hypothesis when it is actually true. The significance level is usually set at 5% or 1%.

When a hypothesis test finds that the obtained value is less than the critical value, the conclusion is to retain the null hypothesis. If you are to answer this question, your answer should be "Retain the null hypothesis".

Explanation:A statistical hypothesis is a statement about a population parameter. The null hypothesis is a statement that supposes the value of a population parameter is equal to a specific value or is not different from another value. Whereas the alternative hypothesis is the opposite of the null hypothesis. The alternative hypothesis is a statement that implies that the value of a population parameter is not equal to a specific value or is different from another value.

The hypothesis test is a statistical test used to determine the significance of the relationship between two variables. A hypothesis test involves selecting a random sample from a population and computing statistics about the sample, such as the sample mean or sample proportion.

Then, the researcher compares these sample statistics to the known values of the population parameter using a critical value. The critical value is determined by the level of significance and the degrees of freedom. The critical value is a value that determines the rejection region for a statistical test.

When a hypothesis test finds that the obtained value is less than the critical value, it means that the sample statistics are not significantly different from the population parameter. Therefore, there is not enough evidence to reject the null hypothesis. Hence, the conclusion is to retain the null hypothesis.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

How many positive three-digit integers less than 500 have at least two digits that are the same?

113 (Integers)

120 (Integers)

110 (Integers)

112 (Integers)

Answers

There are 112 positive three-digit integers less than 500 that have at least two digits that are the same.

Therefore, the correct option is 4th.

To find the number of positive three-digit integers less than 500 that have at least two digits that are the same, we can use the following steps:

1. Count the number of three-digit integers less than 500. The first digit can range from 1 to 4, and the second and third digits can range from 0 to 9.

So, the total number of three-digit integers less than 500 is 4 × 10 × 10 = 400.

2. Count the number of three-digit integers less than 500 that have all digits different.

The first digit can range from 1 to 4, the second digit can range from 0 to 9 excluding the first digit, and the third digit can range from 0 to 9 excluding both the first and second digits.

So, the number of three-digit integers less than 500 with all different digits is 4 × 9 × 8 = 288.

3. Subtract the number of three-digit integers with all different digits from the total number of three-digit integers less than 500 to find the number of three-digit integers with at least two digits that are the same.

400 - 288 = 112.

Therefore, there are 112 positive three-digit integers less than 500 that have at least two digits that are the same.

Learn more about Integers click;

https://brainly.com/question/33503847

#SPJ12

determine the critical points of the following functions. classify each critical point as a local maximum, local minimum, or saddle point and justify your classification. h(x, y) = xy(1 − x − y)

Answers

To determine the critical points of the function h(x, y) = xy(1 - x - y), we need to find the points where the partial derivatives with respect to x and y are equal to zero.

To find the critical points, we need to compute the partial derivatives of h with respect to x and y.

Taking the partial derivative with respect to x, we get y - 3xy. Setting this derivative equal to zero, we find that either y = 0 or x = 1 - y.

Taking the partial derivative with respect to y, we get x - 3xy. Setting this derivative equal to zero, we find that either x = 0 or y = 1 - x.

By analyzing these critical points, we find four possibilities: (1) x = y = 0, (2) x = 1/3 and y = 0, (3) x = 0 and y = 1/3, and (4) x = y = 1/3.

To classify these critical points, we need to compute the second partial derivatives. However, since the function h is quadratic, we can see that the second partial derivatives are constant and equal to zero. This indicates that the second derivative test is inconclusive.

Therefore, we cannot classify the critical points using the second derivative test. However, we can observe the behavior of the function around these points to make an informed judgment. By evaluating the function at each critical point, we find that (1) corresponds to a saddle point, (2) and (3) correspond to local maximums, and (4) corresponds to a local minimum.

In conclusion, the critical points of the function h(x, y) = xy(1 - x - y) are (1) x = y = 0 (saddle point), (2) x = 1/3 and y = 0 (local maximum), (3) x = 0 and y = 1/3 (local maximum), and (4) x = y = 1/3 (local minimum).

Learn more about critical points here:

https://brainly.com/question/32077588

#SPJ11

let , , , and be independent standard normal random variables. we obtain two observations, find the map estimate of if we observe that , . (you will have to solve a system of two linear equations.)

Answers

Therefore, the MAP estimate of μ is simply the observed values x₁ and x₂.

To find the maximum a posteriori (MAP) estimate of the random variable μ, given two observations x₁ and x₂, we need to solve a system of two linear equations.

Let's denote μ₁ and μ₂ as the true values of the mean parameter μ corresponding to x₁ and x₂, respectively. We can write the two linear equations as follows:

x₊₁ = μ₁ + ε₁ ...(1)

x₂ = μ₂ + ε₂ ...(2)

where ε₁ and ε₂ are random noise terms.

Since the random variables ε₁ and ε₂ are independent standard normal random variables, we know that their means are zero, and their variances are both equal to 1.

Taking the MAP estimate means finding the values of μ₁ and μ₂ that maximize the posterior probability given the observed data. Assuming a flat prior distribution for μ, we can write the joint probability of x₁ and x₂ as:

P(x₁, x₂ | μ₁, μ₂) ∝ P(x₁ | μ₁) × P(x₂ | μ₂)

Since both x₁ and x₂ are normally distributed with mean μ₁ and μ₂, respectively, and variance 1, we can express the probabilities P(x₁ | μ₁) and P(x₂ | μ₂ as follows:

P(x₁ | μ₁) = (1/√(2π)) * exp(-(x₁ - μ₁)² / 2)

P(x₂ | μ₂) = (1/√(2π)) * exp(-(x₂ - μ₂)² / 2)

Taking the logarithm of the joint probability, we can simplify the calculations:

log[P(x₁, x₂ | μ₁ , μ₂)] ∝ -(x₁ - μ₁)² / 2 - (x₂ - μ₂)² / 2

To find the values of μ₁ and μ₂ that maximize this expression, we need to solve the following system of equations:

d/dμ1 log[P(x₁, x₂ | μ₁ , μ₂)] = 0

d/dμ2 log[P(x₁, x₂ | μ₁, μ₂)] = 0

Differentiating the above expression and setting the derivatives to zero, we have:

-(x₁ - μ₁) = 0 ...(3)

-(x₂ - μ₂) = 0 ...(4)

Simplifying equations (3) and (4), we obtain:

μ₁ = x₁

μ₂ = x₂

To know more about observed values,

https://brainly.com/question/14863624

#SPJ11

Q. 1 a) Find μ, and o² for the random var iable X that has the probability density (8+7+5) for 0

Answers

The mean (μ) for the random variable X is 90.  Next, let's calculate the variance (σ²): Variance (σ²) = ∫(x - μ)² * f(x) dx

To find the mean (μ) and variance (σ²) for the random variable X with the given probability density function (PDF), we'll use the following formulas:

Mean (μ) = ∫x * f(x) dx

Variance (σ²) = ∫(x - μ)² * f(x) dx

First, let's calculate the mean (μ):

Mean (μ) = ∫x * f(x) dx

= ∫x * (8 + 7 + 5) dx (0 ≤ x ≤ 3)

= (8 + 7 + 5) * ∫x dx

= 20 * [x²/2] (0 ≤ x ≤ 3)

= 20 * (9/2 - 0)

= 20 * (9/2)

= 180/2

= 90

Next, let's calculate the variance (σ²): Variance (σ²) = ∫(x - μ)² * f(x) dx

= ∫(x - 90)² * (8 + 7 + 5) dx (0 ≤ x ≤ 3) To calculate this integral, we need to know the upper limit of integration for x.

Learn more aboutrandom variable here:

https://brainly.com/question/14159497

#SPJ11

Can you guys please help me.

Answers

The plastic tubing needed to fit around the edge of the pool, which is its circumference is 47.1 feet.

What is the circumference?

The circumference refers to the total distance around a circular object.

The circumference can be determined using the diameter formula, C=πd or the radius formula, C=2πr, where d is the diameter and r is the radius.

Diameter of the pool, d = 15 feet

Circumference with diameter, C = πd

Where C = circumference of the pool

π = pi or 3.14

d = 15 feet

C = πd

C = 3.14 x 15

= 47.1 feet

Thus, the circumference of the pool is 47.1 feet.

Learn more about the circumference at https://brainly.com/question/27447563.

#SPJ1

Which predictors above are important for the overall
satisfaction and why (what information lets you know it is
important)?
Which variable is the most important predictor and why do you think
that?
Below is the information for a good fitting model. Model 1 Unstandardized Standardized Coefficients Coefficients Std. B Beta Error (Constant) .693 .203 Distance from home -.006 .035 -.005 Gender .025

Answers

The important predictors for the overall satisfaction and why are the standardized coefficients and beta values. This is because the standardized coefficients and beta values enable a comparison of the relative importance of the variables, despite their different measurement scales. The most important predictor variable is the gender variable. This is because the beta value of 0.025 indicates that the gender variable has a stronger relationship with overall satisfaction than the distance from home variable.

The estimates from a regression analysis where the underlying data have been standardised so that the variances of dependent and independent variables are equal to one are known as standardised (regression) coefficients, also known as beta coefficients or beta weights.[1] Standardised coefficients, which measure how many standard deviations a dependent variable will change for each rise in the predictor variable's standard deviation, are hence unitless. In a multiple regression analysis where the independent variables are measured in different units of measurement (for instance, income measured in dollars and family size measured in people), standardisation of the coefficient is typically done to determine which of the independent variables has a greater impact on the dependent variable.

Know more about coefficients here:

https://brainly.com/question/13431100

#SPJ11

Prove that if one pair of sides of a quadrilateral are both congruent and parallel, then the quadrilateral is a parallelogram

Answers

Quadrilaterals are closed shapes having four sides and four angles. The sides and angles of quadrilaterals may be of any degree and size. However, quadrilaterals having similar or identical properties are classified into different types. There are six types of quadrilaterals that exist, with each having its unique properties.

One such quadrilateral is the parallelogram. A quadrilateral is said to be a parallelogram if its opposite sides are parallel. Let's assume ABCD be a quadrilateral and AB is parallel to DC, then we can write AB||DC. Let's suppose the line segment AD intersects with BC at point E. Then we can write AE=CE and BE=DE. We can also write AD||BC. From triangle ABE, we can write angle ABE is congruent to angle CDE as AE=CE. Similarly, angle AEB is congruent to angle CED because BE=DE. So, from both these, we can say that the triangles ABE and CDE are congruent, which can be written as; ∆ABE ≅ ∆CDE.

To more know about Quadrilaterals visit:

brainly.com/question/13805601

#SPJ11

4. A set of exam marks has mean 70, median 65, inter-quartile range 25 and SD 15 marks. It is decided to subtract 10 from all the marks. For the new set of marks, a) what is the mean? b) what is the m

Answers

If the inter-quartile range is 25 and SD 15 marks then For the new set of marks, a) the mean is 60, b) the median is 55.

By subtracting 10 from all the marks, we shift the entire distribution downward by 10 units. Since the mean represents the average value, subtracting 10 from each mark will decrease the mean by 10. Therefore, the new mean is 70 - 10 = 60.

The median represents the middle value in a sorted list of marks. Since we only subtract a constant value, the order of the marks remains unchanged, and the relative positions of the marks do not shift. Thus, subtracting 10 from all the marks will also decrease the median by 10. Therefore, the new median is 65 - 10 = 55.

It is important to note that subtracting a constant from all the marks does not affect the interquartile range (IQR) or the standard deviation (SD) because these measures are based on the relative positions and deviations of the marks rather than their absolute values.

To learn more about “standard deviation” refer to the https://brainly.com/question/475676

#SPJ11

2. Use the dot product to determine whether the vectors are parallel, orthogonal, or neither. v=4i+j, w = i - 4j A. Not enough information B. Parallel O C. Orthogonal D. Neither orthogonal nor paralle

Answers

The dot product can be used to determine if the vectors v = 4i + j and w = i - 4j are parallel, orthogonal, or neither.The formula for the dot product of two vectors, v and w, is(v1 * w1) + (v2 * w2) = v w

Here, v1 equals 4, v2 equals 1, w1 equals 1, and w2 equals -4. How about we compute the dot product?v · w = (4 * 1) + (1 * -4) = 4 - 4 = 0

Two vectors are orthogonal (perpendicular) to one another if their dot product is zero. We can infer that the vectors v = 4i + j and w = i - 4j are orthogonal because their dot product is zero.Consequently, the appropriate response isThe orthogonal

learn more about orthogonal here :

https://brainly.com/question/32196772

#SPJ11

Find parametric equations that define the curve starting at (6,0) and ending at (7.8) as shown. Let parameter t start at 0 and end at 8 y=t (Complete the X= (Complete Dec 10 (78) a 6 5 What is equation of x?

Answers

The parametric equations that define the curve starting at (6,0) and ending at (7.8) are

[tex]$$(x(t),y(t)) = (t+6,8t)$$[/tex]

where parameter t varies from 0 to 1.

Find parametric equations that define the curve starting at (6,0) and ending at (7.8) as shown. Let parameter t start at 0 and end at 8 y=t (Complete the X= (Complete Dec 10 (78) a 6 5 What is equation of x?

Given information:

Start point is (6, 0).

End point is (7,8).

The curve is linear, hence we can find the slope of the line passing through (6, 0) and (7, 8).

Slope of the line:

[tex]$$m = \frac{y_2 - y_1}{x_2 - x_1}$$$$m = \frac{8 - 0}{7 - 6}$$$$m = 8$$[/tex]

Using point-slope form of equation of line, we get:

[tex]$$y - y_1 = m(x - x_1)$$$$y - 0 = 8(x - 6)$$$$y = 8x - 48$$[/tex]

Therefore, x-coordinate is given by:

[tex]$$x(t) = t + 6$$[/tex]

And, y-coordinate is given by:

[tex]$$y(t) = 8t$$[/tex]

Hence, parametric equations that define the curve starting at (6,0) and ending at (7.8) are

[tex]$$(x(t),y(t)) = (t+6,8t)$$[/tex]

where parameter t varies from 0 to 1.

To know more on equation visit

https://brainly.com/question/17145398

#SPJ11

Please solve it
quickly!
3. What is the additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2? [2pts]
2. The exit poll of 10,000 voters showed that 48.4% of vote

Answers

The total sample size needed for the exit poll is 10,000 + 24 = 10,024.

The additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2 is approximately 2,458.

According to the provided data, the exit poll of 10,000 voters showed that 48.4% of votes.

Therefore, the additional sample size required for estimating the turnout with a confidence of 95% is calculated by the formula:

n = (zα/2/2×d)²

n = (1.96/2×0.1/100)²

= 0.0024 (approximately)

= 0.0024 × 10,000

= 24

Therefore, the total sample size needed for the exit poll is 10,000 + 24 = 10,024.

As a conclusion, the additional sample size to estimate the turnout within ±0.1%p with a confidence of 95% in the exit poll of problem 2 is approximately 2,458.

To know more about sample size visit:

brainly.com/question/32391976

#SPJ11

find the volume of the solid whose base is a circle of radius 5, if slices made perpendicular to the base are isosceles right triangles with one leg on the base.

Answers

The volume of the solid whose base is a circle of radius 5, if slices made perpendicular to the base are isosceles right triangles with one leg on the base is 125π√2 units³.

Given that, The base of the solid is a circle of radius r = 5.Since slices made perpendicular to the base are isosceles right triangles with one leg on the base. The perpendicular height of the triangle would be r √2.By using the formula of volume of solid, Volume of the solid = Area of base x Height of the solid Area of the base of the solid is given as;πr² Volume of the solid = πr² x r√2= π(5)² x 5√2= 125π√2 units³.

An isosceles right triangle is a type of triangle that has two sides of equal length and one right angle. It is a special case of both an isosceles triangle (a triangle with two sides of equal length) and a right triangle (a triangle with one right angle measuring 90 degrees).

To Know more about isosceles right triangles visit:

https://brainly.com/question/30966657

#SPJ11

Find the surface area of the part of the sphere x2+y2+z2=25x2+y2+z2=25 that lies above the cone z=x2+y2−−−−−−√z=x2+y2

Answers

To find the surface area of the part of the sphere[tex]\(x^2 + y^2 + z^2 = 25\)[/tex] that lies above the cone [tex]\(z = \sqrt{x^2 + y^2}\),[/tex] we can use a surface area integral over the region of interest.

First, let's express the given equations in spherical coordinates. In spherical coordinates, the sphere equation becomes [tex]\(\rho^2 = 25\)[/tex] and the cone equation becomes [tex]\(\phi = \frac{\pi}{4}\),[/tex] where [tex]\(\rho\)[/tex] is the radial distance, [tex]\(\phi\)[/tex] is the polar angle, and [tex]\(\theta\)[/tex] is the azimuthal angle.

To calculate the surface area, we can set up the integral as follows:

[tex]\[S = \iint_R \rho^2 \sin \phi \, d\phi \, d\theta\][/tex]

where [tex]\(R\)[/tex] is the region on the surface of the sphere above the cone. In this case, the limits for [tex]\(\phi\) are \(\frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}\), and the limits for \(\theta\) are \(0 \leq \theta \leq 2\pi\).[/tex]

Now we can evaluate the integral:

[tex]\[S = \int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \rho^2 \sin \phi \, d\phi \, d\theta\][/tex]

Since [tex]\(\rho = 5\)[/tex] (from the equation of the sphere), the integral becomes:

[tex]\[S = \int_0^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 25 \sin \phi \, d\phi \, d\theta\][/tex]

Now, we can integrate with respect to [tex]\(\phi\)[/tex] first:

[tex]\[S = \int_0^{2\pi} \left[ -25\cos \phi \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \, d\theta\][/tex]

Simplifying further:

[tex]\[S = \int_0^{2\pi} 25(\cos \frac{\pi}{4} - \cos \frac{\pi}{2}) \, d\theta\][/tex]

[tex]\[S = \int_0^{2\pi} 25(\frac{\sqrt{2}}{2} - 0) \, d\theta\][/tex]

[tex]\[S = 25\frac{\sqrt{2}}{2} \int_0^{2\pi} \, d\theta\][/tex]

[tex]\[S = 25\frac{\sqrt{2}}{2} \left[ \theta \right]_0^{2\pi}\][/tex]

[tex]\[S = 25\frac{\sqrt{2}}{2}(2\pi - 0)\][/tex]

[tex]\[S = 25\sqrt{2}\pi\][/tex]

Therefore, the surface area of the part of the sphere above the cone is [tex]\(25\sqrt{2}\pi\).[/tex]

To know more about cone visit-

brainly.com/question/18652901

#SPJ11

Other Questions
Inactivity triples the risk for obesity and heart-related problems. a.True b.False how many moles of water are produced by the reaction of 1.10 moles of octane? You plan to buy shares in a new company called FC. Your stockbroker estimates that the company will pay $1.00 per share in dividends a year from now, and that in a year the market price of the company will be $80.00 per share. You are willing to accept a 6% return to hold the stock. What is the most that you should be willing to pay today per share of FC?+ neutral term to signify two events whose co-occurrence strikes us as odd or strange approximate ln(1.2) using the 3rd order taylor polynoymial for f(x) = lnx centered at 1 Then, estimate the error of the approximation. Your friend Ricardo can be easily hypnotized. He probably demonstrates a. a high blood alcohol content b. an extreme dislike of fantasy c. fear of being the center of attention d. knowledge of what a hypnotized person should do Air at 20 degrees celsius flows through the circular duct such that the absolute pressure is 100.8 kPa at A, and 101.6 kPa at B. Determine the volumetric discharge through the duct. Security is an example of a value that represents a highly desired end state that individuals aspire to. In this sense, what kind of value does security represent?A domain-specific value.An instrumental value.A terminal valueA global value.A value system Five years ago, Vladimir Ulyanov, a professional hockey player, signed a contract with the Rebels Hockey Club, which contained these terms:Vladimir Ulyanov agrees to perform for the Rebels Hockey Club and not to perform for any other hockey club for the duration of this contract.This contract shall run for 10 years from the date of signing.The Rebels Hockey Club agrees to pay Vladimir Ulyanov a base salary of $6 000 000 per year for the duration of this contract.Last year, the Rebels hired a new coach, who changed the club's style of play by focusing far more on intimidation and far less on skill. Vladimir, a highly talented, but slightly built, player, wants no part of the new approach and has signed a contract to play with a rival team. The Rebels have brought an action against him for breach of contract. The team argues that monetary damages would not be an adequate remedy because (i) no amount of money would allow them to hire another player of Vladimir's calibre, and (ii) it is impossible to accurately predict the loss of merchandising and ticket revenue that would be caused by Vladimir's defection to a rival team. In response, Vladimir says that his only employment prospects outside of professional hockey lie in the food service industry, and that if he is required to take a job in a restaurant, his annual income would drop from $6 000 000 to $25 000. Will a court order specific performance against Vladimir? Will a court order an injunction against Vladimir? What do you believe would be a fair result in this case?What is the most appropriate legal remedy that should be granted to the Rebels for Vladimir's breach of contract? (Provide a full 3-step legal analysis.)can you please provide a 3 step legal analysis on this case study?this question is related to business lawthanks a) Use an appropriate diagram, to explain how the Permanent Income Theory of Consumption reconciles the results of cross-section and time series estimate of the Keynesian aggregate consumption function. (15 marks)(b) With the help of a diagram, explain the effect of an increase in nominal income on interest rate. A thin film of alcohol (n = 1.36) lies on a flat glass plate (n =1.51). When monochromatic light, whose wavelength can be changed,is incident normally, the reflected light is a minimum for =517 nm and a maximum for = 650 nm. What is the minimumthickness of the film? A dog breeder claims that the mean adult weight of the miniature Maltese puppies it sells is at most 5 pounds. Bridget questions this claim and decides to perform a hypothesis test. Assuming Bridget's hypothesis test is conducted correctly, what conclusion, expressed in nontechnical terms, would she make if evidence in the hypothesis test leads her to reject the null hypothesis. Your answer should not contain any statistical jargon; instead, it should contain common English words that clearly convey the specific conclusion that can be drawn about the average (mean) adult weight of this breeder's Maltese puppies. The justification you provide to support your answer must include the null and alternative hypotheses (expressed using the appropriate symbols) for this hypothesis test. Assume that you have a cylinder with a movable piston. What would happen to the gas pressure inside the cylinder if you do the following?(a) Decrease the volume to one third the original volume while holding the temperature constant.increase the pressure by 3 timesdouble the pressuredecrease the pressure by 1/3remain the same(b) Reduce the Kelvin temperature to half its original value while holding the volume constant.increase by 2 timesincrease by 4 timesdecrease by two timesdecrease by four timesremain the same(c) Reduce the amount of gas to half while keeping the volume and temperature constant.increase by 2 timesdecrease by 2 timesdecrease by 4 timesremain the same List the four processes that may be included in a ContingencyPlan (not the 5 steps in achieving a Contingency Plan). Identify the following questions as most likely to be asked by an internal or an external user of accounting information. Part B. Identify the following users as either an internal or an external user. Complete this question by entering your answers in the tabs below. Part A Part B Identify the following questions as most likely to be asked by an internal or an external user of accounting information. Questions External/Internal 1. Which inventory items are out of stock? 2. Should we make a five-year loan to that business? 3. What are the costs of our product's ingredients? 4. Should we buy, hold, or sell a company's stock? 5. Should we spend additional money for redesign of our product? 6. Which firm reports the highest sales and income? 7. are the costs of our service to customers? < Part A Part B > Part A. Yanni, who is single, provides you with the following information for 2021: Salary $90,400 State income taxes 9,040 Mortgage interest expense on principal 8,136 residence Charitable contributions 1,808 Interest income 1,356 Click here to access the exemption table. If required, round your answers to the nearest dollar. Compute the following: a. Yanni's taxable income: DU b. Yanni's AMT base: C. Yanni's tentative minimum tax: The financial information of Z, Inc. is as follows:EBIT/share: $5EPS: $3Growth rate: 15%Stock Price per share: $48The industry averages of price-EBIT ratio, PE ratio and PEG ratio are 10, 15, and 1.2 respectively.What is the implied stock price of Z, Inc. using the PE ratio?What is the implied stock price of Z, Inc. using the PEG ratio?What is the implied stock price of Z, Inc. using the price-EBIT ratio?Which ratio indicates that Z is overvalued? 5. How do strategy, and Human Capital acquisition, complementeach other, within the environment of International Business? After watching the power of I am by Theodore R. Johnson tell us what you've learned in a "low pressure" 4 to 5 minute informal "talk". In other words, tell us what you've discovered about how the speaker developed ethos, specifically: How did the speaker show that she/he was competent? What did the speaker specifically do to project character? How did the speaker specifically show that she/he cared about the audience? What particular techniques did the speaker use to project charisma? Which correctly describes latent heat? A. The heat of molecules that are under pressure B. The heat held inside of ice crystals colder than -2C C. The heat absorbed or lost by a substance while it's changing state D. The heat used to change the temperature of a liquid