For the following function, find the full power series centered at x = = 0 and then give the first 5 nonzero terms of the power series and the open interval of convergence. x6 7x³+1 00 f(x) = Σ f(x) = + + +... The open interval of convergence is: (Give your answer in interval notation.)

Answers

Answer 1

the open interval of convergence is (-∛(1/7), ∛(1/7)).'

To find the power series representation of the given function f(x), we can express it as a sum of terms in the form of (cₙ * xⁿ), where cₙ represents the coefficients.

f(x) = Σ (7x³+1)^n

     = Σ (7ⁿ * x³ⁿ * 1ⁿ)

Expanding the expression, we get:

f(x) = Σ (7ⁿ * x^(3n))

To find the first 5 nonzero terms of the power series, we can calculate the values for n = 0 to 4:

For n = 0:

c₀ = 7⁰ = 1

For n = 1:

c₁ = 7¹ = 7

For n = 2:

c₂ = 7² = 49

For n = 3:

c₃ = 7³ = 343

For n = 4:

c₄ = 7⁴ = 2401

So, the first 5 nonzero terms of the power series are:

1 + 7x³ + 49x⁶ + 343x⁹ + 2401x¹²

To determine the open interval of convergence, we need to find the values of x for which the series converges. For this, we can use the ratio test:

lim (|cₙ₊₁ * x^(3n+3)| / |cₙ * x^(3n)|)

= lim (|(7ⁿ⁺¹ * x^(3n+3))| / |(7ⁿ * x^(3n))|)

= lim (7 * |x³|) / |x³|

= 7

The series converges if the absolute value of the ratio is less than 1, i.e., |7x³| < 1.

Simplifying the inequality, we get:

|x³| < 1/7

-1/7 < x³ < 1/7

Taking the cube root of the inequality, we have:

-∛(1/7) < x < ∛(1/7)

Therefore, the open interval of convergence is (-∛(1/7), ∛(1/7)).

Visit here to learn more about inequality brainly.com/question/20383699

#SPJ11


Related Questions

A7. Two fair dice are thrown. The probability of getting the sum is greater than 9 is
A. 1/3
B. 1/8
C. 1/6 D. 1/12

Answers

Two fair dice are thrown the probability of getting the sum is greater than 9 is ( C. 1/6).

To find the probability of getting a sum greater than 9 when two fair dice are thrown, to determine the number of favorable outcomes and the total number of possible outcomes.

consider the possible outcomes when rolling two dice:

Dice 1: 1, 2, 3, 4, 5, 6

Dice 2: 1, 2, 3, 4, 5, 6

To find the favorable outcomes to determine the combinations of numbers that give us a sum greater than 9. These combinations are:

(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)

So, there are 6 favorable outcomes.

The total number of possible outcomes is found by multiplying the number of outcomes for each dice. Since each die has 6 possible outcomes, the total number of outcomes is 6 × 6 = 36.

Therefore, the probability of getting a sum greater than 9 is 6/36, simplifies to 1/6.

To know more about probability here

https://brainly.com/question/32117953

#SPJ4

Suppose we draw 2 marbles from the bag, one after the other without replacement. What is the probability both are the same color? Please report your answer rounded to 3 decimal places; do NOT convert to a percentage. (Hint: How can the event "both marbles are the same color" be broken into 3 different disjoint events?

Answers

The probability that both marbles drawn are the same color is 0.333, rounded to three decimal places.


To calculate the probability that both marbles drawn from the bag are the same color, we can break down the event into three disjoint events: both marbles are red, both marbles are green, or both marbles are blue.

Let's assume the bag contains red, green, and blue marbles. Since we are drawing without replacement, the probability of selecting a red marble on the first draw is 1/3, since there are equal chances of selecting any of the three colors.

If the first marble drawn is red, there is one red marble remaining in the bag out of the total two marbles left. The probability of selecting a red marble again on the second draw, given that the first marble was red, is 1/2.

Similarly, the probability of drawing two green marbles or two blue marbles can be calculated using the same reasoning. Each event has the same probability of occurring.

To find the overall probability, we can sum the probabilities of the three disjoint events:

P(both marbles are the same color) = P(both are red) + P(both are green) + P(both are blue)

                                  = (1/3) * (1/2) + (1/3) * (1/2) + (1/3) * (1/2)

                                  = 1/6 + 1/6 + 1/6

                                  = 1/3

Therefore, the probability that both marbles drawn are the same color is 1/3, rounded to three decimal places.


To learn more about probability click here: brainly.com/question/32117953

#SPJ11

Compute the values of dy and Ay for the function y = 4 + 2x given z = 0 and Ar=dz = 0.03. Round your answers to four decimal places, if required. You can use a calculator, spreadsheet, browser, etc. to calculate dy and Ay. dy = Number Ay= Number

Answers

The values of dy and Ay for the given function are dy = 0.06 and Ay ≈ 66.6667, respectively.

To solve the given problem, we will first compute the value of dy and Ay for the given function y = 4 + 2x. We will use the given values z = 0 and Ar = dz = 0.03.

Given function: y = 4 + 2x

Differentiating the function with respect to x, we find dy/dx:

dy/dx = d(4 + 2x)/dx = 2

Since dy/dx represents the rate of change of y with respect to x, we can substitute the given value of dz = 0.03 into the equation to find the value of dy:

dy = (dy/dx)(dz) = 2(0.03) = 0.06

Therefore, dy = 0.06.

To find Ay, we can use the equation Ay = dy/dz:

Ay = (dy/dz) = (dy/dx)/(dz/dx) = (2)/(0.03) = 66.6667 (rounded to four decimal places)

Therefore, Ay ≈ 66.6667.

To learn more about function click here:

brainly.com/question/30721594

#SPJ11

Use a t-test to test the claim. Assume that the X-values follow a normal distribution. (Note: Before doing this problem, please review the assignment instructions regarding hypothesis tests.) Claim: μ< 150, a = 0.01, and Sample statistics: x = 145, s 15, n = 22. =

Answers

We do not have sufficient evidence to support the claim that μ < 150 at a significance level of 0.01.

To test the claim that μ < 150 with a significance level of α = 0.01, we can use a one-tailed t-test.

The null hypothesis is that the population mean μ is equal to or greater than 150, and the alternative hypothesis is that μ is less than 150.

H0: μ >= 150

Ha: μ < 150

We can calculate the test statistic as:

t = (x - μ) / (s / sqrt(n))

where x is the sample mean, s is the sample standard deviation, n is the sample size, and μ is the hypothesized population mean.

Substituting the given values, we get:

t = (145 - 150) / (15 / sqrt(22)) = -1.88

The degrees of freedom for this test is n-1 = 21.

Using a t-distribution table with 21 degrees of freedom and a 0.01 level of significance, we find the critical value to be -2.52.

Since our test statistic (-1.88) is greater than the critical value (-2.52), we fail to reject the null hypothesis.

Therefore, we do not have sufficient evidence to support the claim that μ < 150 at a significance level of 0.01.

Learn more about t-test. here:

https://brainly.com/question/32576462

#SPJ11

Integrate: 6x + 26 1/22 62 ¥ 13 dx + C

Answers

The calculated value of the integral of 6x + 26 is 3x² + 26x

How to integrate the expression

From the question, we have the following parameters that can be used in our computation:

6x + 26

The expression can be integrated using the first principle which states that

if f'(x) = naxⁿ⁻¹, then f(x) = axⁿ

Using the above as a guide, we have the following:

dy/dx = (6x¹ ⁺ ¹)/(1 + 1) + (26x⁰ ⁺ ¹)/(0 + 1)

This gives

dy/dx = 6x²/2 + 26x¹/1

Evaluate

dy/dx = 3x² + 26x

Hence, the integral of the expression is 3x² + 26x

Read more about integral at

https://brainly.com/question/32418363

#SPJ4

Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used. ∑ n=1
[infinity]

( 4


) n
converges by the p⋅ Series Test diverges by the p-Series Test converges by the Geometric Series Test diverges by the Geometric Series Test

Answers

The given series ∑ n=1 [infinity] (43π)^n can be determined to converge or diverge using appropriate tests. The p⋅ Series Test and the Geometric Series Test can be applied to analyze the convergence behavior.

The series ∑ n=1 [infinity] (43π)^n is a geometric series with a common ratio of 43π. The Geometric Series Test states that a geometric series converges if the absolute value of the common ratio is less than 1 and diverges otherwise.

In this case, since the absolute value of the common ratio 43π is greater than 1, the series diverges by the Geometric Series Test.

Therefore, the correct answer is that the given series ∑ n=1 [infinity] (43π)^n diverges by the Geometric Series Test.

Visit here to learn more about  Geometric Series  : https://brainly.com/question/30264021

#SPJ11

A normal population has a mean of 12. 2 and a standard deviation of 2. 5. Compute the z value associated with 14. 3. What proportion of the population is between 12. 2 and 14. 3? what proportion of the population is less than 10. 0?

Answers

Given Information:

Mean = μ = 12.2

Standard deviation = σ = 2.5

Required Information:

1. z-value = ?

2. P(12.2 < X < 14.3) = ?

3. P(X < 10.0) = ?

Response:

1. z-value = 0.72

2. P(12.2 < X < 14.3) = 29.96%

3. P(X < 10.0) = 18.94%

What is Normal Distribution?

Normal Distribution is a continuous probability distribution and is symmetrical around the mean. The shape of this distribution is like a bell curve and most of the data is clustered around the mean. The area under this bell shaped curve represents the probability.

1. We want to find out the z-value associated with 14

[tex]P(X=14)=P(Z=\frac{\text{x}-\mu}{\sigma})[/tex]

[tex]P(X=14)=P(Z=\frac{14-12.2}{2.5})[/tex]

[tex]P(X=14)=P(Z=\frac{1.8}{2.5})[/tex]

[tex]P(X=14)=P(Z=0.72)[/tex]

Therefore, the z-value associated with X = 14 is 0.72

2. We want to find out the proportion of the population that is between 12.2 and 14.3.

[tex]P(12.2 < X < 14.3)=P(\frac{\text{x}-\mu}{\sigma} < Z < \frac{\text{x}-\mu}{\sigma})[/tex]

[tex]P(12.2 < X < 14.3)=P(\frac{12.2-12.2}{2.5} < Z < \frac{14.3-12.2}{2.5})[/tex]

[tex]P(12.2 < X < 14.3)=P(\frac{0}{2.5} < Z < \frac{2.1}{2.5})[/tex]

[tex]P(12.2 < X < 14.3)=P(0 < Z < 0.84)[/tex]

[tex]P(12.2 < X < 14.3)=P(Z < 0.84)-P(Z < 0)[/tex]

The z-score corresponding to 0 is 0.50

The z-score corresponding to 0.84 is 0.7996

[tex]P(12.2 < X < 14.3)=0.7996-0.50[/tex]

[tex]P(12.2 < X < 14.3)=0.2996[/tex]

[tex]P(12.2 < X < 14.3)=29.96\%[/tex]

Therefore, the proportion of the population that is between 12.2 and 14.3 is 29.96%

3. We want to find out the proportion of the population that is less than 10.0

[tex]P(X < 10.0)=P(Z < \frac{\text{x}-\mu}{\sigma} )[/tex]

[tex]P(X < 10.0)=P(Z < \frac{10.0-12.2}{2.5} )[/tex]

[tex]P(X < 10.0)=P(Z < \frac{-2.2}{2.5} )[/tex]

[tex]P(X < 10.0)=P(Z < -0.88)[/tex]

The z-score corresponding to -0.88 is 0.1894

[tex]P(X < 10.0)=0.1894[/tex]

[tex]P(X < 10.0)=18.94\%[/tex]

Therefore, the proportion of the population that is less than 10.0 is 18.94%

How to use z-table?

Step 1:

In the z-table, find the two-digit number on the left side corresponding to your z-score. (e.g 1.0, 2.2, 0.5 etc.)

Step 2:

Then look up at the top of z-table to find the remaining decimal point in the range of 0.00 to 0.09. (e.g. if you are looking for 0.6 then go for 0.00 column)

Step 3:

Finally, find the corresponding probability from the z-table at the intersection of step 1 and step 2.

A similar problem is given at: https://brainly.com/question/28037333

rate of return is 17.00 percent? Multiple Choice $84.33 $96.14 $.8433 $.9614

Answers

The correct amount after a rate of return of 17.00 percent is $96.14, not $84.33, $.8433, or $.9614.

To determine the amount after a rate of return of 17.00 percent, we need to calculate the future value (FV) using the formula:

[tex]FV = PV * (1 + r)[/tex]

where PV is the present value (initial amount) and r is the rate of return.

Plugging in the values, we have:

[tex]FV = $84.33 * (1 + 0.17)[/tex]

Calculating this expression, we find that the future value is approximately $96.14.

Therefore, the correct answer is $96.14, which represents the amount after a rate of return of 17.00 percent.

Learn more about amount here:

https://brainly.com/question/8082054

#SPJ11

If I invite five friends to a party, what is the probability of
2 friends attending?

Answers

The probability of 2 friends attending the party is 0.1 or 10%.  To calculate the probability of 2 friends attending, we need to know the total number of ways in which 2 friends can be selected from the 5 invited.

This is given by the combination formula:

([tex]{5 \choose 2} = \frac{5!}{2!(5-2)!} = 10)[/tex]

So there are a total of 10 different pairs of friends that could attend.

Now, assuming that each friend has an equal chance of attending, the probability of any particular pair attending is given by the ratio of the number of ways in which that pair could attend to the total number of possible outcomes. In this case, there are 10 possible pairs, and only one of these corresponds to the specific pair that we are interested in. Therefore, the probability of 2 friends attending is:

[tex](P(\text{2 friends attend}) = \frac{1}{10} = 0.1)[/tex]

So the probability of 2 friends attending the party is 0.1 or 10%.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

An elementary school principal would like to know how many hours the students spend watching TV each day. A sample of n = 25 children is selected, and a survey is sent to each child's parents. The results indicate and average of X = 3.1 hours per day with a standard deviation of s = 3.0. a) Make an interval estimate of the mean so that you are 90% confident that the true mean is in your interval.

Answers

The 90% confidence interval is (2.113, 3.887).

To make an interval estimate of the mean with a 90% confidence level, we can use the formula for a confidence interval for the mean:

Confidence Interval = X ± Z * (s / √n)

Where:

X is the sample mean,

Z is the critical value corresponding to the desired confidence level,

s is the sample standard deviation, and

n is the sample size.

In this case, the sample mean (X) is 3.1 hours per day, the sample standard deviation (s) is 3.0, and the sample size (n) is 25.

To find the critical value (Z) corresponding to a 90% confidence level, we can consult the standard normal distribution table or use a statistical calculator. For a 90% confidence level, the critical value is approximately 1.645.

Now we can calculate the confidence interval:

Confidence Interval = 3.1 ± 1.645 * (3.0 / √25)

First, calculate the standard error of the mean:

Standard Error (SE) = s / √n = 3.0 / √25 = 0.6

Next, substitute the values into the formula:

Confidence Interval = 3.1 ± 1.645 * 0.6

Calculating the values:

Confidence Interval = 3.1 ± 0.987

Therefore, the 90% confidence interval for the mean number of hours the students spend watching TV each day is (2.113, 3.887). This means that we can be 90% confident that the true mean falls within this range.

To learn more about confidence interval here:

https://brainly.com/question/32546207

#SPJ4

Workers were surveyed to determine the proportion of workers who feel their industry is understaffed. 37% of the responders said they were understaffed.
A) Suppose that 200 workers were surveyed. Construct a 95% confidence interval for the proportion of workers who feel their industry is understaffed.
[30.31%, 43.69%]
[11.28%, 85.28%]
[33.59%, 40.41%]
[23.31%, 36.69%]

Answers

The 95% confidence interval for the proportion of workers who feel their industry is understaffed is approximately [30.7%, 43.3%].

The correct option from the provided choices is: [30.31%, 43.69%].

To construct a confidence interval for the proportion of workers who feel their industry is understaffed, we can use the formula:

CI = p ± z * √(p(1-p) / n)

Where:

p is the sample proportion (37% or 0.37 in decimal form),

z is the z-score corresponding to the desired confidence level (95% confidence level corresponds to z = 1.96),

n is the sample size (200 workers).

Putting in the values, we get:

CI = 0.37 ± 1.96 * √(0.37(1-0.37) / 200)

Calculating the values inside the square root:

√(0.37(1-0.37) / 200) ≈ 0.032

Putting it back into the formula, we have:

CI = 0.37 ± 1.96 * 0.032

Calculating the values inside the parentheses:

1.96 * 0.032 ≈ 0.063

Puttiing it back into the formula, we have:

CI = 0.37 ± 0.063

Calculating the confidence interval:

Lower bound = 0.37 - 0.063 ≈ 0.307 or 30.7%

Upper bound = 0.37 + 0.063 ≈ 0.433 or 43.3%

Therefore, the 95% confidence interval for the proportion of workers who feel their industry is understaffed is approximately [30.7%, 43.3%].

The correct option from the provided choices is: [30.31%, 43.69%].

Learn more about Sample Proportion at

brainly.com/question/32835750

#SPJ4

Suppose z is the standard normal variable. Draw the normal curve for each of the following probability statements to visualize the required area and determine the missing values.
Report answers accurate to 2 decimal places.
a. P(z < ) = 0.0073
b. P(z ≥ ) = 0.9878
c. P(z ) = 0.5
d. P(0 << ) = 0.3531
e. P(-3.05 << ) = 0.0177
1. P << -1.05) = 0.1449
9. P(-6.17 << ) = 0.8869
h. P(S or z 1.21) = 0.1204

Answers

The given probability (0.8869) corresponds to a z-score of approximately 1.22.

To visualize the required areas and determine the missing values, let's refer to the standard normal distribution table (also known as the Z-table). The table provides the cumulative probability values for the standard normal distribution up to a given z-score.

a. P(z < ?) = 0.0073

To find the corresponding z-score, we look for the closest cumulative probability value (0.0073) in the table. The closest value is 0.0073, which corresponds to a z-score of approximately -2.41.

b. P(z ≥ ?) = 0.9878

Since we need the probability of z being greater than or equal to a certain value, we can find the z-score for the complementary probability (1 - 0.9878 = 0.0122). Looking up the closest value in the table, we find a z-score of approximately 2.31.

c. P(z ?) = 0.5

The cumulative probability of 0.5 corresponds to the mean of the standard normal distribution, which is 0. Therefore, the missing value is 0.

d. P(0 << ?) = 0.3531

To find the z-score for the given probability, we can look up the closest value in the table, which is 0.3520. The corresponding z-score is approximately 0.35.

e. P(-3.05 << ?) = 0.0177

Looking up the closest value in the table, we find 0.0175, which corresponds to a z-score of approximately -2.07.

f. P(<< -1.05) = 0.1449

To find the missing value, we can subtract the given probability (0.1449) from 1, giving us 0.8551. Looking up the closest value in the table, we find a z-score of approximately 1.09.

g. P(-6.17 << ?) = 0.8869

The given probability (0.8869) corresponds to a z-score of approximately 1.22.

h. P(S or z > 1.21) = 0.1204

Since we're looking for the probability of a value being less than a given z-score (1.21), we can subtract the given probability (0.1204) from 1, giving us 0.8796. Looking up the closest value in the table, we find a z-score of approximately 1.17.

Note: The values reported are approximate due to the limitation of the z-table's granularity.

Learn more about probability here: brainly.com/question/31828911

#SPJ11

An advertisment claims that 62.7% of customers are satisfied with a certain bank. What is the probability that in a random sample of 430 bank customers, more than 61.044183% are satisfied?
Probability =

Answers

Therefore, if the advertisement's claim is true, then the probability that more than 61.044183% of the customers in a random sample of 430 bank customers are satisfied is approximately **0.7764**.

Let X be the number of satisfied customers in a random sample of 430 bank customers. If the advertisement's claim is true, then X follows a binomial distribution with n = 430 and p = 0.627.

We can use a normal approximation to the binomial distribution to calculate the probability that more than 61.044183% of the customers in the sample are satisfied. The mean and standard deviation of the normal approximation are given by:

μ = np = 430 * 0.627 ≈ 269.61
σ = √(np(1-p)) ≈ 9.34

Let Y be the normal random variable that approximates X. We want to find P(X > 0.61044183 * 430) = P(Y > 262.49). Using the standard normal variable Z = (Y - μ)/σ, we have:

P(Y > 262.49) = P(Z > (262.49 - 269.61)/9.34)
            ≈ P(Z > -0.76)
            ≈ 0.7764

learn more about advertisement

https://brainly.com/question/29564877

#SPJ11



In a survey of 1002 people, 70% said they voted in a recent presidential election. Answer the following questions by hand. a) 1002 people, how many of them said that they voted? b) Use formula to construct a 82% confidence interval estimate of the proportion of the people who say that they voted. c) Use Brock calculator to construct a 97% confidence interval estimate of the proportion of the people who say that they voted. d) As the level of confidence increases what happens to the width of the confidence interval?

Answers

A survey of 1002 people, 70% said they voted in a recent presidential election.

The actual number of people who said they voted would be 701.

This means that the range of values within which the true population parameter is likely to lie becomes wider.

A higher level of confidence requires a larger margin of error, resulting in a wider interval.

a) Out of 1002 people, the number who said they voted can be calculated by multiplying the total number of people by the percentage who said they voted:

Number who said they voted = 1002 * 0.70 = 701.4

Since we can't have a fraction of a person, the actual number of people who said they voted would be 701.

b) To construct a confidence interval estimate of the proportion, we can use the formula:

Confidence interval = sample proportion ± margin of error

where the margin of error is determined by the desired confidence level and the sample size.

For an 82% confidence interval, the margin of error can be calculated using the formula:

where z is the z-score corresponding to the desired confidence level, is the sample proportion, and n is the sample size.

c) To use a calculator like the Brock calculator, the specific values of the sample size, sample proportion, and confidence level need to be inputted to obtain the confidence interval estimate. Without these specific values, it is not possible to provide the exact interval.

d) As the level of confidence increases, the width of the confidence interval increases. This means that the range of values within which the true population parameter is likely to lie becomes wider.

A higher level of confidence requires a larger margin of error, resulting in a wider interval. This is because a higher confidence level requires a higher z-score, which increases the multiplier in the margin of error formula, thus expanding the interval.

To know more about parameter refer here:

https://brainly.com/question/29911057#

#SPJ11

Because of bad weather, the number of days next week that the captain of a charter fishing boat can leave port is uncertain. Let x = number of days that the boat is able to leave port per week. The probability distribution shown to the right for the variable, x, was determined based on historical data when the weather was poor. Based on the probability distribution, what is the expected number of days per week the captain can leave port? Find the expected number of days per week the captain can leave port. (Type an integer or a decimal.) X 0 1 2 3 4 5 6 7 P(x) 0.05 0.10 0.15 0.20 0.25 0.10 0.10 0.05

Answers

The expected number of days per week the captain can leave port is 3.45.

The expected number of days per week the captain can leave port is calculated by the formula

μ = Σ [x P(x)], where μ is the expected value, x is the variable, and P(x) is the probability.

The given probability distribution is given below:

X         0       1       2       3      4        5         6       7

P(x) 0.05  0.10  0.15  0.20  0.25  0.10   0.10   0.05

Expected value,

μ = Σ [x P(x)]

μ = 0 (0.05) + 1(0.10) + 2(0.15) + 3(0.20) + 4(0.25) + 5(0.10) + 6(0.10) + 7(0.05)

μ = 0 + 0.10 + 0.30 + 0.60 + 1.00 + 0.50 + 0.60 + 0.35

μ = 3.45

Therefore, the expected number of days per week the captain can leave port is 3.45.

To know more about the probability distribution, visit:

brainly.com/question/30653447

#SPJ11

The form of the trial particular solution to y" + 2y + 5y = 3 sin(2t) is = Ур Ae-t sin(2t) B sin(2t) Cet cos(2t) D cos(2t) Ete-t sin(2t) None of the above. Q1.4 1 Point DO NOT SOLVE! The form of the trial particular solution to y" - y = 3x is = Ур A Bx Cx² Dx³ None of the above.

Answers

For the differential equation y" + 2y + 5y = 3 sin(2t), the form of the trial particular solution can be determined by examining the non-homogeneous term, which is 3 sin(2t).

Since the non-homogeneous term contains a sine function, the trial particular solution should have a similar form. The correct form of the trial particular solution is: Ур A e^(-t) sin(2t). Among the given options, the correct choice is: Ур A e^(-t) sin(2t). For the differential equation y" - y = 3x, the non-homogeneous term is 3x. Since the non-homogeneous term is a polynomial function of degree 1, the trial particular solution should also be a polynomial function of the same degree. The correct form of the trial particular solution is: Bx.

Among the given options, the correct choice is: Bx.

To learn more about differential equation click here: brainly.com/question/32524608

#SPJ11

Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us. (a) Suppose n = 26 and p = 0.29. (For each answer, enter a number. Use 2 decimal places.) n-p= n-q = Can we approximate p by a normal distribution? Why?

Answers

Yes, we can approximate p by a normal distribution in this case.

To find n - p and n - q, where n is the number of trials and p is the probability of success, we can use the following formulas:

n - p = n - (n * p)

n - q = n - (n * (1 - p))

Using the given values n = 26 and p = 0.29, we can calculate:

n - p = 26 - (26 * 0.29) = 26 - 7.54 = 18.46

n - q = 26 - (26 * (1 - 0.29)) = 26 - 18.54 = 7.46

Now, let's determine if we can approximate p by a normal distribution. The conditions for approximating a binomial distribution with a normal distribution are as follows:

np ≥ 5 and nq ≥ 5

In this case, np = 26 * 0.29 = 7.54 and nq = 26 * (1 - 0.29) = 18.46. Since both np and nq are greater than 5, we can conclude that the conditions for approximating p by a normal distribution are satisfied.

Therefore, yes, we can approximate p by a normal distribution in this case.

Learn to know more about binomial experiments at

brainly.com/question/1580153

#SPJ11

3. (2 points) Evaluate the integral √ 12 (k+ 2)(k+3) dr

Answers

The integral √(12(k+2)(k+3)) dr evaluates to (2/3)√[12(k+2)(k+3)]r^(3/2) + C, where C is the constant of integration.

To evaluate the integral, we can apply the power rule for integration. The square root term, √(12(k+2)(k+3)), can be rewritten as (2√3)√[(k+2)(k+3)]. We can pull out the constant factor (2√3) and integrate the remaining expression (k+2)(k+3) using the power rule.

The power rule states that integrating x^n with respect to x gives (1/(n+1))x^(n+1) + C, where C is the constant of integration. Applying the power rule to (k+2)(k+3), we obtain [(k+2)^2/2 + 3(k+2)/2] + C.

Combining the results, we have (2√3)[(k+2)^2/2 + 3(k+2)/2]r^(3/2) + C. Simplifying further, we get (2/3)√[12(k+2)(k+3)]r^(3/2) + C, where C is the constant of integration.

Learn more about integration here: brainly.com/question/31744185

#SPJ11

A quadratic equation ax² + bx + c =0 has −8 and 6 as solutions. Find the values of b and c if the value of a is 1 . (Hint: Use the zero-factor property in reverse.)

Answers

The solutions of the quadratic equation are given as −8 and 6. This means that (x + 8) and (x − 6) are the factors of the quadratic equation.

A quadratic equation can be represented in the factored form as ax² + bx + c = a(x + m)(x + n), where m and n are the roots of the quadratic equation.

Therefore, ax² + bx + c = a(x + 8)(x − 6)

Since the value of a is 1, we can rewrite the equation as, x² + bx + c = (x + 8)(x − 6)

Solve the following equation and we will get the following result:

(x+8)(x-6) = (x² + (8x - 6x) - 48) = x² + 2x - 48

The coefficient of x in the above equation is b.

The constant term in the above equation is c.

Therefore, the values of b and c are 2 and -48 respectively if the value of a is 1.

Learn more about quadratic equations: https://brainly.com/question/30098550

#SPJ11

College tuition: A simple random sample of 40 colleges and universities in the United States has a mean tuition of $18,200 with a standard deviation of $10,600. Construct a 99% confidence interval for the mean tuition for all colleges and universities in the United States. Round the answers to the nearest whole number. A 99% confidence interval for the mean tuition for all colleges and universities is

Answers

A 99% confidence interval for the mean tuition for all colleges and universities in the United States is ($13,885-$22,515). A simple random sample of 40 colleges and universities in the United States has a mean tuition of $18,200 with a standard deviation of $10,600.

To construct a 99% confidence interval for the mean tuition for all colleges and universities in the United States, the steps involved are;

Step 1: Identify the level of confidence and the sample size of the problemLevel of confidence= 99%This indicates that we have a 99% confidence level. Sample size = 40

Step 2: Look up the z-values of a standard normal distribution for the given level of confidence.For a 99% confidence interval, the z-value would be 2.576.

Step 3: Calculate the Standard errorStandard error, SE = σ/ √n, where σ is the standard deviation and n is the sample size.SE= 10600/√40= 1677.5

Step 4: Determine the margin of errorMargin of error = z*SEMargin of error = 2.576 x 1677.5= 4315.14

Step 5: Determine the confidence interval.The confidence interval can be calculated by taking the sample mean and adding and subtracting the margin of error from it.

Confidence interval= $18,200±$4315.14=$13,884.86-$22,515.14

Therefore, a 99% confidence interval for the mean tuition for all colleges and universities in the United States is ($13,885-$22,515).

To know more about universities visit:

brainly.com/question/29363911

#SPJ11

For a standard normal distribution, find: P(z>c)=0.4226 Find C. A population of values has a normal distribution with μ=57.7 and σ=77.2. You intend to draw a random sample of size n=181. What is the mean of the distribution of sample means? μs. = What is the standard deviation of the distribution of sample means? (Report answer accurate to 2 decimal places.) σxˉ=

Answers

For a standard normal distribution, find P(z > c) = 0.4226; Find C. To find C given P(z > c) = 0.4226; we can look at the standard normal distribution table. Therefore, to find C given P(z > c) = 0.4226, we have to perform the following steps:

Locate 0.4226 in the body of the table and move to the nearest value, which is 0.4236.

The corresponding value of Z is 0.20. Move to the left-hand column of the table to find the correct negative value of Z. Therefore, the corresponding value of Z is -0.20. Thus, the value of C can be obtained as C = -0.20.

This implies that the probability of a Z-score being greater than C equals 0.4226.

The formula for the mean of the distribution of sample means is given as:μs = μ = 57.7The formula for the standard deviation of the distribution of sample means is given as:σxˉ = σ/√nσxˉ = 77.2/√181σxˉ ≈ 5.72

Hence, the mean of the distribution of sample means is μs = 57.7 and the standard deviation of the distribution of sample means is σxˉ ≈ 5.72.

Learn more about normal distribution at https://brainly.com/question/31000873

#SPJ11

1,) You are testing the claim that the mean GPA of night students is less than the mean GPA of day students.
You sample 25 night students, and the sample mean GPA is 2.45 with a standard deviation of 0.72
You sample 60 day students, and the sample mean GPA is 2.03 with a standard deviation of 0.65
Calculate the test statistic, rounded to 2 decimal places

Answers

There is enough evidence to support the claim that the mean GPA of night students is less than the mean GPA of day students at the 5% level of significance.

To compare the mean GPA of night students and day students, we need to conduct a hypothesis test. We set the null hypothesis (H0) as the mean GPA of night students being equal to the mean GPA of day students (μN = μD), while the alternative hypothesis (H1) is that the mean GPA of night students is less than the mean GPA of day students (μN < μD).

The level of significance (α) is typically predetermined, but in this case, it is not given. We assume a significance level of α = 0.05.

Since the sample sizes of both groups are small, the t-distribution is appropriate for our analysis.

To calculate the test statistic (t), we use the formula: t = (X1 - X2) / √(S12/n1 + S22/n2). Here, X1 and X2 represent the sample means, S1 and S2 are the sample standard deviations, and n1 and n2 are the sample sizes.

Given the values:

X1 = 2.45 (mean GPA of night students)

X2 = 2.03 (mean GPA of day students)

S1 = 0.72 (sample standard deviation of night students)

S2 = 0.65 (sample standard deviation of day students)

n1 = 25 (sample size of night students)

n2 = 60 (sample size of day students)

By plugging in these values into the formula, we find that the test statistic (t) is approximately 3.08 (rounded to 2 decimal places).

Next, we determine the p-value associated with the calculated test statistic. We can refer to the t-distribution table with the appropriate degrees of freedom (df = n1 + n2 - 2) and the chosen significance level (α). In our case, df is calculated as 83 (25 + 60 - 2). Consulting the table for α = 0.05, we find that the p-value is approximately 0.0018.

Finally, based on the p-value, we can make a decision. Since the calculated p-value (0.0018) is smaller than the chosen significance level (0.05), we reject the null hypothesis.

in summary there is enough evidence to support the claim that the mean GPA of night students is less than the mean GPA of day students at the 5% level of significance.

To know more about hypothesis, click here

https://brainly.com/question/29576929

#SPJ11

You may heed to use the appropriate appendix table of technology to answer this question. The Polsson random variable x is the number of occurrences of an event over an interval of ten minuses, it can be assumed that the probability of an occurtence is the same in any two time periods of an equal jeagth. It is known that the mean number of occurrences in ten minutes is 5.2. What is the probablity that there are 8 sccurrences in tant minutes? 0.0287 0.0731 0.1088 0.91E1

Answers

B). 0.0731. is the correct option. The probability that there are 8 occurrences in ten minutes is 0.0731.

In order to solve this problem, we need to use the Poisson probability distribution formula.

Given a random variable, x, that represents the number of occurrences of an event over a certain time period, the Poisson probability formula is:P(x = k) = (e^-λ * λ^k) / k!

Where λ is the mean number of occurrences over the given time period (in this case, 10 minutes) and k is the number of occurrences we are interested in (in this case, 8).

So, the probability that there are 8 occurrences in ten minutes is:P(x = 8) = (e^-5.2 * 5.2^8) / 8!

We can solve this using a scientific calculator or software with statistical functions.

Using a calculator, we get:P(x = 8) = 0.0731 (rounded to four decimal places).

Therefore, the probability that there are 8 occurrences in ten minutes is 0.0731. The answer is option B.

To know more about occurrences visit:

brainly.com/question/31029846

#SPJ11

1. The peeps of MATH 1040 have decided to host a casino night so they can raise money for a field trip to Las Vegas. Help them design a new game by answering the following questions about flipping a coin.
(a) A coin is tossed THREE times. Write out all of the outcomes in the sample space.
(b) A coin is tossed FIVE times. Determine the number of outcomes in which there are exactly 2 Heads.
(c) Use the binomial distribution to determine the probability of getting exactly 2 heads in TEN tosses of a fair coin.
(d) A biased coin with P( HEADS) = 0.75 is tossed TEN times. Use the binomial distribution to determine the probability of getting at least 2 heads.

Answers

Here are the answers to the questions regarding flipping a coin for the casino night game:

(a) The sample space for tossing a coin three times consists of the following outcomes: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

(b) When a coin is tossed five times, there are exactly 10 outcomes in which exactly 2 Heads appear.

(c) Using the binomial distribution, the probability of getting exactly 2 heads in ten tosses of a fair coin is approximately 0.28125 or 28.125%.

(d) When a biased coin with a probability of heads being 0.75 is tossed ten times, the probability of getting at least 2 heads is approximately 0.9999982 or 99.99982%.

To help design a new game for the casino night, we will explore various aspects of flipping a coin.

(a) When a coin is tossed three times, the sample space consists of all possible outcomes. Each toss can result in either a "Heads" (H) or a "Tails" (T). Writing out all the outcomes, we have:

Sample space: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(b) If a coin is tossed five times, we need to determine the number of outcomes with exactly two Heads. To calculate this, we can use the binomial coefficient formula. The number of outcomes with exactly k successes in n trials is given by the binomial coefficient C(n, k), which can be calculated using the formula:

C(n, k) = n! / (k!(n - k)!)

In this case, n = 5 (number of tosses) and k = 2 (number of Heads). Plugging in the values, we have:

C(5, 2) = 5! / (2!(5 - 2)!) = 10

Therefore, there are 10 different outcomes with exactly 2 Heads when a coin is tossed five times.

(c) To determine the probability of getting exactly 2 heads in ten tosses of a fair coin using the binomial distribution, we need to calculate the probability of each outcome and sum them up. The probability of getting exactly k successes (in this case, 2 Heads) in n trials (in this case, 10 tosses) with a probability p of success (0.5 for a fair coin) is given by the binomial probability formula:

P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)

In this case, n = 10, k = 2, and p = 0.5.

Plugging in these values, we have:

P(X = 2) = C(10, 2) * (0.5)^2 * (1 - 0.5)^(10 - 2)

          = 45 * 0.25 * 0.25

          = 0.28125

Therefore, the probability of getting exactly 2 heads in ten tosses of a fair coin is approximately 0.28125 or 28.125%.

(d) If a biased coin with P(HEADS) = 0.75 is tossed ten times, we can still use the binomial distribution to calculate the probability of getting at least 2 heads. The probability of getting at least k successes (in this case, 2 or more Heads) in n trials (10 tosses) with a probability p of success (0.75 for a biased coin) is given by:

P(X ≥ k) = Σ(i=k to n) C(n, i) * p^i * (1 - p)^(n - i)

In this case, n = 10, k = 2, and p = 0.75. We need to calculate the probability for k = 2, 3, 4, ..., 10 and sum them up. Using the formula, we can calculate:

P(X ≥ 2) = Σ(i=2 to 10) C(10, i) * (0.75)^i * (1 - 0.75)^(10 - i)

Calculating this sum, we find that P(X ≥ 2) is approximately 0.9999982 or 99.99982%.

To know more about probability, refer here:

https://brainly.com/question/31828911#

#SPJ11

2. In the game of SCRABBLE, you select letters from the group in the pot that are not already on the board or in your hand or someone else's. This would be sampling letters without replacement. Suppose that instead of doing this, you select a letter from the pot, write it down, and then return it to the pot. In other words, suppose you sample letters with replacement. Every time you select a new letter, you write it down next to the letter you drew previously. Because you are sampling the pot with replacement, each draw of a letter is an independent event such that the Multiplication Rule for Independent Events applies

Answers

The probability of selecting "A" followed by "E" would be (1/26) x (1/26) = 1/676

If you wanted to determine the probability of selecting a specific sequence of letters, you would use the Multiplication Rule for Independent Events to calculate the probability of each individual letter, then multiply them together.

The game of Scrabble involves selecting letters from a pot that are not already on the board or in anyone's hand. This process is an example of sampling without replacement. However, if you were to choose a letter from the pot, record it, and then return it to the pot, this would be sampling with replacement. Each time you choose a new letter, you write it down next to the previous letter.

The Multiplication Rule for Independent Events applies since each draw of a letter is an independent event. The Multiplication Rule states that if there are m ways to perform the first event and n ways to perform the second event, there are m x n ways to perform both events.

The probability of choosing a specific letter is the same each time, regardless of which letter was previously drawn since the events are independent. As a result, each letter has a probability of 1/26 of being drawn each time.

If you wanted to determine the probability of selecting a specific sequence of letters, you would use the Multiplication Rule for Independent Events to calculate the probability of each individual letter, then multiply them together.

To learn more on Multiplication Rule :

https://brainly.com/question/30340527

#SPJ11

manufacturer of salad dressings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses dressings is working properly when 8 ounces are dispensed. The standard deviation of the process is 0.15 ounce. Periodically, a sample of 50 bottles is randomly selected, and the filling fine is stopped if there is evidence that the average amount dispensed is different from 8 ounces. Suppose that the average amount dispensed in a particular sample of 50 bottles is 7.983 ounces. State the null and alternative hypotheses. Is there evidence that the population average amount is different from 8 ounces? (Use a 0.05 level of significance.) \(c) Compute the p-value and interpret its meaning.

Answers

a) The null hypothesis (H0) states that the population average amount dispensed is equal to 8 ounces. The alternative hypothesis (Ha) states that the population average amount dispensed is different from 8 ounces.

b) To test the hypothesis, we can perform a one-sample t-test. The sample mean is 7.983 ounces, which is slightly below the hypothesized value of 8 ounces. We want to determine if this difference is statistically significant.

c) By conducting the one-sample t-test, we can calculate the p-value associated with the observed sample mean of 7.983 ounces. The p-value represents the probability of obtaining a sample mean as extreme as the observed value, assuming that the null hypothesis is true.

If the calculated p-value is less than the significance level (0.05 in this case), we reject the null hypothesis in favor of the alternative hypothesis, indicating evidence that the population average amount dispensed is different from 8 ounces. If the p-value is greater than the significance level, we fail to reject the null hypothesis, suggesting that there is not enough evidence to conclude that the population average is different from 8 ounces.

The interpretation of the p-value in this case is that it represents the probability of observing a sample mean of 7.983 ounces or a more extreme value, assuming that the true population mean is 8 ounces. A small p-value indicates that the observed sample mean is unlikely to have occurred by chance alone under the assumption of the null hypothesis. Therefore, a small p-value provides evidence against the null hypothesis and suggests that the population average amount dispensed is likely different from 8 ounces.

Learn more about null hypothesis here:

brainly.com/question/16261813

#SPJ11

A variable of two populations has a mean of 47 and a standard deviation of 11 for one of the populations and a mean of 28 and a standard deviation of 12 for the other population. For independent samples of sizes 12 and 9, respectively, find the mean of X-X2-
OA. 19
OB. 75
OC.-19
OD. 0.8

Answers

The mean of X - X2 is 19. This represents the difference between the means of two populations. It indicates that, on average, X is 19 units higher than X2.

To find the mean of X - X2, we need to subtract the means of the two populations. Given that the mean of the first population is 47 and the mean of the second population is 28, we have:

Mean of X - X2 = Mean of X - Mean of X2 = 47 - 28 = 19.

Therefore, the mean of X - X2 is 19.

In this context, X represents the variable for one population and X2 represents the variable for the other population. By subtracting the means, we are calculating the difference between the two variables.

It's worth noting that the standard deviations of the populations are not required to calculate the mean of X - X2 in this case. Only the means are necessary.

To summarize, when comparing the two populations, the mean difference between X and X2 is 19.

Learn more about mean

brainly.com/question/29895356

#SPJ11

A factory's worker productivity is normally distributed. One worker produces an average of 76 unita per day with a standard deviation of 23 . Another worker produces ot an average rate of 65 units per day with a standard deviation of 22. A. What is the probability that in a single day worker 1 will outproduce worker 2 ? Probabily = B. What is the probability that during one week ( 5 working dayo), worker 1 will outproduce worker 2 ? Probability =

Answers

Given that, Worker 1 average production per day = μ1 = 76 units per day

Standard deviation of worker 1 = σ1 = 23Worker 2 average production per day = μ2 = 65 units per day

Standard deviation of worker 2 = σ2 = 22A.

Probability that in a single day worker 1 will outproduce worker 2

We have to find the probability that worker 1 will outproduce worker 2 in a single day, P (X1 > X2)P(X1 > X2) = P(X1 - X2 > 0)Now X1 - X2 is a normal distribution with mean = μ1 - μ2 and standard deviation = √(σ1² + σ2²) = √(23² + 22²) = √1093 = 33.05P(X1 - X2 > 0) = P(Z > (0 - (μ1 - μ2))/σ) = P(Z > -1.44) = 0.925B.

Probability that during one week (5 working days), worker 1 will outproduce worker 2

Let Y be the number of units produced by worker 1 in 5 working days, then Y follows normal distribution with mean (5*μ1) = 5*76 = 380 and variance (5*σ1²) = 5*(23²) = 2505

Let Z be the number of units produced by worker 2 in 5 working days, then Z follows normal distribution with mean (5*μ2) = 5*65 = 325 and variance (5*σ2²) = 5*(22²) = 2420

We have to find the probability that worker 1 will outproduce worker 2 in 5 days

P(Y > Z)P(Y > Z) = P(Y - Z > 0)Now Y - Z is a normal distribution with mean = 380 - 325 = 55 and standard deviation = √(2505 + 2420) = √(4925) = 70.13P(Y - Z > 0) = P(Z > (0 - (μ1 - μ2))/σ) = P(Z > -0.79) = 0.786

Therefore, the required probability is 0.786

to know more about normal distribution  visit :

  brainly.com/question/15103234

#SPJ11

When a scientist conducted a genetics experiments with peas, one sample of offspring consisted of 903 peas, with 685 of them having red flowers. If we assume, as the scientist did, that under these circumstances, there is a 3 / 4 probability that a pea will have a red flower, we would expect that 677.25 (or about 677 ) of the peas would have red flowers, so the result of 685 peas with red flowers is more than expected. a. If the scientist's assumed probability is correct, find the probability of getting 685 or more peas with red flowers. b. Is 685 peas with red flowers significantly high? c. What do these results suggest about the scientist's assumption that 3/4 of peas will have red flowers?

Answers

The observed number of peas with red flowers (685) is significantly higher than the expected number (677.25) if the assumed probability of 3/4 is correct. This suggests that the scientist's assumption may be incorrect and there may be other factors at play influencing flower color in peas. Further investigation is needed to determine the true probability and understand the underlying factors affecting flower color in peas.

a. If the scientist's assumed probability is correct, we can use the binomial distribution to calculate the probability of getting 685 or more peas with red flowers. Using the binomial probability formula, we sum up the probabilities of getting 685, 686, 687, and so on, up to 903 peas with red flowers. This gives us the cumulative probability.

b. To determine if 685 peas with red flowers is significantly high, we compare the calculated probability from part (a) to a predetermined significance level (e.g., 0.05). If the calculated probability is less than the significance level, we can conclude that the observed result is significantly different from what was expected.

c. The results suggest that the scientist's assumption that 3/4 of peas will have red flowers may be incorrect. The observed number of peas with red flowers (685) is significantly higher than the expected number (677.25). This indicates that there may be other factors at play that influence flower color in peas, or that the assumption of a 3/4 probability of red flowers is inaccurate. Further investigation and experimentation would be necessary to determine the true probability and understand the underlying factors affecting flower color in peas.

Learn more about probability : brainly.com/question/31828911

#SPJ11

a) Design a data warehouse model for an insurance company, focusing on their customers' insurance policies using the star schema. There must be at least FOUR (4) dimension tables. Use the following requirements for the model. - A policy book with the key performance indicator of the ceiling amount. The higher the amount, the more valuable is the policy - A customer may subscribe to many insurance policies - A record of the location and time the policy was made should be kept - An agent is attached to a single branch, and the insurance company have many branches - An agent can handle many customers

Answers

The data warehouse model for the insurance company's customer insurance policies will be designed using a star schema. The model will consist of four dimension tables to capture the relevant information.

These dimensions include the policy book, customer, location, and agent tables. The policy book dimension will include the key performance indicator of the ceiling amount, which represents the value of the policy. The customer dimension will capture the relationship between customers and their subscribed policies. The location dimension will record the location and time of policy creation. Finally, the agent dimension will reflect the association between agents and branches, as well as the relationship between agents and customers.

The policy book dimension table will serve as the central point for analyzing policy values, allowing for performance analysis based on the ceiling amount. The customer dimension table will enable tracking and analysis of customers and their multiple insurance policies. The location dimension table will provide insights into the geographical distribution of policies and help identify patterns based on the time policies were made.

Lastly, the agent dimension table will facilitate analysis of agent performance by associating them with specific branches and customers. This star schema design will provide a structured and efficient way to query and analyze the insurance company's customer insurance policies data.

To learn more about insurance policies click here : brainly.com/question/24984403

#SPJ11

Other Questions
return on investment (roi) in the sport sponsorship world is defined as XYZ Inc. is expected to maintain its dividend payout ratio of 70% in the long term. The company's earnings per share (EPS) are expected to be $1.575 next year. Earnings are expected to grow at a constant rate of 5% per year. The current risk-free rate is 1%, the implied equity risk premium is 7.0%, and the estimated beta of the firm is 2.10. If the firm is currently trading in the market at a P/E of 13.5, which of the following statements is correct:a XYZ is correctly pricedb XYZ is overvaluedc XYZ is undervaluedd More information is needed A random variable follows the continuous uniform distribution between 20 and 220 . a. Calculate the following probabilities for the distribution. 1. P(25x55) 2. P(55x170) 3. P(185x190) b. What are the mean and standard deviation of this distribution? a. 1. P(25x55)= Company X wants to borrow $10,000,000 floating for 5 years; company Y wants to borrow $10,000,000 fixed for 5 years. Their external borrowing opportunities are shown here:Fixed-RateFloating-RateBorrowing CostBorrowing CostCompany X10%LIBORCompany Y12%LIBOR + 1.5%A swap bank proposes the following interest only swap:Y will pay the swap bank annual payments on $10,000,000 with a fixed rate of rate of 9.90 percent.In exchange the swap bank will pay to company Y interest payments on $10,000,000 at LIBOR 0.15 percent;What is the value of this swap to company Y? Consider following demand and supply functions: D:P=1004Q:S:P=20+4Q. Equilibrium price and quantity are respectively given by: Q=50;P=5 Q=10;P=60 Q=20;P20 Q=4:Pn4 A population has a mean of u = 105 and standard deviation of standard deviation o = 10 What is the probability of obtaining a sample of n = 25 scoresa) with a mean greater than 94b) with a mean less than 105c) with a mean less than 91d) with a mean between 98 and 103 Autozone repurchased about 39% of its shares from 2007 to 2011 which, given constant earnings, wouldve resulted in an increase of a little more than 60% in the Earnings per share.Group of answer choicesFalseTrue y=f(x) cross-section y=g(x) base view The base of a certain solid is the area bounded above by the graph of y = f(x) = 9 and below by the graph of y = g(x) = 4x. Cross-sections perpendicular to the y-axis are squares. (See picture above, click for a better view.) Use the formula b V * = * A(1) dy to find the volume of the formula. Note: You can get full credit for this problem by just entering the final answer (to the last question) correctly. The initial questions are meant as hints towards the final answer and also allow you the opportunity to get partial credit. The lower limit of integration is a = The upper limit of integration is = The sides of the square cross-section is the following function of y: A(y)= Thus the volume of the solid is V = How much work W is done by the ethanol because of its thermal expansion? Express your answer with the appropriate units. For an ideal gas Cv and Cp are different because of the work W associated with the volume change for a constant-pressure process. To explore the difference between Cv and Cp for a liquid or a solid, consider the process in which 5.00 mol of ethanol is warmed from 10.0C to 60.0C while the applied pressure remains a constant 1.00 atm. The molar mass of ethanol is M = 46.1 g/mol. A patient is on maximum FiO2 settings, the physician asks you tomake changes that would help increase the patient's SpO2. Whatsetting change would you recommend? How to solve this question?l A diprotic weak base ( B ) has pb values of 3.722 ( pb1 ) and 6.514 ( pb2 ). Calculate the fraction of the weak base in each of its three forms ( B , BH+ , BH2+2 ) at pH 8.984 .B=BH+=BH2+2= Explain how the company, Coca-cola uses the crowdsourcing indigital business concept and explain the technology beingused. the ability to see oneself as other people might is known as Determine minimum transfer price. E9-30 (LO 6) High Sound Corporation manufactures car stereos. It is a division of Quality Motors, which manufactures vehicles. High Sound sells car stereos to Quality Motors, as well as to other vehicle manufacturers and retail stores. The following information is available for High Sound's standard unit car stereo's costs: variable cost per unit $35, fixed cost per unit $23, and selling price to outside customers $86. Quality Motors currently purchases a standard unit car stereo from an outside supplier for $80. Because of quality concerns and to ensure a reliable supply, the top management of Quality Motors has ordered High Sound to provide 20,000 units per year at a transfer price of $35 per unit. High Sound is already operating at full capacity. High Sound can avoid $5 per unit of variable costs by selling the unit internally. Instructions a. Determine the minimum transfer price that High Sound should accept. b. Calculate the potential loss to the corporation as a whole because of the forced transfer price of $35. c. How should the company resolve this situation? On January 1, 2020, Timely Delivery Transportation Company purchased a used aircraft at a cost of $51,100,000. Timely Delivery expects the plane to remain useful for five years (7,000,000 miles) and to have a residual value of $5,100,000. Timely Delivery expects to fly the plane 825,000 miles the first year, 1,200,000 miles each year during the second, third, and fourth years, and 2,575,000 miles the last year. Read the requirements. 1. Compute Timely Delivery's depreciation for the first two years on the plane using the straight-line method, the units-of-production method, and the double-declining balance method.a. Straight-line method Using the straight-line method, depreciation is $ 9,200,000 for 2020 and $ 9,200,000 for 2021. b. Units-of-production method (Round the depreciation per unit of output to two decimal places to compute your final answers.) Using the units-of-production method, depreciation is $5,420,250 for 2020 and $ 7,884,000 for 2021.c. Double-declining balance method Using the double-declining-balance method, depreciation is $20,440,000 for 2020 and $ 12.264,000 for 2021. Which of the following is the appropriate sample regression equation below?Group of answer choices(Est)Yield = 7.343 + 0.507 (Fertilizer) + 4.428(South) + (Est)Yield = 7.343 + 0.507 (Fertilizer) + 4.428(South)Yield = 0 + 1Fertilizer + 2South + Est(Yield) = 0 + 1Fertilizer + 2South + Actual sales of a company (in millions of dollars) for January through April are shown below. Month SalesJan 18Feb 25Mar 30Apr 40Maya. Use alpha = 0.3 to compute the exponential smoothing values for sales Compute MSE and forecast sales for May. Show all of your computations from February through May. b. Use alpha = 0.1 to compute the exponential smoothing values for sales. Compute MSE and forecast sales for May. Show all of your computations from February through May c. Based on MSB, which alpha provides a better forecast? Explain why? A component is manufactured by the Stress'n' Strength Company. The component will be subjected to a random stress with a PDF of f x(x)= 501,0x50 and has a design strength that is random with a PDF of f y(y)= (50) 22y,0x50. If the safety factor (SF) is defined as the mean strength divided by the mean stress, what is the safety factor for the component? 4. I) Posted by: Grant Gould on a Web BlogPurchasing some software on Buy.com about a year ago, I found that the listed prices for the same software were different on the front page of the website ($49), on the search-all- products results page ($39), and on the search-all-computer-games page ($29). These were, in order, progressively narrower searches.II) From the Wall Street Journal:H-P has quietly begun implementing "region coding" for its highly lucrative print cartridges for some of its newest printers sold in Europe. Try putting a printer cartridge bought in the U.S. into a new H-P printer configured to use cartridges purchased in Europe and it won't work. Software in the printer determines the origin of the ink cartridge and whether it will accept it.Please use the two examples above to comment on the following: (Please be very specific in applying the two examples above for the discussion of the comments below)i. Price discrimination increases a seller's profits.ii. Why, then, don't all sellers engage in it?